
Do Now Exercise
We learned arrays last week, and hopefully you have already started working on
your Project 1. To prepare you for the lecture today, please do the following
exercise.

Write a use case in which you think
arrays (do or don't) work well.

1

COMP15: Data Structures
Week 2, Summer 2019

2

Admin

3

(Canvas screenshot)

Canvas notifications
It may be a good idea to enable some notification settings on Canvas.

> Announcement
> Discussions

5

Git and Tufts CS GitHub

6

Any questions so far
about the course workflow?

7

T1: man, ssh, exit
Due by several minutes ago :)

8

So far, your report looks good,

except ... often references are missing.

9

So far, your reports look good,

except ... often references are missing.

10

T2: pwd, cd, ls
Due by 6pm on Wednesday, June 5th

13

(a quick demo)

14

P1: Card Deck
Due by 6pm on Sunday, June 2nd

15

Any questions about P1?

16

Discussion 1:
How would you compile your P1 source code?

17

$

18

$ clang++

19

$ clang++ test.cpp Card.cpp CardDeck.cpp

20

$ clang++ test.cpp Card.cpp CardDeck.cpp -o test

21

$ clang++ -std=c++11 test.cpp Card.cpp CardDeck.cpp -o test

22

$ clang++ -std=c++11 -Wall -Wextra test.cpp Card.cpp CardDeck.cpp -o test

23

$ clang++ -std=c++11 -Wall -Wextra -g test.cpp Card.cpp CardDeck.cpp -o test

24

$ clang++ -std=c++11 -Wall -Wextra -g -O0 test.cpp Card.cpp CardDeck.cpp -o test

25

Discussion 2:
Where did the "13" stuff come from?

27

(By design. Case-by-case. We need a strategy for it.)

28

Any questions about P1?

29

If you finish your P1 early,
try implementing a card game, for example, Blackjack,

using your Card and CardDeck modules!

30

Note about the assignment operator of Array class
(We discussed why we need (22) in the code from the last live coding session.)

31

Remaining Questions
In Array class,

● The default constructor and the non-default constructor is doing something very similar.
● The copy constructor and the assignment operator is doing something very similar.
● A part of the assignment operator and the destructor is doing something very similar.

Can we logically group such operations?

=> Refactoring

32

In-Class Activity

33

How would you pronounce this?

bool** board;

34

Memory Segments
(stack and heap)

A sneak peek preview (Comp 111, Operating Systems)

35

Memory Segments
(stack and heap)

A sneak peek preview (Comp 111, Operating Systems)

(A version of the figure we drew in class.
Ref: https://en.wikipedia.org/wiki/File:Program_memory_layout.pdf
In class, our focus was on the stack and heap areas.)

36

https://en.wikipedia.org/wiki/File:Program_memory_layout.pdf

Let's take a short break!

37

arrays
In Your Pocket

man, ssh, exit

38

Do Now Exercise
We learned arrays last week, and hopefully you have already started working on
your Project 1. To prepare you for the lecture today, please do the following
exercise.

Write a use case in which you think
arrays (do or don't) work well.

39

Do Now Exercise

Students' answers:
(We had about 3 examples for each of "may work well" and "may not work
well".)

40

How about this...
//void add(int number);

Array a;

a.add(0);

a.add(1);

a.add(2);

a.add(3);

...

...

a.add(...);

42

How about this...
//void add(int number);

Array a;

a.add(0);

a.add(1);

a.add(2);

a.add(3);

...

...

a.add(...);

43

At some moments,
the array will need to be expanded.

How about this...
//void insert(int number, int at);

Array a;

a.insert(0, 0);

a.insert(1, 0);

a.insert(2, 0);

a.insert(3, 0);

...

...

a.insert(..., 0);

44

How about this...
//void insert(int number, int at);

Array a;

a.insert(0, 0);

a.insert(1, 0);

a.insert(2, 0);

a.insert(3, 0);

...

...

a.insert(..., 0);

45

In this example, every time a new
element is inserted, first, all of the existing
elements need to be shifted by one.

Linked List

46

Linked structures

47

Live coding

48

Goal of Live Coding:

Learn a procedure of designing
classes, not memorize code.

49

50

(Notes from the live coding. Please do NOT assume the code is complete.)

2

1

0

Node class

51

52

(Notes from the live coding. Please do NOT assume the code is complete.)

2

1

0

Node

53

(Notes from the live coding. Please do NOT assume the code is complete.)

(1) class keyword
(2) semicolon
(3) header guard
(4) public, private keyword
(5) our design
(6) default constructor
(7) user defined constructor
(8, 10, 13) for tests
(9, 11, 12, 14) operations to support

54

(Notes from the live coding. Please do NOT assume the code is complete.)

SinglyLinkedList class

55

56

(Notes from the live coding. Please do NOT assume the code is complete.)

2

1

0

Node

SinglyLinkedList

head

57

58

(Notes from the live coding. Please do NOT assume the code is complete.)

2

1

0

Node

SinglyLinkedList

(head)

nullptr

59

60

(Notes from the live coding. Please do NOT assume the code is complete.)

2

1

0

Node

SinglyLinkedList

(head)

(nullptr)

Singly Linked List with head

61

62

(Notes from the live coding. Please do NOT assume the code is complete.)

63

(Notes from the live coding. Please do NOT assume the code is complete.)

64

(Notes from the live coding. Please do NOT assume the code is complete.)

We have:
● designed two classes, Node and SinglyLinkedList, from the scratch.
● implemented Node class. (except for the copy constructor, assignment

operator and destructor.)
● implemented some parts of SinglyLinkedList class.

○ constructor
○ addToBack()
○ addToFront() -> Lab2
○ removeFront() -> Lab2
○ toString() -> Lab2
○ destructor -> Lab2

(not today)

■ copy constructor, assignment operator
■ removeBack()
■ insert()
■ has()
■ size(), isEmpty()
■ etc.

Memory Management

65

"With great power comes great responsibility"
from Spider-Man comic

https://en.wikipedia.org/wiki/With_great_power_comes_great_responsibility

66

https://en.wikipedia.org/wiki/With_great_power_comes_great_responsibility

Memory leaks

67

valgrind

68

69

(Notes from the live coding. Please do NOT assume the code is complete.)

Some keywords from today's lecture:

70

● refactoring
● a pointer pointing to a pointer pointing to XXX
● 2D array
● memory segments (stack and heap)
● Node
● Linked List (linked structure)
● Singly Linked List
● head
● nullptr
● memory management
● memory leaks
● valgrind

To the lab!

71

