
Make

1 What is make?

When your code is separated into many several files that have interdependen-
cies, it is natural to look for an automated way of compiling your program,
because compilation and linking become very complicated. The make program
was designed to help developers automatically build executable programs.
Once you have set up a Makefile that describes the components of your
program, their relationships, and how to build the various components, then
make will do the build for you correctly every time.

2 Why use make?

There are two main reasons to use make.

Simpler compilation and linking

make allows a shorthand for complicated commands or a large sequence of
commands.

Explicitly typing clang++ -Wall -Wextra -std=c++11 -o foo bar.cpp
baz.cpp for each compilation quickly becomes cumbersome. When you
have a Makefile properly configured, the foo executable could instead be
compiled by typing make foo.

1

Faster re-compilation

Another advantage of make is that it only recompiles code that needs to be
recompiled. This is particularly useful in large programs with 300+ files.
If you change only one of then, you need not recompile everything: make
compiles the files you changed and anything that depends on it.

Compiling C++ code is a multistep process

Running the command clang++ -o foo bar.cpp baz.cpp will follow the
steps in Figure 1 to make bar.o baz.o, and will combine the .o files into
an executable named foo. By default, most compilers delete the intermediate
files (.cpp .s .o) after creating the executable. Which means that every
.cpp file must always recompiled. If a .cpp file hasn’t been changed since
the last compilation, recompiling it is wasteful since its previous .o file
could be reused. As projects get larger, recompiling all sources files for each
compilation can become very slow.

make automatically tracks which components of an executable have changed
since the last time the executable was compiled. We typically write
Makefiles to save .o files. That way, compiling an executable only requires
remaking .o files that are not up to date, and combining them with the old
.o files.

Further Reading

This document gives information on make, but not on the compilation itself.
If you want to know more about compilation we suggest you look at the
following links.

• http://faculty.cs.niu.edu/~mcmahon/CS241/Notes/compile.html

• http://www.cs.ecu.edu/karl/3300/spr14/Notes/C/preprocessor.html

2

http://faculty.cs.niu.edu/~mcmahon/CS241/Notes/compile.html
http://www.cs.ecu.edu/karl/3300/spr14/Notes/C/preprocessor.html

3 Anatomy of a Makefile

Makefile rules

Makefile rules are the building blocks of Makefiles. They describe an
action to perform when the rule is evoked, and also when to perform that
action.

target: prerequisites...
recipe

A Makefile rule is made up of

• A target, which is the argument given to make on the commandline
(i.e make target). The target usually is the name of the file that will
be created after the rule is executed, but it can also be the name of
an action to carry out (clean, install, etc. . .).

• A list of 0 or more prerequisites, which are files or targets that
the current target depends on.

• A recipe, which is the shell command(s) executed by the Makefile
rule.

Make will execute the recipe if a file named target does not exist, or if
any of the prerequisites are more recent than target.

Example

bar.o: bar.cpp bar_header.h
clang++ -c bar.cpp

• bar.o is the target
• bar.cpp bar_header.h are the prerequisites
• clang++ -c bar.cpp is the recipe

Important: When compiling code, we only compile .cpp files, not
.h files

When you type make bar.o into the console, the first thing that make will
do is check the timestamp of bar.o and all of the files it depends (bar.cpp
and bar_header.h in this example). Then it will run the recipe (in this
case clang++ -c bar.cpp) if bar.o doesn’t exist, or if either bar.o or
bar_header.h is more recent than bar.o.

3

Makefile variables

Variables can be defined in Makefile to make them more configurable

Variables are declared as:

varName = value

The value of a variable can then be accessed by wrapping the variable in
${} or $():

${varName} or $(varName)

Makefile variables can be used to specify the compiler, and any compila-
tion settings.

• CXX is the name of the C++ compiler
• CXXFLAGS are the compiler options for compiling .cpp files into .o files

(It’s possible to also see CC and CFLAGS which are the C equivalents for CXX
and CXXFLAGS)

4

4 Guide: Writing a Makefile to compile C++

Consider the following project, that is compiled into the executable foo. .h
filenames were chosen to indicate which .cpp file includes it:

vm-hw09{student01}51: ls
bar.cpp baz.cpp qux.cpp baz_header.h qux_and_baz_header.h

1. Set up the Makefile variables

CXX = clang++
CXXFLAGS = -std=c++11 -Wall -Wextra

2. Write a Makefile rule to compile each .cpp file into a .o file. The
prerequisites should list the .cpp file and the .h files it includes.
The recipe should include the .cpp file and the -c flag instructing the
compiler to output a .o file. Makefile recipes must be preceded
by tabs (not spaces).

CXX = clang++
CXXFLAGS = -std=c++11 -Wall -Wextra

bar.o: bar.cpp
${CXX} ${CXXFLAGS} -c bar.cpp

baz.o: baz.cpp baz_header.h baz_and_qux_header.h
${CXX} ${CXXFLAGS} -c baz.cpp

qux.o: qux.cpp baz_and_qux_header.h
${CXX} ${CXXFLAGS} -c qux.cpp

3. Write a Makefile rule to link .o files into an executable. The
prerequisites contains all .o files needed. The recipe compiles
all .o listed in the prerequisites, and -o name_of_target instruct-
ing the compiler to name the executable name_of_target. Placing it
before all other rules makes it the default rule, so it can also be
invoked by simply typing make

CXX = clang++
CXXFLAGS = -std=c++11 -Wall -Wextra

foo: bar.o baz.o qux.o
${CXX} -o foo bar.o baz.o qux.o

5

bar.o: bar.cpp
${CXX} ${CXXFLAGS} -c bar.cpp

baz.o: baz.cpp baz_header.h baz_and_qux_header.h
${CXX} ${CXXFLAGS} -c baz.cpp

qux.o: qux.cpp baz_and_qux_header.h
${CXX} ${CXXFLAGS} -c qux.cpp

4. Pat yourself on the back for a job well done.

6

5 Going further

This section is not required to understand or write Makefiles in COMP15,
but instead introduces some of the more powerful aspects of make

Phony targets

Makefile targets aren’t required to be files. It’s possible to define rules
that don’t create files, but are instead used as shorthand for longer commands.
These are called phony targets.

Example

A common phony target is clean, which deletes all output from build
commands.

clean:
rm -f NAME_OF_EXECUTABLE *.o

Automatic Variables

Make automatically defines some variables that can be used in makefile
recipes, including:

$@: The file name of the target of the rule.

$<: The name of the first prerequisite.

$ˆ: The names of all the prerequisites, with spaces between them.

Example

foo: bar.o baz.o qux.o
${CXX} -o foo bar.o baz.o qux.o

can be rewritten as

foo: bar.o baz.o qux.o
${CXX} -o $@ $^

7

Pattern rules

Many Makefile rules follow a similar template, and explicitly defining
each one adds unneccesary bloat to the Makefile. Pattern rules allow
Makefile rules to be expressed more generally and concisely:

Example

%.o: %.cpp
${CXX} ${CXXFLAGS} -c $<

% is a wildcard that matches against target names. The %.o target will
be selected if ever the requested target ends with .o

This rule says: “To make any .o file, use the following recipe to compile its
corresponding .cpp into a .o file.”

We would also want to add the .h files to the prerequisites, but that is a bit
more work (see Shell Function)

Shell Function

Make also has some in-built functions. Using the shell function, the output
of shell commands can be used within a Makefile. The syntax $(shell
COMMAND_TO_RUN ARGS) is used to invoke the shell function.

Example

%.o: %.cpp
${CXX} ${CXXFLAGS} -c $<

If we have a pattern rule for .o files, it would be useful to state that the
.o file also depends any .h files included in the .cpp. But since the pattern
rule can apply to any .cpp file, there isn’t an easy way to specify the correct
headers for each file.

One solution, for small projects, would be to say that the .o files depend
on all .h files. The shell function can be used to run echo *.h on the
commandline, getting the names of all .h files in the current directory:

INCLUDES = $(shell echo *.h)

8

%.o: %.cpp ${INCLUDES}
${CXX} ${CXXFLAGS} -c $<

Putting it all together

We can rewrite the Makefile from the guide using these new techniques

CXX = clang++
CXXFLAGS = -std=c++11 -Wall -Wextra
Shell Function
INCLUDES = $(shell echo *.h)

foo: bar.o baz.o qux.o
${CXX} -o $@ $^

Pattern rule for .o files
%.o: %.cpp ${INCLUDES}

${CXX} ${CXXFLAGS} -c $<

Phony Target
clean:

rm -f foo *.o

9

	What is make?
	Why use make?
	Anatomy of a Makefile
	Guide: Writing a Makefile to compile C++
	Going further

