
comp11 Reading Data: Sources and Formats

Summar y of Reading Data in C++

Data Delimiters Data Sources

If input is:

0711 John Q Adams

>> reads until next space

int bd;

char nm;

cin >> bd >> nm;

reads 0711 into bd

and reads "John" into nm.

getline() reads until endl:

int bd;

char nm;

cin >> bd ;

getline(cin, nm);

reads 0711 into bd

and reads "John Q Adams" into nm.

To read data from a file on the disk, do:

[a] #include <fstream>

[b] Make a stream variable:

ifstream s;

[c] Connect stream to file:

s.open(filename);

[d] Check if it worked:

if (not s.is_open())

complain_and_exit();

[e] Do input using >> and/or getline()

[f] Close the file:

s.close()

Input: >> vs getline

Consider this list of names:

Canada

Cape Verde

Cayman Islands

Central African Republic

Chad

Chile

Each line has the name of one country. Some names have

one word, some have two words, one has three words. Can

you write C++ code to read in and store these names in an

array? Would this work:

string countries[N];

for (int i = 0; i < N; i++)

cin >> countries[i];

The code compiles and runs, but the array will contain the

strings "Canada", "Cape", "Verde", "Cayman", "Islands", ...

The reason for this result is that >> reads in one item at a

time. With strings >> reads until end of the word.

Here, though, we want to read until we get to the end of the

line. C++ has a function that does exactly that: getline.

This revised code solves the problem:

string countries[N];

for (int i = 0; i < N; i++)

getline(cin, countries[i]);

The getline function takes two arguments. The first argu-

ment is the source of the data, in this case cin. The second

argument is a string variable. The function reads and stores

string data until end of line.

Mixing >> and getline

You can use >> and getline together if the input contains

both separate items and chunks of text. For example, con-

sider this list of populations and country names:

35.5M Canada

518.5K Cape Verde

55.5K Cayman Islands

4.7M Central African Republic

13.2M Chad

17.8M Chile

M stands for million, and K stands for thousand. How can

we read in this data? We need to read in a float, a char, then

the rest of the line. Code to do so is:

double pop;

char scale;

string name;

for (int i = 0; i < N; i++) {

cin >> pop >> scale;

getline(cin, name);

if (scale == ’M’)

pop *= 1000000;

else if (scale == ’K’)

pop *= 1000;

data[i].pop = pop;

data[i].nm = nm;

}

We know that there is one double for the population, then

one char for the scale factor, then some bunch of text for the

name. The >> operator is ideal for single, specific items,

and the getline function is ideal for reading and storing

Oct 11 2018 14:06 page 1



reading data

the rest of the line.

Input: cin vs Files

How do you read in and store data? You probably have

used cin, as in:

int x; // create storage

cin >> x; // read and store

Here is a model of this action:

program

variable

cin

data sources

x

234

A user at a keyboard presses the keys ’2’, ’3’, and ’4’, and

the value flows through a wire into a variable.

Alter nate: Input Redirection

What if the user does not want to type the value? The user

can tell the program to read from the disk by using the `fun-

nel´ to change the source of data to a disk file.

./a.out < filename

program

variable

cin

data sources

x

234

But what if you wanted to read from a disk file directly, not

using cin and using a funnel to replace a keyboard with a

disk file?

Direct Input from Files

When you are using a word processor and click on

File→Open, the word processing program connects to the

file directly and reads the data from that file, no make-

believe keyboard is involved. How does that work?

The following picture shows the ideas behind reading

directly from files:

program

variable

cin

data files

x

234

ifstream
ifstream

Look at the diagram carefully. We still have a user with a

keyboard connected to the program using cin. The pro-

gram can still get data from the keyboard.

But we also see three files on the disk. From each of those

files is the computer equivalent of a drinking straw. To pull

liquid from a bottle or glass, you put a straw into the bottle

and the other end in your mouth. Then you transfer liquid

from the bottle into your mouth. Transferring data from a

file into a variable works pretty much the same way.

program

ifstream

person

straw

container

file

(data container)

Syntax for File Input

Here is idea and syntax, side by side:

#include <fstream>

[a] Create a data stream ifstream s;

(get a straw)

[b] Connect stream to a file s.open(fn)

(put straw in can)

[c] Check connection if (not s.is_open())

(is the can open?) report_and_quit()

[d] Read data s >> x

(draw in liquid) or getline(s, nm)

[e] Close connection s.close()

(remove straw)

The code on the right is the sequence of steps to connect,

read from, and close a stream to a file. Step [d] is likely to

include more processing than the simple example shown.

Oct 11 2018 14:06 page 2



reading data

Special Details

Here are a few special details you need to know about read-

ing from files.

Argument to open() The argument to the open function (in

step [b]) is the name of the file to open. This value must be

a value of type C-string. A C-string is not the typical C++

string. It is an array of chars. The following examples all

work:

s.open("fishdata.txt");

string name = "fishdata.txt";

s.open(name); // use -std=c++11 to compile

char name[] = "fishdata.txt";

s.open(name);

We hav e never written code like the third example, so that

probably does not look familiar.

The second example is the most useful for C++ program-

mers. You often work with regular C++ strings, so you will

need to pass a C-string version to open.

Passing ifstreams to functions An ifstream is an object

that has some internal data members. When you read data

from the stream, those internal data members change to

keep track of how far through the file you have read.

Therefore, it is best to pass ifstream object by reference to

functions that use the stream. That way, the state of the

stream is available to the caller. We could pass pointers to

these streams, but people don’t do that. Instead, they use a

special notation to pass the stream by reference.

You will see functions declared as:

int read_from_stream(ifstream& f);

The ampersand says that the stream should be passed by ref-

erence. You do not have to use the ampersand when you

call the function or when you refer to the string.

Sample Program

Here is a sample program that compares two files line by

line and reports the first line where they differ.

#include <iostream>

#include <fstream>

using namespace std;

//

// line-compare

// compare two files. Report first diff

//

bool open_file(ifstream&);

int compare_files(ifstream&, ifstream&);

int main()

{

ifstream in1, in2;

int result;

if (open_file(in1) and open_file(in2))

{

result = compare_files(in1, in2);

in1.close();

in2.close();

}

return result;

}

//

// open_file -- opens file

// rets: true if worked, false if not

//

bool open_file(ifstream& f)

{

string name;

cout << "name: ";

cin >> name;

f.open(name); // try to open

return f.is_open(); // report result

}

//

// compare files: read line by line

// rets: 0 if no diffs, 1 if diffs

//

int compare_files(ifstream& f1, ifstream& f2)

{

string line1, line2;

getline(f1, line1); // read 1st lines

getline(f2, line2); // into strings

while(not f1.eof() and not f2.eof())

{

// -- compare strings

if (line1 != line2) {

cout << "differ: " << endl;

cout << line1 << endl

<< line2 << endl;

return 1;

}

// -- ok so far, read next line

getline(f1, line1);

getline(f2, line2);

// -- if one runs out first, report

if (f1.eof()and not f2.eof()) {

cout << "file 1 is shorter"

<< endl;

return 1;

}

if (not f1.eof() and f2.eof()) {

cout << "file 2 is shorter"

<< endl;

return 1;

}

}

return 0;

}

Oct 11 2018 14:06 page 3


