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Abstract—Ultra-low-power systems with substantial
computing capacity require latches and SRAMs to operate
at extremely low supply voltages. However, with aggressive
technology scaling, reliability becomes a major challenge
due to unavoidable process variations and the presence of
multiple noise sources, including intrinsic thermal noise.
This paper provides a quantitative measure of reliability by
calculating the probability distribution function (PDF) of
errors induced by thermal noise in latches and SRAMs op-
erating in subthreshold conditions. Implemented in a novel
simulation tool for thermal-noise analysis of CMOS circuits
(STTACC), our algorithm uses a stochastic differential
equation circuit model that preserves the proper Poissonian
statistics for thermal-noise-driven current fluctuations in
MOSFETs. Our probabilistic error model can handle
error rate analysis for arrays of latches or full SRAMs
on time scales from seconds to years without excessive
computational overhead. We demonstrate that the time-
to-error (TTE) statistics of subthreshold SRAMs obey log-
normal distributions that depend on parameters such as
node and device capacitance, device threshold variations
and operating conditions of supply voltage and tempera-
ture. This makes it possible to quantitatively evaluate the
asymptotic behavior of extremely rare error events that are
inaccessible to standard SPICE-based simulations.

Index Terms—Thermal noise-induced errors, subthresh-
old CMOS SRAM, time-domain simulation.

I. INTRODUCTION

EMBEDDED systems for Internet-of-Things (IoT),
wearable electronics and medical devices, are gen-

erally designed to operate under strict power constraints.
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As on-chip SRAM arrays often consume much of the
area in a System-on-Chip (SoC), optimizing their power
consumption is critical for enabling energy-efficient
computing. In the domain of ultra-low power (ULP)
applications, lowering the VDD below device threshold
voltage VTH both reduces memory power and may also
optimize total power in the circuits in which the memory
is embedded. However, ULP-optimized designs come
at the cost of reduced reliability. In particular, due to
the exponential relationship of subthreshold currents on
VTH , process variations are a major concern as they can
compromise SRAM data retention [1].

Furthermore, even in non-ULP systems, idle sections
are commonly operated at reduced supply voltage to save
power. Obviously, such a strategy must be limited to a
minimum VDD that guarantees data retention, a limit
that is likely reached when the system is in subthreshold
operation [2]. In this scenario, SRAM bitcells are even
more susceptible to process variations [3]–[5] and intrin-
sic noise sources, due to aggressive technology scaling,
and thereby suffer increasing bit error rates [6], [7].

In 1969, Keyes pointed out that data storage requires
nonlinear devices [8]. Since nonlinearity only occurs on
the scale of the thermal voltage, kT/q, he speculated that
data retention would set a fundamental limit on VDD of
some multiple of kT/q due to the unavoidable presence
of thermal noise. The present article derives such a
limit for CMOS SRAM that is based on a probabilistic
measure of minimum retention time and is only weakly
dependent on process technology.

Accurate thermal noise modeling in ULP subthreshold
CMOS circuitry requires a precise understanding of
the probabilistic behavior of current fluctuations. Tra-
ditionally, thermal noise has been modeled as station-
ary additive white Gaussian noise with zero mean and
constant variance that is inserted at the input of each
logic gate [9], [10]. However, in aggressively scaled
circuits, the number of electrons stored on a nodal
capacitance is very small and even a fluctuation of two
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or three electrons can have a significant effect. This
is aggravated by the highly nonlinear voltage depen-
dence of drain currents in subthreshold operation. In
subthreshold operation, MOSFET drain-source current
arises from electrons transiting the channel in forward
and reverse directions with probabilities described by
a two-sided Poisson process, as originally pointed out
by Sarpeshkar and Mead [11]. Each electron changes
the gate-source and drain-source voltages. This affects
the probability of subsequent electron transfers, so the
statistics are non-stationary. To simulate such a process
requires very short simulation times over which the rates
are approximately constant and the number of events is
small enough to require attention to Poissonian statistics
[11], [12]. Previously, we proposed a fast time-domain
subthreshold noise simulation engine [13] based on the
solution of stochastic differential equations (SDE) that
achieved orders of magnitude speed-up compared to
SPICE-based simulations. Recently, we extended this
SDE-based model to subthreshold circuits based on
a central pair of cross-coupled inverters (e.g. latches
and SRAM cells) by including all of the channel and
displacement currents coupling the inverters into the
formulation of the driving SDE [14].

We are able to detect thermal-noise-driven bit-flip
errors using Monte Carlo simulation to solve a proba-
bilistic model of the incremental evolution of transients.
Direct SPICE-based time domain simulation cannot cap-
ture such bit-flips, as they are too infrequent. Instead,
our algorithm performs repeated simulations of nodal
charge fluctuations on a sub-picosecond time scale over
small voltage ranges. It accumulates the probabilities of
moderately improbable events to compute the time-to-
error (TTE) distribution for a subthreshold SRAM latch.
Based on these results, we also find that the mean time
to error [12], [15]–[17] (MTTE) is not an informative
measure of thermal-noise-induced error statistics.

In this work, we present STTACC, an extension of our
time-domain simulation framework [14] that specifically
targets the quantitative statistics and detection of bit-
flip errors in subthreshold SRAM cells and latches.
Our simulation framework addresses the reliability of
future generations of SRAM devices beyond the current
state-of-the-art. Indeed, the simulation results presented
in Section IV are based on a 7nm predictive technol-
ogy [18], for which test circuits are not generally avail-
able, and can capture bit-flip errors that are sufficiently
rare to be undetectable in reasonably-sized test chips.
In addition to describing a detailed implementation of
our simulation framework, we now present several new
results:

• We demonstrate the fundamental limits of reliable

Fig. 1. The structure of a conventional 6T (six-transistor) CMOS
SRAM bitcell. The Poisson charging rates (shown in red) can be
derived from the forward and reverse components of the transistors’
drain currents (shown in blue).

operation for subthreshold SRAM cells due to ther-
mal noise fluctuations, and identify the log-normal
distribution as the appropriate description for the
time-to-error (TTE) statistics;

• We introduce the use of cumulative distribution
functions (CDFs) of TTEs as an alternative method-
ology to the mean time to error (MTTE) for evalu-
ating SRAM reliability;

• We explore the bit-flip resiliency of SRAM cells by
determining their sensitivity to process variations,
temperature and operating voltage in a model 7nm
CMOS technology node.

The remainder of this paper is organized as follows:
Section II describes our thermal noise model and the
SDE-based formulation for the operation of subthreshold
CMOS SRAM cells; Section III provides the imple-
mentation details and features of STTACC; Section IV
reports our STTACC-based simulation results showing
the impact of technology parameter variation on noise
immunity using as an example a 7nm predictive tech-
nology model from the ASAP7 PDK [18]; and finally,
Section V contains concluding remarks and suggestions
for future work.

II. THERMAL NOISE MODELING

In this section, we provide an overview of a statisti-
cally accurate Poisson model of thermal fluctuations in
the transistor currents. Based on this model, we develop
a system of SDEs that describe the transient behavior of
a 6T SRAM cell.
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A. Stochastic Thermal Noise Fluctuations in Subthresh-
old CMOS

The drain current of a transistor in subthreshold is
given by [19] [20]:

ID = I0 exp
( qVgs
mkT

)
exp
(qBVds

kT

)[
1−exp

(
−qVds
kT

)]
,

(1)
where B is the DIBL parameter, and I0 as well as the
body factor m are technology-dependent factors. This
drain current can be decomposed into opposing forward
and reverse electron flows, characterized by average
rates µn,p and λn,p for NMOS and PMOS transistors
respectively (in electrons per second, after division by
electron charge q) [13]:

µn=
I0
q

exp
(qBVds

kT

)
exp
( qVgs
mkT

)
(2)

λn = µn exp
(−qVds

kT

)
(3)

µp=
I0
q

exp
(qBVsd

kT

)
exp
( qVsg
mkT

)
(4)

λp = µp exp
(−qVsd

kT

)
, (5)

as illustrated in Fig. 1. The intrinsically stochastic nature
of these two flows allows us to model the components
as independent Poisson processes [11]:

Xµ ∼ Poisson(µ)

Xλ ∼ Poisson(λ),

where Xµ and Xλ are time series of Poisson-distributed
random variables with means µ and λ.

B. SDE-based Formulation for CMOS SRAM Operation

The fundamental storage element for this study is
the basic six-transistor (6T) CMOS SRAM shown in
Fig. 1, where transistors M1,M2,M3,M4 implement
the cross-coupled inverters and M5 and M6 are the
access transistors. We can apply the same methodology
introduced in [13] to develop the SDEs for this cell.

Fig. 2 shows the equivalent circuit of the SRAM
cell, where the current sources iD1 and iD2 represent
the net drain currents at each node. Capacitances CGD
and CGS denote the gate-drain (Miller) and gate-source
capacitances of the inverters, with an additional capaci-
tance CAD modeling the effect of access transistors and
other parasitics. For circuits operated in subthreshold
with a total voltage swing of ∼200 mV, all transistor
and parasitic capacitances are roughly constant, whereas
the charging and discharging rates vary significantly as
a function of node voltages. The Kirchhoff current law

Fig. 2. Equivalent circuit for 6T CMOS SRAM bitcell of Fig. 1 where
the Miller and gate-source capacitances of the inverters are CGD and
CGS . The CAD term models the additional capacitance due to access
transistors and wiring.

(KCL) equations at nodes 1 and 2 in Fig. 2 can be written
in matrix form as:[

iD1

iD2

]
dt =[

CGS + CAD + 2CGD −2CGD

−2CGD CGS + CAD + 2CGD

] [
dV1
dV2

]
.

(6)

Equation (6) becomes a set of SDEs when the drain
currents are treated explicitly as random processes with
iD1

= q(Xλ1
− Xµ1

) and iD2
= q(Xλ2

− Xµ2
). The

Poisson rates of an inverter, e.g. λ1 = λp,1 + λn,1 and
µ1 = µp,1+µn,1 for the first inverter, are highly voltage-
dependent, so these SDEs are nonlinear.

To solve (6) for possible trajectories of the voltage
state of the system, we use Euler’s method with a time
step δt = tn− tn−1 small enough to ensure a negligible
probability of a significant change in λ’s or µ’s within
a time step.1 These rates are updated at the end of each
time step. With these assumptions, the solution can be
written as:

V [tn] = V [tn−1] + q C−1 dX[tn−1], (7)

where C is the capacitance matrix in (6). The compo-
nents of dX are changes in the number of electrons on
each node dXi = Xi[tn]−Xi[tn−1] during a single time
step.

III. STTACC IMPLEMENTATION

Figure 3 shows the transient response of voltages
V1(t) and V2(t) calculated by our simulator using (7),
with the time axis chosen to enclose an event or tran-
sition of interest and a 0.1 ns scale bar added for
clarity. In equilibrium, the two logic states “1” and “0”
ideally correspond to full charge or zero charge on the
output node capacitances, and an inter-nodal voltage
difference ∆v(t) ≡ V2(t)−V1(t) ' VDD. Thermal noise

1Typically δt is sub-picosecond and its product with λ or µ is less
than one transferred electron per time step.
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Fig. 3. (a) An event of ∆v(t) = 118 mV extracted by STTACC using
continuous simulation. (b) An event of ∆v(t) ≤ 0 mV with metastable
resolution returning to equilibrium. (c) A bit-flip error event with
∆v(t)� 0 mV. The shallow slope and extended middle region of this
transition are due to metastability in the system as it passes through
the switching threshold. The events in both (b) and (c) were extracted
by STTACC using the incremental algorithm.

fluctuations on both storage nodes can decrease ∆v(t).
Ultimately, if the voltage difference ∆v(t) approaches
0, positive feedback in the system can switch the logic
state, resulting in a bit-flip error.

If we start with ∆v(t) = VDD = 180 mV, we
can try to capture a bit-flip error by simulating until
∆v(t) < 0. However, the minimum ∆v(t) captured

by continuously computing the numerical solution of
(7), after a month of continuous simulation, was 118
mV, as shown in Fig. 3(a). Thus, reaching ∆v(t) ≤ 0
is computationally unfeasible as the simulation time
grows exponentially for lower ∆v values [14]. This
issue is overcome by an incremental algorithm described
below, where we take advantage of the fact that electron
and hole charging/discharging rates depend only on the
present instantaneous values of the node voltages V1(t)
and V2(t) and not on history.

Our algorithm for calculating TTEs has two phases.
The first phase starts from equilibrium and simulates
continuously, looking for times when ∆v goes below
a preset threshold, L1. For each such crossing event,
we record the time t[1] and values of V1[1] and V2[1].
A large number of such runs is assembled to create
a representative set of initial conditions. The values
t[1], V1[1], V2[1] are used to initialize the system for the
second phase in which we calculate additional reductions
of ∆v by user-defined incremental amounts. At each
stage n, the values t[n], V1[n], V2[n], which correspond
to the crossing of a threshold Ln, are used as the
starting point to compute the decrement in the next stage,
n+ 1, and the process repeats until a bit-flip occurs, see
Fig. 3(b) and (c).

A. Incremental Algorithm for Estimating TTEs

To accelerate the simulation of thermally-induced bit-
flips, we combine the statistical accuracy of our SDE
numerical model with the computational efficiency of
memoryless stochastic processes. The Poisson processes
governing the drain current imply that the evolution of
∆v(t) is independent of history. We exploit this in an
incremental procedure for extracting the TTE as follows:

• We start the transient simulation by looking for a
deviation from equilibrium, defined by ∆v(t) ≤
L1 ≡ VDD − ρinit, where ρinit is a user-defined
initial decrement step. Once the desired event is
captured, the event time is recorded, and the corre-
sponding nodal voltage values, V1[1] and V2[1], are
saved as a checkpoint.

• The simulator progresses incrementally to the next
stages by updating the voltage deviation as Ln ≡
Ln−1−ρ, where ρ is another user-defined step size.
While tracking ∆v(t) at stage n, if ∆v(t) > Ln−2,
indicating a return towards equilibrium, a loop exit
condition is triggered. Then, the simulation is reset
to the last checkpoint, V1 = V1[n − 1] and V2 =
V2[n− 1].

• This procedure repeats until ∆v(t) ≤ 0. The simu-
lator then completes the run allowing the voltages
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Algorithm 1: Incremental Algorithm Pseudo-
Code for TTE Simulation

Result: TTE for bit-flip occurrence
Initialization;
while ∆v(t) > 0 do

Update λ(t), µ(t)
Randomly generate X(t)
Solve (7) and calculate ∆v(t);
if ∆v(t) < Ln then

Record V1[n], V2[n], t[n];
Update Ln ;

else
if ∆v(t) > Ln−2 then

Exit
Restart from V1[n− 1], V2[n− 1];

else
Continue;

end
end

end

to reach their opposite equilibrium point, indicating
a bit-flip.

At any given stage, as long as ∆v(t) is much larger
than 0, the internal feedback of the latch tends to
return it to equilibrium, which is why a bit-flip error is
exponentially unlikely. However, by counting loop exit
conditions and discarding their data at each stage, the
simulation run-time can be reduced greatly. The time to
reach stage n can be found via the recursive formula:

t∆v[n] ≈ (Mn + 1)× t∆v[n− 1] + bn, (8)

where t∆v[n−1] is the time required to reach stage (n−
1), bn is the time spent in stage n, and Mn counts the
loop exits at stage n. In addition to the key improvement
in simulation run-time provided by this algorithm, multi-
threading is used to run multiple simulations in parallel
and the computation time for bit-flip detection in a latch
can be reduced to minutes.

The components of the vector dX in (7) come from
a Poisson random number generator (RNG) that uses
the average number of electrons per time step δt from
the product of δt with the rates λ and µ for MOSFETs
biased at the most recent values of V1 and V2. To account
for the circuit’s nonlinear response to noise fluctuations,
these rates are updated at each simulation time step based
on the instantaneous values of V1 and V2. For efficiency,
all rates for all transistors are pre-computed and saved
in a look-up table (LUT). STTACC is entirely built in
C++, with the computational flow described in Fig. 4.

Fig. 4. Flowchart of the incremental phase of TTE simulation. Charge
and discharge rates and capacitance values are extracted from DC
analysis of the transistors. The circuit topology is derived from a netlist.
Execution begins by setting M1 = 0 and t1, V1[1], and V2[1] to values
computed by a prior continuous simulation (not shown).

B. Simulator Setup

The simulation accuracy relies on characterizing the
particular CMOS technology to extract the Poisson rates
and the device capacitances. To optimize the com-
putation, this characterization step is performed off-
line. In this study, we base our characterization on a
SPICE BSIM-CMG predictive model [21] for a 7nm
FinFET technology [18]. The rate LUTs are extracted
and stored for further use according to (1-4) by DC
analysis sweeping the values of VGS and VDS . The
minimum granularity of LUTs is 1 mV; i.e. smaller than
the voltage changes of V1 and V2 due to the addition of
a single electron to one of the nodes as estimated from
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(7). The transistor capacitances calculated in SPICE are
used to define the lumped and coupling capacitances in
appropriate gate models. The STTACC implementation
uses a C++ gate class to enhance flexibility to handle
more complex gates than just the inverters needed for
latch data retention analysis. The gate class also includes
methods to compute the net charging and discharging
rates depending on the gate topology and to supply data
to the computational engine efficiently.

C. Runtime Attributes
Our simulation approach requires several user-defined

runtime parameters to balance accuracy and computa-
tional efficiency. The simulator time step δt determines
both the average voltage step sizes and the rate at which
the charging/discharging rates are recalculated. Long δt
speeds up the calculation but degrades accuracy. The
upper bound on δt is set by the requirement that the
λδt and µδt products not generate voltage jumps that
appreciably alter the rates within a single time step.

The other required runtime attributes determine the
threshold levels Li, i ∈ [1, Nlvls], used as checkpoints as
the simulation progresses. A simple choice is to divide
the voltage range VDD ≥ Li ≥ −VDD into an initial
voltage decrement, ρinit, and (Nlvls−1) additional equal
decrements, such that

Li = VDD − ρinit − (i− 1) · ρ,

where ρ determines the level of voltage difference be-
tween the stages Li−1 and Li for i ≥ 2. A lower bound
on ρ is set by the requirement that ρ be several times
larger than the change in ∆v(t) due to the addition or
removal of a single electron on one node. From the
inverse capacitance matrix in (7), changing the node
charge by a single electron changes the node voltage
by ±1.3 mV, in turn changing ∆v(t) by ±0.86 mV.
A suitable minimum ρ for this system is about 10 mV.
Increasing the value of ρ would result in greater accuracy
at the cost of longer computation time.

We reserve a dedicated parameter for the initial volt-
age decrement, ρinit. The choice of ρinit determines the
initial state of the system for the incremental phase.
A critical requirement for such state is to reach the
maximum deviation from equilibrium in a reasonable
compute time. For our system we determined a sensible
value of ρinit = 30 mV, which on average can be reached
in a simulation time on the order of seconds.

IV. RESULTS AND DISCUSSIONS

A. Simulator Setup
As a test platform for examining thermally induced

errors in advanced subthreshold SRAMs, we employ

the 7nm predictive technology model from the ASAP7
PDK [18]. The SRAM circuit is designed according to
Fig. 1 using minimum-sized low-VTH (LVT) transistors,
for which VTH ' 250 mV. We used single-fin transis-
tors for the NMOS and PMOS, minimizing capacitance
and taking advantage of their well-matched currents in
subthreshold, as shown in the ID(VG) characteristics of
Fig. 5(a).

First, we extracted the capacitances and rates using
a DC analysis of the transistors (initialization phase
in Fig. 4) for VDD = 180 mV, T = 100◦C, which
is in line with other research on noise-immune design
for subthreshold circuits [22]. The capacitance values
extracted from the transistor model in [18] were CGS =
CGD = 30 aF, and were largely independent of gate
bias, as expected in subthreshold operation.

The rates λ and µ for NMOS and PMOS devices
as a function of output voltage Vout were calculated
according to (2)–(5) and are shown in Fig. 5(b)–(c) for
Vin = VDD and Vin = 0 respectively, along with the
net current ID flowing into or out of the Vout node,
ID = (λn + λp) − (µn + µp) (see inset of Fig. 5(b)).
As expected, at the equilibrium points, the charging and
discharging rates match: λn + λp = µn + µp when
Vin = 180 mV or Vin = 0. The maximum charging
and discharging rate λ and µ are less than 3 electrons/ps
for 0 ≤ Vin ≤ 180 mV, so we set δt = 0.2 ps to
ensure that the (λ + µ)δt product did not change the
nodal voltages by more than 3.2 mV, according to (7).
We found that the switching time of an inverter loaded
by a single second inverter in this technology operated at
VDD = 180 mV is ∼50 ps. The longer, ∼200 ps duration
of the spontaneous transition shown in Figure 3(c) is due
to the slower evolution of an undriven transition and an
extended period (∼100 ps) of metastability.

We chose ρinit = 30 mV as a first decrement step
size easily reachable by continuous simulation and set
the second decrement step size ρ = 10 mV, a value
larger than the expected voltage change within a time
step δt to filter out small fluctuations.

B. Evaluating TTE Distribution

To date, published analytical approaches to quantify-
ing thermal noise immunity in flip-flops [12], [15], [16]
and combinational circuits [17] have focused on math-
ematically modeling the mean time-to-error (MTTE).
Conversely, recent experimental noise measurements in
advanced short-channel MOSFETs have focused on
other types of noise, such as random telegraph noise
(RTN) and flicker (1/f) noise [23] [24], since the
fundamental thermal noise is not yet the major driver
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Fig. 5. (a) Subthreshold currents in the NMOS and PMOS transistors
for Vin = 0−180 mV, showing close match at VDD/2. (b, c) NMOS
and PMOS charging and discharging rates as a function of the output
voltage Vout and the net current ID = IDN − IDP into or out of
the Vout node for Vin = 180 mV (b) and Vin = 0 (c). Note that
the rates λp and µp in (b) and λn and µn in (c) are overlapped since
Ioff is over two orders of magnitude smaller than Ion, see (a).

of errors [25]. In our preliminary work, we obtained the
simulated cumulative distribution functions (CDFs) of
TTE [14] and showed that the CDFs vary over many
orders of magnitude in time. This renders MTTE a poor
indicator of circuit reliability, since MTTE is dominated

Fig. 6. (a) Statistical TTE histograms of subthreshold CMOS latches
extracted by STTACC for VDD = 180 mV, T = 100◦C, and
threshold mismatch ∆VTH = 0, 10, and 20 mV, together with the
corresponding log-normal fits using the histogram mean and variance.
(b) TTE CDF of a subthreshold CMOS latch extracted by STTACC vs.
theoretical log-normal distribution from the mean and variance of the
TTE histogram (VDD = 180 mV, T = 100◦C, ∆VTH = 20 mV).
Inset shows the P-P plot for comparing the simulation results and the
theoretical fit.

by the largest terms in the distribution, whereas it is the
shortest TTE values that are of practical interest.

Now, using a large set of accelerated Monte-Carlo
simulations facilitated by our runtime-efficient incre-
mental algorithm, we identify the full statistics of the
TTE distribution and find that it is well-matched by a
log-normal distribution. Fig. 6(a) shows the log-scale
histograms of TTE values generated by STTACC for
VDD = 180 mV and T = 100◦C for three different cases
of transistor voltage mismatch: nominal VTH values of
PMOS and NMOS transistors (i.e. ∆VTH = 0) as in
Fig. 5(a), and asymmetric ∆VTH = 10 mV and ∆VTH
= 20 mV threshold mismatch that makes the latch far
less stable.

These histograms are constructed from at least 60,000
Monte Carlo simulation runs each, using the incremental
STTACC simulator. Superimposed on each histogram is
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Fig. 7. Comparison of the left tail of CDF curves extracted by
STTACC for different values of decrement size ρ with the theoretical
log-normal function constructed from the mean and variance of the
VDD = 180 mV and T = 100◦C histogram for an asymmetric
worst-case threshold mismatch of ∆VTH = 20 mV.

a log-normal distribution obtained from the mean and
variance of the TTE data with no fitting parameters,
demonstrating a very good fit. While not entirely sur-
prising, since the TTE distribution is a multiplicative
product of positive independent random variables Mn+1
according to (8), this result is extremely useful. Using the
mean and variance of the log-normal distribution from
the histogram in Fig. 6(a), we can construct a theoretical
CDF curve and compare it to the simulation results to
find an excellent match, see Fig. 6(b).

In the inset of Fig. 6(b) we also construct the
probability-probability (P-P) plot as a quantitative mea-
sure of the agreement between the histogram of simula-
tion results and the corresponding log-normal distribu-
tion from the ∆VTH = 20 mV case. The straight line
observed in the P-P plot confirms the log-normal distri-
bution describes the simulated TTE histograms [26]. The
log-normal nature of the TTE distribution allows for a
quantitative estimation of the frequency of exponentially
rare events in the left tail of the TTE distribution, corre-
sponding to short failure times that cannot be addressed
by direct simulation.

As mentioned earlier, the decrement step ρ should be
maximized for improved accuracy. In fact, continuous
simulation with ρ = VDD would lead to an exact nu-
merical solution. However, as shown in [14], extracting
a bit-flip by continuous simulation is computationally
unfeasible. As a result, the runtime choice of ρ involves
a trade-off between robustness and computation time.
Fig. 7 plots the left tail of the CDF curves, corresponding
to shortest TTEs, for different values of ρ and compares
them to the theoretical prediction obtained from the log-
normal histogram in Fig. 6(a). We find that the simula-

Fig. 8. The effect of threshold voltage variation on the noise margin:
(a) when the asymmetric shift ∆VTH = 20 mV is applied on NMOS
and PMOS transistors in the latch, i.e. either FS or SF; (b) when the
asymmetric shift ∆VTH = 10 and 20 mV is applied on each inverter.

tion results for ρ ≥ 10 mV are in acceptable agreement
with the theoretical prediction. While ρ = 20 mV comes
closer to the theoretical curve, in our subsequent results
we opt for ρ = 10 mV since it provides a good trade-
off between accuracy and computation time, saving three
orders of magnitude in runtime compared to ρ = 20 mV.

C. Evaluating TTE as a Function of Device Variability
and Operating Conditions

Having established the simulation framework, we now
turn to the dependence of TTE distributions and error
rates on device variability and operating conditions.
We will investigate three key parameters: subthreshold
supply voltage VDD, temperature, and device variability
represented by threshold voltage mismatch. We first
focus on ∆VTH , while keeping VDD = 180 mV and
T = 100◦C. Random process variations can cause a
significant mismatch in neighboring devices particularly
for scaled SRAMs [7]. Moreover, optimized SRAM
design for stable read/write operation requires precise

8



Fig. 9. The effect of threshold voltage variation on the left tail of
the TTE distribution at VDD = 180 mV and T = 100◦C. The
scatter plots represent simulation results, while dashed lines are the
theoretical curves obtained from the mean and variance of the full
simulation histograms. The red circular dots indicate the t50% points
representing the time (in seconds) needed to have a single bit-flip in
a 1 MB SRAM with 50% probability.

NMOS and PMOS sizing and threshold control. Even
for cells designed with nominally fully-matched devices,
short channel effects can impact the effective transistor
VTH , particularly in the subthreshold regime [27].

In Fig. 8, we plot the voltage transfer butterfly curves
of the two inverters in the latch to describe the effect
of threshold voltage variations on the noise margin. We
consider three cases for PMOS and NMOS devices:
nominal, fast (F ), and slow (S). Nominal refers to
optimum-sized NMOS and PMOS devices with symmet-
ric current drive, as in Fig. 5(a); F represents −∆VTH
and +∆VTH shifts in threshold voltage for NMOS
and PMOS devices respectively, and S represents the
opposite shift for each transistor.

For perfectly matched devices, the two curves would
intersect at V1 = V2 = VDD/2 and the two lobes would
have the same size, maximizing the static noise margin
(SNM) for both logic states [19] [28]. However, when
a threshold voltage shift is applied, the voltage transfer
curves move away from this symmetric configuration,
reducing the SNM for one of the logic states. Fig. 8(a)
demonstrates that the worst case in terms of thermal
noise immunity is asymmetric mismatch ∆VTH between
NMOS and PMOS transistors in the latch (i.e. either SF
or FS), whereas symmetric mismatch ∆VTH between
NMOS and PMOS (SS and FF ) have similar SNM to
the nominal case. In Fig. 8(b), the effect of threshold
voltage variations on the noise margin is compared for
nominal transistors and those with asymmetric ∆VTH =
10 and 20 mV applied to each inverter.

Figure 9 shows the left tail of the CDF for the theo-
retical curves extracted from the simulation histograms

Fig. 10. The effect of varying the operating voltage VDD , temperature,
and access transistor capacitance CAD on the left tail of the TTE
distribution for ∆VTH = 10 mV, obtained by STTACC simulation.

(as in Fig. 6), and for those simulated using STTACC.
For all curves we apply worst-case asymmetric mismatch
∆VTH between NMOS and PMOS devices. Threshold
mismatch massively degrades reliability, even for modest
∆VTH values of 10 or 20 mV. For example, the average
time to have a bit-flip in an SRAM bank with 10k
memory cells changes from ' 1020 s for matched
transistors (unconditionally stable) to ' 10 minutes for
asymmetric ∆VTH = 20 mV (which is still less than
10% of the nominal VTH ' 250 mV [18]).

TABLE I
TIME TO A 50% PROBABILITY OF A BIT-FLIP ERROR IN A 1 MB

MEMORY UNDER VARIOUS OPERATING CONDITIONS

Conditions t50%

T = 100◦C, VDD = 180 mV
0 mV indefinite

∆VTH = 10 mV 7 months
20 mV 1 second

T = 100◦C, ∆VTH = 10 mV
200 mV 1.5 billion years

VDD = 180 mV 7 months
160 mV 2 seconds

∆VTH = 10 mV, VDD = 180 mV
T = 100◦C 7 months

125◦C 2.6 days
T = 100◦C, ∆VTH = 10 mV,

VDD = 180 mV
0 aF 7 months

CAD = 15 aF 580 years
30 aF 585,000 years

Figure 10 shows the left tail of the CDF simulated
using STTACC for ∆VTH = 10 mV as a function of
supply voltage VDD and temperature T . We find that
lowering VDD from 180 to 160 mV severely degrades the
noise immunity, while raising VDD to 200 mV stabilizes
the SRAM. Temperature has less of an impact: raising
the temperature to T = 125◦C from 100◦C shifts the left
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CDF tail by 2 orders of magnitude along the logarithmic
time axis.

Our approach also makes it possible to incorporate
additional capacitances, either due to other connected
devices or due to parasitics, such as wiring. For example,
as shown in Fig. 1 for a conventional 6T-SRAM bitcell,
there are two access transistors M5 and M6 in addition
to the cross-coupled inverters. Their main effect is to add
their gate-drain capacitances (calculated as CGD = 30
aF) as capacitance from the output nodes to ground.
Those appear in our model as part of the CAD terms
of the diagonal elements of the capacitance matrix.
Our simulator predicts that the latch will be partially
stabilized by the extra capacitance, see Fig. 10. Access
transistors might also contribute current fluctuations that
could be added as additional λn and µn terms to those
in the inset of Fig. 5(b). However, since these access
transistors are always fully off, these terms would be
small, like those arising from the corresponding terms
in Fig. 5(c) that are indistinguishable from zero.

Finally, by comparing Figs. 9 and 10 it is clear that in
order to compensate for the impact of a threshold voltage
mismatch of ∆VTH = 10 mV, we need to increase VDD
by at least 20 mV (compare VDD = 180 mV, ∆VTH = 0
with VDD = 200 mV, ∆VTH = 10 mV).

A particularly useful quantitative measure of the fail-
ure statistics for an SRAM array is the time for the
probability of a failure of at least one stored logic value
to reach 50 percent, t50%. The cumulative distribution
function describes the probability of at least one bit-flip
by time t. For an array of N independent latches, setting
the probability of at least one failure to 0.5 gives an
equation for t50% as:

0.5 = 1− (1− CDF (t50%,mlog, σ))N (9)

where mlog and σ are the mean and standard deviation
of log(t) as derived by fitting the simulations to a log-
normal distribution. Equation (9) is a nonlinear equation
for t50%, but is trivial to solve numerically. Fig. 9
shows the t50% points for a 1 MB SRAM as dots
with corresponding time values, providing a quantitative
sense of the noise immunity as a function of worst-case
threshold voltage mismatch between transistors. Table I
summarizes the calculated t50% values for 1 MB of
memory under various operating conditions.

V. CONCLUSIONS

In this article, we have introduced STTACC, a simula-
tion framework for analyzing thermal noise-driven tran-
sients in subthreshold circuits. We employ a paralleliz-
able incremental algorithm to detect exponentially rare

bit-flip errors that would be impossible to estimate with
conventional SPICE-based transient simulation methods.
We show that the time-to-error (TTE) statisics follow a
log-normal distribution and demonstrate that the com-
monly used mean-time to error (MTTE) metric is not an
informative measure of SRAM reliability.

Using parameter values from a 7nm predictive
technology model, we ran several experiments with
STTACC to evaluate how SRAM reliability is affected
by lowered supply voltage, increased process variability
(manifested as a shift in threshold voltage mismatch),
and temperature increase. Our results offer a way to
assess when a circuit with aggressive device scaling
coupled with lowered supply voltages will have a given
maximum probability of failure. Finally, our simulation
framework can be adapted to other technology nodes
or other sources of noise, and provides a means of
evaluating trade-offs in the robust design of low-power
SRAM for ULP memory. Future plans include public
release of the tool to the circuit and memory design
community.
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