
MaxNVM: Maximizing DNN Storage Density and Inference
E�iciency with Sparse Encoding and Error Mitigation
Lillian Pentecost

lillian_pentecost@g.harvard.edu
Harvard University

Cambridge, Massachusetts

Marco Donato
Harvard University

Cambridge, Massachusetts

Brandon Reagen
New York University
New York, New York

Udit Gupta
Harvard University

Cambridge, Massachusetts

Siming Ma
Harvard University

Cambridge, Massachusetts

Gu-Yeon Wei
Harvard University

Cambridge, Massachusetts

David Brooks
Harvard University

Cambridge, Massachusetts

ABSTRACT
Deeply embedded applications require low-power, low-cost hard-
ware that �ts within stringent area constraints. Deep learning has
many potential uses in these domains, but introduces signi�cant
ine�ciencies stemming from o�-chip DRAM accesses of model
weights. Ideally, models would �t entirely on-chip. However, even
with compression, memory requirements for state-of-the-art mod-
els make on-chip inference impractical. Due to increased density,
emerging eNVMs are one promising solution.

We present MaxNVM, a principled co-design of sparse encod-
ings, protective logic, and fault-prone MLC eNVM technologies (i.e.,
RRAM and CTT) to enable highly-e�cient DNN inference. We �nd
bit reduction techniques (e.g., clustering and sparse compression)
increase weight vulnerability to faults. This limits the capabilities of
MLC eNVM. To circumvent this limitation, we improve storage den-
sity (i.e., bits-per-cell) with minimal overhead using protective logic.
Tradeo�s between density and reliability result in a rich design
space. We show that by balancing these techniques, the weights of
large networks are able to reasonably �t on-chip. Compared to a
naive, single-level-cell eNVM solution, our highly-optimized MLC
memory systems reduce weight area by up to 29⇥. We compare our
technique against NVDLA, a state-of-the-art industry-grade CNN
accelerator, and demonstrate up to 3.2⇥ reduced power and up to
3.5⇥ reduced energy per ResNet50 inference.

CCS CONCEPTS
• Hardware→ Memory and dense storage.

KEYWORDS
eNVM, memory systems, neural networks, RRAM, CTT

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MICRO-52, October 12–16, 2019, Columbus, OH, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6938-1/19/10.
https://doi.org/10.1145/3352460.3358258

ACM Reference Format:
Lillian Pentecost, Marco Donato, Brandon Reagen, Udit Gupta, Siming Ma,
Gu-Yeon Wei, and David Brooks. 2019. MaxNVM: Maximizing DNN Storage
Density and Inference E�ciency with Sparse Encoding and Error Mitigation.
In The 52nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-52), October 12–16, 2019, Columbus, OH, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3352460.3358258

1 INTRODUCTION
DNNs are in use everywhere from self-driving cars to wireless
sensor nodes and implanted medical devices [16, 40, 43, 50, 52].
In these deeply-embedded environments, e�ciency is paramount.
For state-of-the-art DNN hardware accelerators, fetching weights
from DRAM is a main performance and energy bottleneck, limiting
inference e�ciency. Ideally, DNNs weights would be stored entirely
on-chip. However, even with aggressive weight compression, the
capacity requirements are unrealistic for storage in on-chip SRAM.

Emerging embedded non-volatile memory (eNVM) technologies
are one promising solution for eliminating DRAM ine�ciencies.
eNVMs provide high-capacity, low read-latency storage and can
be signi�cantly more dense than SRAM. Many eNVMs, including
RRAM [68], PCM [13], and CTT [18], also have multi-level cell
(MLC) capabilities, allowing multiple bits to be packed into a single
device to further increase density. eNVMs are not perfect—two
main drawbacks are decreased reliability and high write latency.
Achieving the ultra-high densities necessary to eliminate DRAM
for DNN inference requires aggressive MLC eNVM designs. How-
ever, MLC designs incur high memory access fault rates. Second,
eNVMs o�er fast read access, typically on the same order as SRAM.
However, writes can be orders of magnitude slower, as they alter
the physical property of the storage material. DNNs are robust to
these issues because they often require infrequent updates and are
implicitly fault tolerant, so we hypothesize that MLC eNVMs can
signi�cantly improve DNN inference e�ciency by storing weights
on-chip and eliminating DRAM accesses.

This paper demonstrates that MLC eNVMs can be used for
highly-e�cient DNN inference. To �t weights on-chip requires
the consideration of many factors, resulting in a large design space.
We present MaxNVM, a principled co-design method to consider

https://doi.org/10.1145/3352460.3358258
https://doi.org/10.1145/3352460.3358258

MICRO-52, October 12–16, 2019, Columbus, OH, USA Pentecost et al.

algorithm-to-circuit e�ects and maximize bene�t. As an e�cient
baseline, we start at the algorithmic level, applying clustering, prun-
ing, and sparse encodings (CSR and BitMask) for DNN weights. To
accommodate fault-prone MLC storage, we co-optimize the sparsity
and encoding of DNNs with the storage density of MLC eNVMs,
which directly impacts the reliability of the storage medium, to
reduce memory requirements without sacri�cing accuracy. We �nd
sparsely encoded weights are more vulnerable than dense weights,
which limits MLC eNVM density. Thus, we further push the storage
density by applying protective mechanisms, ECC and IndexSync
(proposed), when using more programmed levels per MLC.

To demonstrate the e�cacy of our co-design approach on the
evolving eNVM landscape, we evaluate two fundamentally di�er-
ent technologies: RRAM and CTT. Both are dense, MLC-capable,
and can be made CMOS compatible. CTT has fast read latency
and is very low-power, but incurs inordinately long write latency.
Compared to CTT, RRAM has a faster write latency, but is less
energy-e�cient. eNVM models are built using NVSim [20]. RRAM
cell parameters and fault models are derived from published work,
and we construct models to represent projected [73] and demon-
strated [8, 42] RRAM scaling. CTT parameters and fault distribu-
tions are derived from a measured chip prototype.

We demonstrate the bene�ts of MaxNVM by conducting mem-
ory system studies using NVDLA—a state-of-the-art, industrial-
grade CNN accelerator. We demonstrate that even large models,
e.g., VGG16 and ResNet50, can reasonable �t on-chip with our co-
design approach. CTT results in the lowest energy-per-inference
design point at 3.2⇥ reduced energy per inference. If weights are
to be updated more frequently, RRAM presents a compromise of
writing weights orders of magnitude faster while giving up ap-
proximately 20% energy e�ciency. In a case study, we constrain
all on-chip memory to �t within 1mm2 and sweep the percentage
given to SRAM vs. eNVM. The study concludes a balance of eNVM
and SRAM is ideal to maximize performance and e�ciency.

This paper makes the following research contributions:
(1) We are the �rst to consider fault-prone MLC eNVMs and

sparse encoded weights. Both reduce memory requirements,
however we �nd a tension between the two: sparse encoding
increases fault vulnerability, limiting the e�cacy of MLCs.
To reduce overall memory footprint, we �rst sparse encode
weights to save raw bits then set the levels-per-cell to the
highest con�guration without accuracy loss.

(2) To further increase storage density, we improve DNN fault
tolerance using protective logic. We consider IndexSynchro-
nization, a proposed fault mitigation technique, and ECC.
With judicious use, we show the total number of required
memory cells to store DNN weights decreases by up to 22%
with our proposed technique, and ECC overhead is never
more than 1% of total DNN storage. Optimal MLC designs
provide up to 29⇥ area reduction relative to SLC eNVM.

(3) We propose newmemory systems for NVDLA [62], an industry-
grade CNN accelerator, based on RRAM and CTT. Using our
co-design approach, weights for state-of-the-art CNNs can
�t on-chip, eliminating the need for DRAM. Compared to
the baseline NVDLA implementation, MLC eNVMs enable
up to 3.5⇥ lower energy per inference and 3.2⇥ lower power,
enabling entirely on-chip ResNet50 inference in about 2mm2.

Figure 1: Characterization of published eNVM proposals
comparing Area and Read Latency when extrapolated and
characterized for a �xed capacity (4MB) using read-latency-
optimized results from NVSim [20].

2 CHARACTERIZING AND MODELING
eNVMS FROM FABRICATED EXAMPLES

In this section, we compare the characteristics of di�erent eNVM
technologies. This discussion lays the foundation for our modeling
approach in terms of the speci�c memories evaluated and technol-
ogy parameters extracted in order to develop fault models and area,
energy, and performance estimates. We choose to model and evalu-
ate MLCs which o�er maximal storage density with minimal read
latency and read energy, and we selectively evaluate corresponding
SLC solutions as a competitive baseline.

2.1 Comparison and Modeling of eNVMs
In evaluating the varied landscape of non-volatile memory devices,
we are interested in identifying implementations that achieve low
read latency, high storage density, and proven ability to scale to
advanced process nodes in order to support DNN inference in
constrained computing contexts. We consider spin-transfer torque
(STT)memory, phase-changememory (PCM), resistive RAM (RRAM),
and charge trap transistor (CTT) memory. Table 1 shows a summary
of implemented eNVMs with su�cient published data for the pur-
poses of our modeling, spanning di�erent technology nodes (90nm
to 20nm) and memory array architectures (crossbar vs. CMOS-
access). To better evaluate trade-o�s between these memories, we
have extrapolated their memory cell characteristics and generated
an equivalent 4MB memory array optimized for read energy-delay
product in NVSim (Figure 1) [20].

STT To push the boundaries of dense on-chip storage, we choose
to evaluate memories with the capability of storing multiple bits per
cell. For this reason, we have excluded spin-transfer torque (STT)
memories from our evaluation: while they have been reported as
state-of-the-art in terms of both write and read bandwidth [14,
19], MLC implementations require changing the structure of the
memory device and are restricted to 2 bit/cell [4, 71, 72].

PCM arrays have been demonstrated in 90nm, and, more re-
cently, in 40nm technologies, though maximal density is still higher

MaxNVM MICRO-52, October 12–16, 2019, Columbus, OH, USA

Table 1: Characterization of di�erent non-volatile memory chips.

Reference eNVM type Technology Access device Cell Area (F2) Capacity Macro area (mm2) Read latency Write latency
[8] RRAM 28nm CMOS 39 1Mb 0.56 6.8ns 500ns - 100µs
[42] RRAM 40nm CMOS 53 1.4Mb 0.28 10ns —
[45] RRAM 24nm diode 4 32Gb 130.7 40µs 230µs
[13] MLC-PCM 90nm CMOS 25 256Mb 120 320ns —
[67] PCM 40nm CMOS — 1Mb — — 120ns
[12] PCM 20nm PRAM diode 4 8Gb 59.4 120ns 150ns - 100µs
[19] STT 28nm CMOS 75 1Mb 0.214 2.8ns 20ns

for other eNVM proposals [13, 67]. While 20nm PCM has also been
shown [12], this con�guration has over 10⇥ higher read latency
than the design points we evaluate.

RRAM There are compelling RRAM solutions using either diode
access (crossbar) or CMOS access (traditional memory array archi-
tecture). Crossbar arrays o�er the best cell area (4F2) [13, 45], but
they are subject to higher access times (Figure 1). Though chips
based on CMOS access devices show larger cell area, they pro-
vide more competitive read latencies. The larger cell area can be
overcome by increasing storage density via MLC programming. In
addition, RRAMs with CMOS access transistors have been demon-
strated down to a 28nm process node [8]. We also evaluate an
optimistic scaled RRAM memory based on a 10F2 cell size as a
way of evaluating the maximum potential of promising technology
advances, which is scaled to several process nodes in Figure 1.

CTTmemories [35] use a standard CMOS transistor as amemory
cell, and we are the �rst to present measurements of 3-bit-per-cell
MLC programming with a fabricated test chip (Section 2.2.1). The
absence of a dedicated access device and the ability to scale to
advanced technology nodes gives CTT impressive density and read
latency. However, the cost is long write latency (Section 2.2).

2.2 Multi-Level CTT Characterization
Previous work demonstrated that a single, standard-sized NMOS
device can be used as a cost-e�ective embedded non-volatile mem-
ory cell [21, 35, 36, 49]. The resulting memories, often referred to
as charge trap transistors (CTT), are made with standard high-k
metal-gate CMOS transistors. Data is stored by trapping charge in
the gate oxide using hot-carrier injection (HCI), which alters the
threshold voltage of the device. As a result, the same transistor can
be programmed to exhibit di�erent saturation currents which are
read out to determine the stored value. In this way, CTT-based NOR
memory arrays can be fabricated in industrial-grade, cutting-edge
standard CMOS technologies with zero added manufacturing cost. In
addition to low cost, CTT has many other desirable properties: the
memory arrays are analogous to programmable NOR ROM arrays
and have similar-scale read latency; devices display very low leak-
age currents, as stored information is preserved in the transistor’s
threshold voltage with high retention independent of the applied
voltage; the resulting density can be extremely high because CTTs
rely on the transistor’s gate terminal for access and do not require
additional selector devices.

The bene�ts of CTTs come at the expense of two undesirable
properties, limiting their deployment for many general-purpose
compute tasks: (1) extremely long write-latencies and (2) poten-
tial for high cell fault rates. CTTs are programmed by iteratively

(a) 16nm Chip and word line schematic

(b) IV Curves, MLC3 Programmed CTT

Figure 2: (a) Die photo of CTT test chip; (b) measured IV
curves for 8-level (3-bit, MLC3) programmed CTT (left) and
current histogram measured at 0.8V (right) [46].

injecting increments of charge and reading until a desired shift is
achieved, which takes 100ms or more. Additionally, charge injec-
tion is a random process that inevitably leads to a spread in current
distribution, and this spread translates to increased likelihood of
misreading the stored value. Despite these limitations, we demon-
strate CTT as a near-ideal solution for enabling e�cient, embedded
DNN inference with careful architectural co-design. This is possible
because embedded DNN weights are updated infrequently and re-
peatedly used to make inferences, and DNNs are known to be fault
tolerant [44, 58, 65]. We extend previous demonstrations of CTT
with a multi-level-programmed fabricated test chip (MLC-CTT),
and our careful algorithmic and architectural co-design overcomes
the high fault rates that accompany MLC storage.

2.2.1 MLC-CTT test chip measurements. To prove the feasibility
of the cell design, we fabricated MLC-CTT test structures in a
commercial 16nm FinFET process. A die photo is shown in Figure 2a,
which contains 36 columns of 128 cells each; internal scan chain
and driver circuits mimic wordline drivers, with additional details
reported in [46]. The bumps expose column bitlines to �exibly read
and write individual cells via external test equipment. Figure 2b

MICRO-52, October 12–16, 2019, Columbus, OH, USA Pentecost et al.

Area, Energy,
and System
Performance
Evaluation

Accelerator
Performance

Model (NVDLA)

Application-
Level Fault
Injection

(Ares)

Memory
Characterization

(NVSim)

Pruning +
Clustering (P+C)

Error Correction
and Mitigation

Chip Measurements,
Circuit Simulations,

Previously Published Results

Sparse
Encodings

Trained DNN Models

Area and Energy Estimates

Optimal Storage
per eNVM

Characterized eNVM Array
Area, Energy, Performance

ToolsTechnology

EvaluationTechniques

eNVM Fault Models

Figure 3: MaxNVM summary of the tools, optimizations, and intermediate results used in �nal system evaluations.

shows the distribution of read currents at di�erent wordline supply
voltages for 8-level programmed CTTs (a 3-bit MLC). Di�erent
colors represent levels (i.e., programmed values), and each level is
measured from 128 unique devices.

Figure 2b (right) shows the current distributions at nominal
wordline voltage of 0.8V. The yellow cluster corresponds to unpro-
grammed cells with intrinsic Vth variations. Other program levels
exhibit tighter distributions due to the iterative write-and-check
process. Both cases are well approximated using a Gaussian dis-
tribution. As more levels are encoded per cell, these distributions
tend to overlap, which increases the probability of misreading the
programmed value. Given the wider distribution of intrinsic process
variations, we separate the unprogrammed and �rst programmed
state to minimize read errors of the unprogrammed state.

2.3 Fault Model
In developing a fault model for eNVM implementations, we focus
on two primary sources of uncertainty: (1) intrinsic randomness
associated with setting the value of di�erent programmed levels in
a memory cell, and (2) the e�ect of the sensing circuitry.

The intrinsic distributions for the stored levels in a RRAM im-
plementations are extracted from published data for 3-bit MLC
programming [74]. For MLC-CTT, inter-level fault rates are deter-
mined by directly measuring current distributions from our test
chip (Figure 2b). For both technologies, current distributions can
be modeled as gaussian distributions, and the overlap of level dis-
tributions determines the rate at which that value will be misread
as an adjacent programmed value. In both cases, we use SPICE
simulations to derive the distributions at the output of the current-
to-voltage converter. The likelihood of misreading a MLC can be
high in both CTT and RRAM (e.g., fault rates for MLC3 range from

Table 2: DNN models including baseline classi�cation error
and computed error bound (Section 3.1.1).

Model LeNet5 VGG12 VGG16 ResNet50
Dataset MNIST CiFar10 ImageNet ImageNet
Layers 4 12 16 54
Parameters 600810 7899840 138084352 24585472
Classi�cation Error 0.83% 10.38% 35.07% 31.15%
Error Bound 0.05% 0.40% 0.57% 1.02%
Cluster Index Bits 4 4 6 7
Sparsity (% zero-valued) 89.9% 40.9% 81.1% 64.84%
16b Size 1.26MB 15.4MB 270MB 70MB
Pruned & Clustered (P+C) 316KB 3.86MB 101MB 30.6MB
CSR 84KB 3.78MB 30.2MB 25.1MB
BitMask 107KB 3.23MB 35.5MB 11.2MB

10�3 to 10�5). Errors typically result in reads to an adjacent level1.
By arranging how data is encoded into MLCs and exploring the
impact of varying number of bits per cell on DNN classi�cation
error, the e�ects of faults can be mitigated (Section 4).

We additionally study the e�ect of the sensing circuitry on MLC
fault rate. For this work, we focus on a speci�c sense ampli�er
(SA) design, which is characterized by having low static power and
input referred o�set primarily determined by the input di�erential
pair of transistors [38]. Therefore, we evaluate the input referred
o�set voltage by running Monte Carlo SPICE simulations for a
variety of input transistor width values. Based on these simulations,
we choose a SA size such that the overhead incurred for the over-
all array in our �nal results never exceeds 1%, and the inherent
inter-level fault rates are altered by less than 2⇥. For the readout
architecture, we consider a parallel sensing scheme similar to a �ash
ADC: the bitline is connected to a number of SAs equal to N � 1,
where N is the number of levels that can be stored per cell, with
each SA connected to the appropriate reference voltage. A parallel
sensing scheme decodes the stored value in a single conversion step,
but the number of required SAs increases exponentially with the
number of stored bits. This overhead is mitigated by multiplexing
memory array columns [68]. The resulting design is integrated with
NVSim [20] to characterize the overall memory architecture.

3 EVALUATION METHODOLOGY
Our proposed, principled co-design incorporates optimizations and
techniques at algorithmic and architectural levels. After develop-
ing a fault model based on technology-speci�c device character-
istics and SPICE models of sensing circuitry, we use a previously-
validated fault injection framework to quantify the impact of faults
on DNN accuracy [57]. We leverage well-known tools to model the
energy, performance, and area of the proposed systems [20, 51].
The interaction of these methods as they contribute to the �nal
evaluation is summarized in Figure 3.

3.1 Model Optimizations
Proposed memory systems are evaluated against a competitive
and realistic baseline by enforcing iso-accuracy and incorporating
commonDNNoptimizations, as summarized in Table 2.We consider
DNNs of di�erent sizes: one CNN model for the small MNIST hand-
written digits dataset, two larger, well-known CNNs (VGG16 and
ResNet50) for the much larger ImageNet dataset, and another VGG-
like topology for the mid-size CiFar10 dataset to span the gap
between these cases [32, 39, 41, 59, 63].

1Misread probability of non-adjacent level is 1.5 ⇥ 10�10 or below.

MaxNVM MICRO-52, October 12–16, 2019, Columbus, OH, USA

3.1.1 Iso-Training Noise. While previous works have considered
trading accuracy for e�ciency in deep learning systems, the most
convincing demonstration for a practical system must address and
preserve baseline model accuracy, as we guarantee via Iso-Training
Noise (ITN) [17, 22, 56]. The intuition for this method is that ac-
curacy varies for DNNs repeatedly trained with identical hyper-
parameters. The resulting variance in the accuracy can be used as
a bound for �nal classi�cation error. As long as model alterations
do not result in error exceeding this bound, they are said to be in-
distinguishable from ITN and therefore maintain iso-accuracy. All
presented energy, performance, and area improvements maintain
model accuracy within ITN bounds in Table 2.

3.1.2 Simplification Techniques. Magnitude-based weight pruning
with retraining is used to sparsify DNN weights, as the models are
widely known to be over-parameterized. The resulting proportion
of zero-valued weights is in Table 2. One popular technique to
reduce the number of bits required to store each DNN weight is to
reduce precision using �xed-point quantization. Depending on the
dynamic range of the DNN weight values, the number of integer
and fractional bits can be drastically reduced, even to a few or a
single bit per weight at some loss in model accuracy [28, 33].

Another way to reduce the number of bits required to represent
each weight value is to use k-means clustering for each layer of the
DNN [26]. For the models considered, we �nd that all the weight
values within a given layer can be represented by 16 to 128 unique
clustered values at no loss of accuracy. Thus, each weight can be
encoded as a 4 to 7 bit cluster index value, with a simple look up
table per layer to map indexes back to values. We �nd clustering
uses strictly fewer bits per weight than �xed-point quantization
without signi�cant re-training for all DNNs (Table 2).

3.2 Sparse Encodings
Employing lossless sparse encodings to reduce required storage
would be strictly bene�cial for traditional memory technologies
like SRAM. However, sparse-encoded values are no longer particu-
larly fault tolerant due to the vulnerability of encoding structures
compared to the resilience of weight values. Therefore, additional
analysis is required to determine optimal MLC storage schemes
with sparse encodings, as explored in Section 4.

3.2.1 Compressed Sparse Row Storage (CSR). CSR uses three data
structures to encode a sparse matrix: an ordered list of all non-zero
data elements (Weight Values), the column indexes of each non-
zero element (Column Index), and counters of non-zero elements
per row (Row Counter). The relative overhead of CSR varies pro-
portionally with sparsity, so CSR is applied on a per-layer basis
where worthwhile. Convolution layer weights are typically 3-D
(�lter width, height, and channels), and are mapped to 2-D to use
CSR. NVDLA has speci�c requirements for data formatting into the
convolutional core, which dictates a compatible 2-D mapping [51].

3.2.2 BitMask Sparse Format. The NVDLA framework natively
supports sparse weight storage that utilizes an indicator bitmask
for whether each weight is zero-valued and stores all non-zero data
values in packed, 128-byte aligned groups. We refer to this bitmask-
based encoding as ‘BitM’, and we maintain compatibility with the
de�ned NVDLA sparse format [51]. The e�ective compression of

0 1 0 1 1 0 0 10BitMask Vectors:

IdxSync Counters:

Next Data Values:

3

Next Weight Value Index:

Retrieved Weight Values:

No Index Synchronization With Index Synchronization
Sync Index
to Counter

3

7 6 3 5 2

0 0Reconstruction: 0 7 0 6 3 0 0

1 0 0 0 1 0 0 11

8 7

4

8 75 0 0 0 2 0 0
0 50 7 0 6 3 0 0

7 22 0 0 0 8 0 0

2

0 50 7 0 6 3 0 0

8 75 0 0 0 2 0 0

BitMask Sparse Decoding Example

7 6 3 5 2 8 7 2

0 1 2 3 4 5 6 7

Next Weight
Value Index:

Retrieved
Weight Values:

7 6 3 5 5 2 8 7

0 1 2 3 3 4 5 6

Figure 4: Index Synchronization (IdxSync) prevents errors
in the bitmask from propagating by dynamically correcting
the index into the non-zero weight values using a counter
of the expected non-zero values in a given block of data dur-
ing decoding. Note that IdxSync does not correct faults that
have occurred in the current block, but rather corrects mis-
alignment in subsequent blocks.

each encodingmethod is shown in Table 2, and the relative overhead
of each method is determined by the sparsity of the weights.

3.3 Error Correction and Mitigation
Fault tolerance changes when weights are stored using sparse en-
codings, as explored in Section 4. A simple strategy to mitigate error
is to store more vulnerable structures using fewer bits per cell (e.g.,
SLC or MLC2) [18]. We additionally explore when it is bene�cial to
incorporate Hamming-style, parity-based ECC. The con�gura-
tion used is the lightest-weight ECC considered for NAND �ash
[60]. Note that if values are binary-encoded in a MLC, a level-to-
level fault is not equivalent to a single bit �ip, so Gray coding is
used for ECC-protected values in MLCs to enable correction.

For even lower overhead error mitigation with BitM encoding,
we propose storing a counter for the number of non-zero (or zero,
depending on which is lower) weight values to be read in each
128 byte aligned block. When an error in the bitmask causes the
wrong number of weights to be read during decoding, the counter
is used to dynamically update the index to read from in the packed
data array. We call this error mitigation strategy Index Synchro-
nization of the bitmask or ‘IdxSync’. IdxSync does not correct
errors– rather, it prevents errors in previously read values from
propagating during weight matrix reconstruction, as demonstrated
with a simple decoding example in Figure 4.

3.4 Memory Modeling
We integrate new memory cell de�nitions in NVSim using the
energy, performance, and area measurements from our test chip,
published work, and SPICE simulations of sensing circuitry topolo-
gies [20]. NVSim evaluates all possible memory bank con�gurations
for a given capacity, optimization target, and number of bits per
cell (Table 3). Pareto-optimal points are chosen from NVSim output
to �t within area or performance constraints in presented results.

Table 3: NVSim, baseline NVDLA parameters [7, 20, 62].

NVSim Parameter Value NVDLA Baseline NVDLA-64 NVDLA-1024
Data Width 8 - 128 Convolutional Bu�er Size 128KB 256KB

Banks (1 x 1) - (N x N) Number of MACs 64 1024
Mats (1 x 1) - (N x N) SRAM Capacity 512KB 2MB

Optimization Targets

Area Frequency 1 GHz 1GHz
Read Latency Datapath Area 0.55mm2 2.4mm2

Read EDP SRAM BW 6 GB/s 25 GB/s
Read Energy DRAM Read BW 25 GB/s

Leakage Power LPDDR4 DRAM Power 100 mW 200 mW

MICRO-52, October 12–16, 2019, Columbus, OH, USA Pentecost et al.

3.5 Architecture Performance Model
NVIDIA deep learning accelerator (NVDLA) is an industry-grade,
open source architecture solution to accelerate DNN inference.
Baseline system parameters are given in Table 3, and a block di-
agram is shown in Figure 7(a) [51]. NVDLA supports CNN and
FC layer execution, and all computation is performed using this
datapath. By demonstrating our proposed memory integrated with
this system, we highlight the opportunity for eNVM integration
with existing systems for e�cient DNN inference.

4 FAULT TOLERANCE OF SPARSE
ENCODINGS FOR DNN INFERENCE

Model optimizations and sparse storage schemes signi�cantly im-
pact DNN fault tolerance. Thus, co-design with our carefully devel-
oped MLC eNVM fault models is required to enable dense, e�cient
storage. We use a previously validated application-level fault in-
jection framework (Section 4.1) to quantify the impact of di�erent
encoding strategies on DNN classi�cation error (Section 4.2). The re-
sults of these experiments guide us in incorporating error correction
and mitigation techniques in order to maximize the e�ectiveness of
MLC eNVM storage for DNN inference, as presented in Section 4.3.

4.1 Fault Injection Framework
Ares is a validated, application-level fault injection framework for
quantifying DNN fault tolerance [57], which we modify to model
MLC eNVM faults, accommodate sparse encoded values, and simu-
late error mitigation. Based on Sections 2.2.1 and 2.3, we generate
an inter-level fault probability map for each MLC con�guration
and technology. This fault probability map is modi�ed to include
the e�ects of the sense amp by shifting the mean of each level
distribution according to the characterized input referred o�set.

Fault injection is performed by �rst converting the weight values
into MLC representation. Then, for each eNVM cell, we sample a
gaussian random variable from the appropriate level distribution
and check if the result crosses the thresholds used to sense that
level. If they do, a fault has occurred and that memory cell value is
updated to the value represented by the adjacent level. The modi�ed
values are then used to perform inference on the entire test dataset.
Experiments are repeated over many trials, and presented results
are averaged over many unique generated fault maps.

Sparse encodings require separate fault injections on each struc-
ture (e.g., the bitmask and non-zero weight values), and we vary
the number of bits per cell used to store each structure. When im-
plementing support for ECC, we must ensure a level-to-level fault
correlates to a correctable (single bit �ip) error by using Gray cod-
ing to store binarized values in the MLCs. Dynamic error correction
and mitigation strategies are integrated such that faults are detected
and values are updated as appropriate prior to evaluating model
accuracy. Ares enables the evaluation of DNN classi�cation error
over many randomly seeded trials for various MLC eNVM con�gu-
rations and encoding strategies. From this analysis, we de�nitively
determine the optimal number of bits stored per MLC and the min-
imal number of memory cells required for each encoding strategy
for each DNN such that there is no loss in accuracy.

Figure 5: Impact of lightweight error correction (ECC) or
mitigation (IdxSync) on the classi�cation error for a sam-
pleDNN (MNIST-LeNet5). Each data structure is stored using
CTT as SLC, MLC2, or MLC3, assuming perfect storage of
other structures to isolate the impact of faults. ECC enables
safe storage inMLC3 for CSR format. ECC and IdxSync both
enable safe MLC3 storage for bitmask encoding, though
IdxSync is a lighter-weight, lower-overhead mechanism.

4.2 Vulnerability of Encoding Strategies
Sparse encoding strategies allow fewer bits to be used when storing
DNNweights, but experiments reveal that this compact data storage
is in general much less tolerant of inter-level faults. For all DNNs
considered, weights that could be safely stored by their cluster index
values in MLC3 can no longer be safely stored in MLC3 with sparse
encoding structures. For example, for several layers of ImageNet-
VGG16, CSR-encoded CTT storage (fewer bits) must be stored in
MLC2 to preserve accuracy, which does not o�er area improvement
compared to dense storage in MLC3.

These instances are due to the extreme vulnerability of sparse
encoding data structures, as highlighted for MNIST-LeNet5 in Fig-
ure 5. This example demonstrates that the row counter and column
index data structure of CSR exhibit exceptionally high vulnerability
– MLC3 storage, which is roughly equivalent to one level-to-level
fault per row counter structure, causes a pronounced degradation
in DNN accuracy. This is because a single misread value may cause
an o�set when reading from the non-zero data array such that all
remaining data values are incorrectly assigned during reconstruc-
tion. Similarly, column index values are stored as relative indexes
to the previous non-zero value within each row. Thus, a misread
value may o�set the remaining data values, though the impact will
be restricted to a particular row. The vulnerability of column in-
dexes may be mitigated by using absolute indexes, but this requires
strictly higher overhead than integrating lightweight ECC. Relative
to CSR, the bitmask-style sparse encoding is even more vulnerable,
as shown in the right portion of Figure 5. A single bit �ip in the bit-
mask causes all remaining non-zero data values to be mis-assigned
when reconstructing the matrix. Thus, the bitmask cannot safely
be stored in MLCs without some protective technique.

4.3 Impact of Error Correction and
Mitigation Techniques

The column index and row counter ‘+ECC’ bars in Figure 5 show
the error reduction when Hamming-style, parity-based ECC is
employed to correct errors in the CSR structures. Di�erent amounts
of relative ECC overhead were tested per DNN based on the number
of correctable errors encountered, and we consistently found that

MaxNVM MICRO-52, October 12–16, 2019, Columbus, OH, USA

Figure 6: Minimal number of eNVM cells per DNN and per encoding strategy such that there is no loss in classi�cation accu-
racy using MLC-CTT (blue), MLC-RRAM (orange), and SLC storage (red). These are the results of an exhaustive design space
exploration of all possible combinations of bits per cell evaluated over many trials for eNVM technology.

the lowest overhead con�guration (24 parity bits for each 4KB of
row counter values) is su�cient to safely use MLC3 for CTT. The
resulting ECC storage overhead is strictly less than 1% per layer for
all DNNs. Additionally, ECC is single error correct, double error
detect (SEC-DED), but the probability of a DED, even for the largest
model considered (ImageNet-VGG16), is on the order of 10�18. This
probability is less than the standards for mass-produced standard
memories [1], so our design accepts the risk of this case.

Looking at the classi�cation error for the sample model in Fig-
ure 5, we see that both ECC and the IdxSync method enable the
use of MLC3 to store the bitmask without degrading model accu-
racy. The bitmask can account for a signi�cant portion of the total
storage per DNN layer (up to 65%), so enabling denser storage of
this structure can result in signi�cant area bene�ts. For all DNNs
considered, applying IdxSync is su�cient to enable the safe use
of MLCs for the bitmask. This con�guration requires less storage
overhead compared to ECC and reduces the decoder complexity
compared to Hamming-style ECC. However, the optimal storage
strategy per DNN depends on model properties (per-layer sparsity,
bits per weight value) and desired optimization target (lowest area
dictating fewest cells, performance, energy) based on use case, so
we continually leverage the results of these fault tolerance studies
in determining proposed memory solutions in Sections 5 and 6.
4.4 Optimal Storage Con�gurations
By repeating the studies described in Section 4 for every DNN and
style of sparse encoding (with and without error correction and
mitigation) for the fault models of both MLC-CTT and MLC-RRAM,
we determine the minimal number of memory cells required to
store all DNN weights with a certain storage con�guration (sum-
marized in Figure 6). These results are a �rst-order re�ection of the
limitations of MLC storage due to the fault rates of each technology,
which in turn determines the e�ective capacity, number of cells,
and bits per cell when characterizing memory arrays in Section 5.

Savings stem from both the use of sparse encodings and from
packing more bits per cell enabled by error correction and mitiga-
tion. There are several examples inwhich storing fewer bits does not
equate to the minimal number of memory cells. These results vali-
date the importance of exhaustive exploration in the design space
of encodings and error protection schemes in order to determine
optimal MLC eNVM storage solutions. For example, the bitmask
sparse encoding with index synchronization (BitM+IdxSync) for

ImageNet-VGG16 requires fewer memory cells than without error
mitigation, despite the overhead of the counter values. This is be-
cause IdxSync enables MLC3 storage for the bitmask, rather than
just the data, so the total number of cells used decreases by 22%,
which in turn reduces the required on-chip memory area.

Although the storage capacity required for ResNet50 is smaller
using CSR than with Pruned and Clustered weights (Table 2), it re-
quires fewer memory cells to store without sparsely encoding using
CSR because the pruned and clustered weights can be safely stored
using 3 bits per cell (MLC3), while the vector of non-zero data val-
ues can only leverage MLC2 without loss of classi�cation accuracy.
However, in Figure 6, we see that the minimum number of memory
cells required to store ResNet50 in either MLC-CTT or MLC-RRAM
uses the BitMask sparse encoding with index synchronization to
mitigate propagation of errors in the bitmask.

5 SINGLE CHIP DNN INFERENCE
We consider a completely self-contained inference accelerator that
stores all of the weights in on-chip eNVM and does not require
external DRAM, as indicated in Figure 7b. We envision this scenario
being especially important for deeply embedded applications such
as IoT devices and implanted medical devices where component
cost, performance, and energy constraints are extreme [47, 52, 55].

To evaluate the area, energy, and performance of both CTT and
RRAM per DNN, we use model optimization results to determine
the number of bits required per encoding and perform fault toler-
ance analysis. This determines the appropriate number of bits per
cell and minimum number of memory cells required without loss
in classi�cation accuracy (Section 4.4). Next, we use our extensions
of NVSim to characterize memory arrays parameterized to accom-
modate the model size under the optimal encoding strategy. Finally,
pareto-optimal points for characterized memories of four di�erent
eNVM proposals are identi�ed per model to minimize the read
energy-delay-product and area, shown in Figure 8. The resulting
system performance is evaluated using the NVDLA performance
model and compared to the performance of a baseline con�guration
relying on o�-chip DRAM for weight storage in Figure 9. Table 4
gives a summary of area, energy, and performance for optimal stor-
age for each eNVM evaluated, while Figure 9 gives an example of
NVDLA system performance and energy for ResNet50 inference
leveraging the various eNVM design points [51, 62].

MICRO-52, October 12–16, 2019, Columbus, OH, USA Pentecost et al.

Memory Interface Block

Convolution
Core

32 - 2048 MACs

Convolutional
Buffer

32KB - 512 KB

Fixed DLA
Datapath

Components

DRAM (Off-Chip)SRAM
1MB - 4MB

(a) Baseline NVDLA

Memory Interface Block

Convolution
Core

32 - 2048 MACs

Convolutional
Buffer

32KB - 512 KB

Fixed DLA
Datapath

Components

SRAM
1MB - 4MB MLC eNVM

(b) On-Chip Inference, Section 5

Memory Interface Block

Convolution
Core

32 - 2048 MACs

Convolutional
Buffer

32KB - 512 KB

Fixed DLA
Datapath

Components

On-Chip Memory

% SRAM % eNVM
DRAM

(Off-Chip)

(c) Hybrid Memory Solution, Section 6

Figure 7: Block-level schematic of NVDLA with and without support for an eNVM interface. (a) baseline system with SRAM
(intermediate value storage) and o�-chip DRAM (weight storage); (b) on-chip memory solution using eNVM for all weight
storage (Section 5); (c) hybrid solution partitioning a �xed on-chip memory area and using DRAM for over�ow (Section 6).

Figure 8: Optimal area and energy per read for memories characterized to store all weights on-chip in Optimistically scaled
MLC RRAM (Optimistic MLC-RRAM), MLC CTT, an MLC extrapolation of [74], and SLC RRAM [42].

This study quanti�es the increase in die area needed to enable en-
tirely on-chip memory while maintaining competitive performance
and achieving reduced power and reduced energy per inference.
The number of cycles to execute an inference per input image
(frame) is computed using the NVDLA performance model with
the characterized read bandwidth and read latency determined by
NVSim for each eNVM array. On-chip SRAM is used in the NVDLA
system (512KB or 2MB in our designated NVDLA con�gurations,
Table 3) to manage storage of intermediate values between layers
of the DNNs, as the write latency of CTT is prohibitively high (on
the order of ms [35]) and can still be orders of magnitude higher
for MLC-RRAM than SRAM write latency (e.g., 160-640ns [68]),
as explored in Section 7.1. We also quantify the relative impact of
non-volatility on energy per inference in Section 5.3 and evaluate
system performance under a �xed area budget in Section 6.

5.1 Area and Dynamic Read Energy
An interface to eNVM replaces NVDLA’s interface to o�-chipDRAM
for DNN weights, and we demonstrate that aggressive MLC con-
�gurations of both CTT and optimistically scaled RRAM can store
the sparsely-encoded, ECC protected weights of ImageNet-VGG16
(about 32MB Capacity) in 2mm2 and 1.3mm2, respectively. Thus, as
a result of exhaustive design space exploration and a rigorous eval-
uation scheme, all DNN weights can reasonably �t in on-chip MLC
eNVM in an area equivalent to 1-2MB of SRAM in modern process
nodes. Even SLC RRAM �ts all of ResNet50 (12MB capacity under
sparse encoding) in under 10mm2 (Figure 8). With additional model

optimizations or more relaxed error bounds, MLC con�gurations
could be leveraged even more aggressively at some loss in DNN
classi�cation accuracy, depending on use case. This study strictly
avoids loss of accuracy. Even so, these models consume reasonable
area for on-chip local memory storage using MLC eNVM.

Figure 8 summarizes the area and dynamic read energy per ac-
cess of four distinct on-chip memory solutions. The area for each
model is the read-energy-delay-product optimal point characterized
by our extensions to NVSim that will hold all the DNN parameters
in the most optimal encoding for each memory technology as de-
termined in Section 4. Even relative to storing the same optimized
and sparse-encoded weights in SLC-RRAM, the MLC-CTT array
requires an average of 9.6⇥ less area while maintaining competitive
performance within 10% of the NVDLA baseline. Furthermore, our
MLC extension of the SLC-RRAM achieves an average area bene�t
of over 3.2⇥, and the optimistically scaled MLC-RRAM (Optimistic
MLC-RRAM) enables an average area bene�t of 20⇥. The larger
relative area bene�t between MLC-CTT and the Optimistic MLC-
RRAM for CiFar10-VGG12 (Figure 8, left) derives both from the
inherent storage density of the Optimistic MLC-RRAM and the
fact that more bits per cell can be safely used with the Optimistic
MLC-RRAM (consistently 3 bits per cell) than with MLC-CTT (2
bits per cell) due to their respective fault characteristics and the
impact on classi�cation error, as exposed in Section 4.4.

The dynamic read energy for each of the memory proposals
varies by orders of magnitude, even for equivalent-capacity char-
acterized arrays (Figure 8, right). MLC-CTT is consistently lower

MaxNVM MICRO-52, October 12–16, 2019, Columbus, OH, USA

Figure 9: NVDLA energy per ResNet50 inference (left), average power (middle), and frames processed per second (right) for
two con�gurations of NVDLA described in Table 3, considering replacing LPDDR4 DRAM (baseline) with proposed eNVM
solutions and leveraging the speci�c memory arrays characterized for ResNet50 in Figure 8.

energy per access than even the Optimistic MLC-RRAM solution
by over 4⇥, and also tends to maintain a lower read latency and
higher read bandwidth (up to 9 GB/s).

5.2 System Performance
Though MLC-RRAM proposals do not surpass the maximal FPS
possible with NVDLA (e.g., Figure 9, right), the best performance
for each model consistently exceeds 60 frames per second with the
NVDLA-1024 con�guration, well above the image processing frame
rate for standard motion pictures [48]. The latency overhead of
MLC sensing tends to negate the e�ective bandwidth increase of
MLC storage. This is seen in Figure 9; SLC-RRAM is competitive
with MLC-CTT in terms of frames (i.e., inferences) processed per
second. For the characterized eNVM arrays used in Figure 9, Opti-
mistic MLC-RRAM exhibits lower read bandwidth and higher read
latency than MLC-CTT, leading to lower FPS. We note that these
performance estimates do not include the decoding overheads for
sparse encodings and cluster index values. However, the overhead
to reconstruct and decode weight values for both strategies will be
minimal and consistent in the baseline and eNVM-based systems.

Figure 9 compares the average power consumption and total
energy per inference for ResNet50 when operating at maximum
performance. We consider two �xed NVDLA baseline datapath con-
�gurations given in Table 3, for which the power consumption is
publicly available [62], and assume additional power consumption
of LPDDR4 DRAM running at 1GHz is 200mW to form a conser-
vative estimate of potential improvements via integration of on-
chip eNVM [7]. NVDLA-64 is representative of a more extremely
resource-constrainedDNN accelerator, and the energy consumption
of memory accesses for weight fetches using MaxNVM is reduced
by over 100⇥ (DRAM vs. 1mm2 of on-chip MLC-CTT), resulting in
overall average system power reduction of 3.2⇥. NVDLA-1024 pro-
vides considerably higher performance (Figure 9, right) and lower
dynamic energy per inference, though the average power is higher.
In this scenario, we see similar trends in MLC-CTT reducing energy
consumption due to weight fetching by up to 13.6⇥. However, due
to the higher baseline power of the larger convolutional core and
bu�er, the total relative system power reduction is up to 1.6⇥.

Of the three evaluated MLC proposals, MLC-CTT achieves the
best system performance, lowest power, and lowest energy per in-
ference. Compared to the optimistically scaled MLC-RRAM, higher

read bandwidth and lower energy per read result in 20% overall
lower energy per inference for MLC-CTT for NVDLA-64. These
demonstrated bene�ts are relative to energy and performance char-
acteristics of convolutional models using a highly-optimized CNN
accelerator datapath that maximizes re-use of fetched values, so
energy reduction due to memory fetches would be increasingly
bene�cial in other resource-constrained contexts that exhibit less
re-use of fetched parameters (e.g., recurrent neural networks).

5.3 Bene�ts of Non-Volatility
Depending on how frequently inferences occur (i.e., required frame
rate for an image processing task), eNVMs have an inherent relative
bene�t by virtue of not needing to reload weight values when
powered on or, alternatively, keeping DRAM powered to avoid this
cost. Figure 10 summarizes how the average energy per inference
of the evaluated MLC eNVM solutions compares to the baseline
system either remaining fully powered to retain values (“DRAM
always on”) vs. a conservative estimate of waking up the system for
each inference (“DRAMwake up”). Each time the baseline system is
woken up, there is an energy overhead to load all DNNweights from
main memory into DRAM and increased execution time to load the
�rst DNN layer before the inference task can begin computation,
while these costs are not applicable to eNVMs that retain their
values when powered o� between inferences.

If the DRAM power stays constant while the frequency of in-
ferences increases (i.e., FPS), the average energy per inference de-
creases as the system spends less time idle. Conversely, if the system
is woken up for each inference, the average energy per inference is
constant so long as the frequency (FPS) can be met by the NVDLA-
1024 system, which Figure 9 (right) shows is clearly possible for
the range of FPS considered. For frame rates below 22 FPS, such
as would be relevant for object detection tasks for security cam-
era systems [29], it is more energy e�cient to wake up and the
baseline system per inference, but our proposed MLC eNVM solu-
tions maintain a relative 5.3⇥ (MLC-RRAM) to 7.5⇥ (MLC-CTT)
reduced energy per inference. Energy savings are similar for the
typical range of frame rates used for video conferencing and other
standard image processing tasks (e.g., 30 FPS [70]). Though the
average energy per inference of the always-on baseline system
approaches the performance of MLC eNVM alternatives at higher
frame rates, we note that even operating at the FPS mandated to

MICRO-52, October 12–16, 2019, Columbus, OH, USA Pentecost et al.

Figure 10: On-chip MLC eNVM in place of LPDDR4 DRAM
results in 5.3⇥-7.5⇥ lower average energy per ResNet50 In-
ference for varying frame rates.

support virtual reality headsets (at least 90 FPS [24]), MLC eNVM
proposals achieve 1.7⇥ (MLC-RRAM) to 2.5⇥ (MLC-CTT) lower
energy per inference. Thus, optimized MLC eNVM solutions are
particularly compelling for applications with lower frame-rate re-
quirements, and these bene�ts would be exaggerated for systems
with less frequent wake-ups.

6 HYBRID MEMORY SOLUTION
New DNNs tend to improve accuracy by increasing model size. For
the case when a DNN does not �t in on-chip eNVM, we consider
a hybrid solution (Figure 7c). A �xed on-chip memory budget is
split between SRAM and eNVM, and weights and activations that
do not �t on-chip are stored and fetched from DRAM.

We choose an on-chip memory area budget of 1mm2, enough to
accommodate about 1MB of SRAM under various NVSim optimiza-
tion targets. With eNVM, smaller DNNs �t within this area con-
straint. The results in Figure 11 are for the largest DNN, ImageNet-
VGG16, and highlight the performance impact of incorporating
varying amounts of on-chip space to eNVM. Note that the eNVM is
not used as cache for DRAM; on-chip MLC eNVM and DRAM store
mutually exclusive sets of model weights and both are fed directly
into the accelerator’s datapath. By partitioning �xed on-chip mem-
ory area between SRAM for intermediate storage and MLC eNVM

Table 4: Summary of optimal storage per eNVM proposal,
characterized per DNN. ‘BPC’ is the max number of bits per
cell used, ‘MB’ is the max capacity, ‘FPS’ is the max frames
per second for NVDLA-1024, and ‘Read’ is the Read Latency
of each eNVM array in ns.

Model Memory Tech Encoding BPC [MB] Area [mm2] Read [ns] FPS

CiFar10

Opt MLC-RRAM BitM+IdxSync 3 4 0.12 5.1 132
MLC-CTT BitMask 2 4 0.35 1.6 2286
MLC-RRAM BitM+IdxSync 3 4 1.3 4.9 633
SLC-RRAM BitMask 1 4 3.4 1.7 2967

VGG16

Opt MLC-RRAM CSR+ECC 3 32 1.3 4.2 102
MLC-CTT CSR+ECC 3 32 2.0 2.0 142
MLC-RRAM CSR+ECC 3 32 5.7 3.2 131
SLC-RRAM CSR 1 32 19.2 5.2 147

ResNet50

Opt MLC-RRAM BitM+IdxSync 2 12 0.6 2.1 147
MLC-CTT BitM+IdxSync 2 12 1.0 1.9 215
MLC-RRAM BitM+IdxSync 2 12 2.8 1.4 203
SLC-RRAM BitMask 1 12 9.6 2.5 219

Figure 11: Relative performance of VGG16 when on-chip
area is split between eNVM vs. SRAM (Fig. 7c).

for weight storage, we reduce costly DRAM accesses while drasti-
cally increasing total on-chip memory capacity. For each possible
area partition, we use NVSim to characterize the maximal capacity
and minimal read latency/energy within that area constraint and
select pareto-optimal points, as in Section 5.

Depending on how the on-chip memory area is partitioned, in-
ference execution could be bottlenecked by fetching weights from
DRAM that did not �t in eNVM, or by read/write tra�c of interme-
diates that do not �t in SRAM. We extend the NVDLA performance
model to selectively read certain weights from eNVM rather than
DRAM and maximize eNVM bene�ts by greedily selecting the
weights of otherwise DRAM-bottlenecked layers to store �rst.

There is some initial bene�t from alleviating the weight retrieval
DRAM bottleneck when some amount of eNVM is allotted because
the number of DRAM accesses reduces and the energy to access
either eNVM is orders of magnitude lower than accessing DRAM,
with lowest energy-per-inference occurring when about 45% of on-
chip area devoted to MLC eNVM for both technologies. However,
performance sharply degrades when on-chip SRAM storage can
no longer hold the working set of intermediate values to feed the
convolutional core and execution becomes bottlenecked on writing
to and fetching activations from DRAM. The write characteristics
of both MLC eNVMs are not su�cient to bu�er intermediate values
or to re-write weights during inference, as explored in Section 7.1.

7 DISCUSSION
Table 4 provides the energy, area, and performance per model from
Section 5. The results emphasize the need for a comprehensive co-
design methodology. Considering the storage density of MLC and
energy advantages due to non-volatility, even unoptimized DNNs
or other reasonably fault-tolerant applications may leverage these
memories. However, choosing the optimal encoding strategy, MLC
con�guration, and whether to include error mitigation techniques
varies between models and eNVM technologies. Thus, a rigorous
evaluation of the design space per DNN, as our methodology e�ec-
tively executes, maximizes e�ciency gains.

7.1 Write Latency
Table 5 gives an approximate total time to write to the characterized
memory array for each model’s entire set of weights and each
eNVM design point based on best-case-scenario write latency from
previous work [35, 42, 74]. Depending on a given application space

MaxNVM MICRO-52, October 12–16, 2019, Columbus, OH, USA

Table 5: Optimistic total time to write all DNN weights.

Model Memory Technology Approximate Total Write Time

CiFar10

Opt MLC-RRAM 13ms
MLC-CTT 2.6 minutes
MLC-RRAM 33ms
SLC-RRAM 3ms

ResNet50

Opt MLC-RRAM 117ms
MLC-CTT 15.7 minutes
MLC-RRAM 94ms
SLC-RRAM 4.7ms

VGG16

Opt MLC-RRAM 254ms
MLC-CTT 12.2 minutes
MLC-RRAM 636ms
SLC-RRAM 23ms

and resource constraints, waiting on the order of minutes may or
may not be reasonable when re-writing of DNN weights is required,
see Table 5. The desired frequency of rewriting weights may also
be constrained by the endurance of the memory cells. However, in
sensor nodes, mobile devices, and other constraint-driven devices
in which DNN inference is a key workload, periodic down-time for
synchronization and charging may be permissible [31, 50].

8 RELATEDWORK
Research concerning specialized on-chip accelerator systems for
DNN image classi�cation is prevalent [2, 6, 9, 10, 22, 30, 34, 66, 69].
Across proposed solutions, o�-chip DRAM access is a consistent
performance and e�ciency bottleneck that levies a high cost on
lower-energy systems, even when considering optimizations for
sparsity. The cost of external reads could be mitigated by pairing
on-chip SRAM with dense embedded DRAM, but this solution still
incurs the cost of frequent refresh cycles [3]. These limitations
motivate work targeting alternative storage solutions for DNNs
and related applications, including the use of eNVMs.

Abundant prior work exists related to the fault tolerance of
DNNs [23, 25, 44, 44, 54, 57, 58, 65], and our presented fault tolerance
studies (Section 4) con�rm and expound upon previous results by
additionally considering the resiliency of sparsely-encoded DNN
weights.We demonstrate how and to what extent the fault tolerance
of DNNweights changes when using di�erent sparse encodings and
the impact of a set of error correction and mitigation techniques.

8.1 eNVM technologies overview
The basic principle of many eNVMs consists of replacing charge-
based storage, which is inherently volatile, with the ability to en-
code information by altering the electrical properties of the device
material. Di�erent implementations exist and new proposals are
emerging, as discussed in Section 2. The MLC capability of CTT
and applicability to DNN storage was �rst explored in [18], which
is a preliminary proof-of-concept without system considerations or
evaluation of power, performance, and area advantages for DNN in-
ference. [18] compares storage of �xed-point and clustered weight
values in MLCs, though it does not consider sparse encodings or
error protection.

8.2 Analog eNVM Applications
A secondary e�ect of encoding information in the physical char-
acteristics of the devices is that the range of programmable values

does not have to be strictly binary. In this scenario, memristive
devices can be used as analog memories, or even leveraged for
recon�gurable interconnects [15]. An interesting consequence of
eNVMs as analog memories is that computations can be performed
directly in the analog domain. This is the basis for many proposed
neuromorphic engines, in which weights are mapped directly to
the resistive value of the devices connected in a crossbar array to
perform in-memory matrix-vector multiplications. While examples
of crossbar arrays implemented with RRAM and PCM have been
shown, they are limited to small arrays [27, 37, 53]. More recently,
larger neuromorphic arrays have been proposed, which promise
better scalability for these architectures [67]. However, application
to larger DNNs has yet to be demonstrated, though numerous neu-
romorphic proposals have leveraged eNVMs, particularly using
RRAMs for processing-in-memory architectures [5, 11, 61, 64].

9 CONCLUSION
Our comprehensive co-design methodology, MaxNVM, revealed a
collection of observations and trade-o�s that can continue to guide
the integration of eNVMs to enable e�cient DNN inference. We
are guided by published examples and direct measurements of com-
pelling MLC-programmed eNVM solutions in order to maximize
storage density, and MaxNVM o�ers a framework for evaluating co-
design choices from the circuit to the algorithm level. This includes
evaluation of di�erent proposed eNVM technologies, model proper-
ties, encoding strategies, and error mitigation to rigorously explore
the trade-o�s between storage density, memory reliability, system
performance, area, energy, and the resulting accuracy of DNN in-
ference under various constraints. We plan to make components of
MaxNVM publicly available to empower continued research into es-
sential trade-o�s when designing and evaluating proposed eNVMs
in an application-driven context.

In this work, we demonstrate that sparse weight encoding strate-
gies have implications for the fault tolerance of stored values for
DNNs. Thus, we propose and integrate lightweight protectionmech-
anisms in order to maximize the levels-per-cell of MLC eNVM stor-
age without accuracy loss. We demonstrate that co-designing MLC
encodings provides up to 29⇥ area savings relative to a SLC eNVM
solution, emphasizing the bene�ts of an exhaustive design space
exploration. Finally, we evaluate a state-of-the-art DNN inference
accelerator integrated with our proposed MLC eNVM solutions,
and observe up to 3.5⇥ and 3.2⇥ lower energy per inference and
power, respectively, at maximum frame rate for image classi�cation
tasks, or up to 7.5⇥ lower energy per inference at lower frame rates.

ACKNOWLEDGMENTS
This work was partially supported by the Applications Driving
Architectures (ADA) Research Center, a JUMP Center co-sponsored
by SRC and DARPA.

MICRO-52, October 12–16, 2019, Columbus, OH, USA Pentecost et al.

REFERENCES
[1] 2017. Solid State Drive (SSD) Requirements and Endurance Test Method. https:

//www.jedec.org/standards-documents/focus/�ash/solid-state-drives.
[2] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. 2016. Fused-

layer CNN Accelerators. In The 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO-49). IEEE Press, Piscataway, NJ, USA, Article 22,
12 pages. http://dl.acm.org/citation.cfm?id=3195638.3195664

[3] I. Bhati, M. Chang, Z. Chishti, S. Lu, and B. Jacob. 2016. DRAM Refresh Mecha-
nisms, Penalties, and Trade-O�s. IEEE Trans. Comput. 65, 1 (Jan 2016), 108–121.
https://doi.org/10.1109/TC.2015.2417540

[4] X. Bi, M. Mao, D. Wang, and H. H. Li. 2017. Cross-Layer Optimization for Multi-
level Cell STT-RAM Caches. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 25, 6 (June 2017), 1807–1820. https://doi.org/10.1109/TVLSI.2017.
2665543

[5] M. N. Bojnordi and E. Ipek. 2016. Memristive Boltzmann machine: A hardware
accelerator for combinatorial optimization and deep learning. In 2016 IEEE Inter-
national Symposium on High Performance Computer Architecture (HPCA). 1–13.
https://doi.org/10.1109/HPCA.2016.7446049

[6] Mark Buckler, Suren Jayasuriya, and Adrian Sampson. 2017. Recon�guring the
Imaging Pipeline for Computer Vision. In The IEEE International Conference on
Computer Vision (ICCV).

[7] Karthik Chandrasekar, Christian Weis, Yonghui Li, Sven Goossens, Matthias
Jung, Omar Naji, Benny Akesson, Norbert Wehn, , and Kees Goossens. [n.
d.]. DRAMPower: Open-source DRAM Power and Energy Estimation Tool.
http://www.drampower.info.

[8] M. Chang, J. Wu, T. Chien, Y. Liu, T. Yang, W. Shen, Y. King, C. Lin, K. Lin, Y. Chih,
S. Natarajan, and J. Chang. 2014. 19.4 embedded 1Mb ReRAM in 28nm CMOS
with 0.27-to-1V read using swing-sample-and-couple sense ampli�er and self-
boost-write-termination scheme. In 2014 IEEE International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC). 332–333. https://doi.org/10.1109/
ISSCC.2014.6757457

[9] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. 2014. DianNao: A Small-footprint High-throughput Acceler-
ator for Ubiquitous Machine-learning. In ASPLOS.

[10] Yu-Hsin Chen, Tushar Krishna, Joel Emer, and Vivienne Sze. 2016. Eyeriss:
An Energy-E�cient Recon�gurable Accelerator for Deep Convolutional Neural
Networks. In ISSCC.

[11] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie. 2016. PRIME:
A Novel Processing-in-Memory Architecture for Neural Network Computation
in ReRAM-Based Main Memory. In 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA). 27–39. https://doi.org/10.1109/
ISCA.2016.13

[12] Y. Choi, I. Song, M. Park, H. Chung, S. Chang, B. Cho, J. Kim, Y. Oh, D. Kwon,
J. Sunwoo, J. Shin, Y. Rho, C. Lee, M. G. Kang, J. Lee, Y. Kwon, S. Kim, J. Kim,
Y. Lee, Q. Wang, S. Cha, S. Ahn, H. Horii, J. Lee, K. Kim, H. Joo, K. Lee, Y.
Lee, J. Yoo, and G. Jeong. 2012. A 20nm 1.8V 8Gb PRAM with 40MB/s program
bandwidth. In 2012 IEEE International Solid-State Circuits Conference. 46–48. https:
//doi.org/10.1109/ISSCC.2012.6176872

[13] G. F. Close, U. Frey, J. Morrish, R. Jordan, S. C. Lewis, T. Ma�tt, M. J. BrightSky,
C. Hagleitner, C. H. Lam, and E. Eleftheriou. 2013. A 256-Mcell Phase-Change
Memory Chip Operating at2+Bit/Cell. IEEE Transactions on Circuits and Systems
I: Regular Papers 60, 6 (June 2013), 1521–1533. https://doi.org/10.1109/TCSI.2012.
2220459

[14] D. C. Daly, L. C. Fujino, and K. C. Smith. 2018. Through the Looking Glass - The
2018 Edition: Trends in Solid-State Circuits from the 65th ISSCC. IEEE Solid-State
Circuits Magazine 10, 1 (winter 2018), 30–46. https://doi.org/10.1109/MSSC.2017.
2771103

[15] John Demme, Bipin Rajendran, Steven Nowick, and Simha Sethumadhavan. 2015.
Increasing recon�gurability with memristive interconnects. 351–358. https:
//doi.org/10.1109/ICCD.2015.7357124

[16] G. Desoli, N. Chawla, T. Boesch, S. p. Singh, E. Guidetti, F. De Ambroggi, T. Majo, P.
Zambotti, M. Ayodhyawasi, H. Singh, and N. Aggarwal. 2017. 14.1 A 2.9TOPS/W
deep convolutional neural network SoC in FD-SOI 28nm for intelligent embedded
systems. In 2017 IEEE International Solid-State Circuits Conference (ISSCC). 238–
239. https://doi.org/10.1109/ISSCC.2017.7870349

[17] Caiwen Ding, Siyu Liao, Yanzhi Wang, Zhe Li, Ning Liu, Youwei Zhuo, Chao
Wang, Xuehai Qian, Yu Bai, Geng Yuan, Xiaolong Ma, Yipeng Zhang, Jian Tang,
Qinru Qiu, Xue Lin, and Bo Yuan. 2017. CirCNN: Accelerating and Compressing
Deep Neural Networks Using Block-CirculantWeight Matrices. (aug 2017). https:
//doi.org/10.1145/3123939.3124552 arXiv:1708.08917

[18] Marco Donato, Brandon Reagen, Lillian Pentecost, Udit Gupta, David Brooks,
and Gu-Yeon Wei. 2018. On-Chip Deep Neural Network Storage with Multi-
Level eNVM. In 2018 The 55th Annual Design Automation Conference (DAC).
https://doi.org/10.1145/3195970.3196083

[19] Q. Dong, Z. Wang, J. Lim, Y. Zhang, Y. Shih, Y. Chih, J. Chang, D. Blaauw, and
D. Sylvester. 2018. A 1Mb 28nm STT-MRAM with 2.8ns read access time at

1.2V VDD using single-cap o�set-cancelled sense ampli�er and in-situ self-write-
termination. In 2018 IEEE International Solid - State Circuits Conference - (ISSCC).
480–482. https://doi.org/10.1109/ISSCC.2018.8310393

[20] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi. 2012. NVSim: A Circuit-Level Per-
formance, Energy, and Area Model for Emerging Nonvolatile Memory. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 31, 7
(July 2012), 994–1007. https://doi.org/10.1109/TCAD.2012.2185930

[21] Yuan Du, Li Du, Xuefeng Gu, Xiao Wang, and Mau-Chung Frank Chang. 2017.
A Memristive Neural Network Computing Engine using CMOS-Compatible
Charge-Trap-Transistor (CTT). (2017).

[22] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and O.
Temam. 2015. ShiDianNao: Shifting vision processing closer to the sensor. In
2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture
(ISCA). 92–104. https://doi.org/10.1145/2749469.2750389

[23] Z. Du, K. Palem, A. Lingamneni, O. Temam, Y. Chen, and C. Wu. 2014. Leveraging
the error resilience of machine-learning applications for designing highly energy
e�cient accelerators. In 2014 19th Asia and South Paci�c Design Automation
Conference (ASP-DAC). 201–206. https://doi.org/10.1109/ASPDAC.2014.6742890

[24] Facebook Technologies. [n. d.]. Oculus guide-
lines for Virtual Reality Performance Optimization.
https://developer.oculus.com/documentation/pcsdk/latest/concepts/dg-
performance-guidelines/.

[25] B. Feinberg, S. Wang, and E. Ipek. 2018. Making Memristive Neural Network
Accelerators Reliable. In 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 52–65. https://doi.org/10.1109/HPCA.2018.00015

[26] Yunchao Gong et al. 2014. Compressing Deep Convolutional Networks using
Vector Quantization. CoRR (2014).

[27] X. Guo, F. M. Bayat, M. Bavandpour, M. Klachko, M. R. Mahmoodi, M. Prezioso,
K. K. Likharev, and D. B. Strukov. 2017. Fast, energy-e�cient, robust, and re-
producible mixed-signal neuromorphic classi�er based on embedded NOR �ash
memory technology. In 2017 IEEE International Electron Devices Meeting (IEDM).
6.5.1–6.5.4. https://doi.org/10.1109/IEDM.2017.8268341

[28] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
2015. Deep Learning with Limited Numerical Precision. In Proceedings of the
32Nd International Conference on International Conference on Machine Learning -
Volume 37 (ICML’15). JMLR.org, 1737–1746. http://dl.acm.org/citation.cfm?id=
3045118.3045303

[29] Mike Haldas. [n. d.]. CCTV Camera Recording Video Frame Rate Compari-
son. https://www.cctvcamerapros.com/CCTV-Video-Frame-Rate-Comparison-
s/739.htm.

[30] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,
and William J. Dally. 2016. EIE: E�cient Inference Engine on Compressed Deep
Neural Network. SIGARCH Comput. Archit. News 44, 3 (June 2016), 243–254.
https://doi.org/10.1145/3007787.3001163

[31] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov, M. Fawzy, B.
Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis,M. Smelyanskiy, L. Xiong, and
X. Wang. 2018. Applied Machine Learning at Facebook: A Datacenter Infrastruc-
ture Perspective. In 2018 IEEE International Symposium on High Performance Com-
puter Architecture (HPCA). 620–629. https://doi.org/10.1109/HPCA.2018.00059

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual
Learning for Image Recognition. CoRR abs/1512.03385 (2015). arXiv:1512.03385
http://arxiv.org/abs/1512.03385

[33] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Binarized Neural Networks. In Advances in Neural Information
Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett (Eds.). Curran Associates, Inc., 4107–4115. http://papers.nips.cc/
paper/6573-binarized-neural-networks.pdf

[34] Norman P. Jouppi, Cli� Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Cli�ord Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Je�rey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Ja�ey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis
of a Tensor Processing Unit. In Proceedings of the 44th Annual International
Symposium on Computer Architecture (ISCA ’17). ACM, New York, NY, USA, 1–12.
https://doi.org/10.1145/3079856.3080246

[35] Faraz Khan, Eduard Cartier, Chandrasekara Kothandaraman, J. Campbell Scott,
Jason C. S. Woo, and Subramanian S. Iyer. 2016. The Impact of Self-Heating on
Charge Trapping in High-k -Metal-Gate nFETs. IEEE Electron Device Lett. 37

https://www.jedec.org/standards-documents/focus/flash/solid-state-drives
https://www.jedec.org/standards-documents/focus/flash/solid-state-drives
http://dl.acm.org/citation.cfm?id=3195638.3195664
https://doi.org/10.1109/TC.2015.2417540
https://doi.org/10.1109/TVLSI.2017.2665543
https://doi.org/10.1109/TVLSI.2017.2665543
https://doi.org/10.1109/HPCA.2016.7446049
https://doi.org/10.1109/ISSCC.2014.6757457
https://doi.org/10.1109/ISSCC.2014.6757457
https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.1109/ISSCC.2012.6176872
https://doi.org/10.1109/ISSCC.2012.6176872
https://doi.org/10.1109/TCSI.2012.2220459
https://doi.org/10.1109/TCSI.2012.2220459
https://doi.org/10.1109/MSSC.2017.2771103
https://doi.org/10.1109/MSSC.2017.2771103
https://doi.org/10.1109/ICCD.2015.7357124
https://doi.org/10.1109/ICCD.2015.7357124
https://doi.org/10.1109/ISSCC.2017.7870349
https://doi.org/10.1145/3123939.3124552
https://doi.org/10.1145/3123939.3124552
http://arxiv.org/abs/1708.08917
https://doi.org/10.1145/3195970.3196083
https://doi.org/10.1109/ISSCC.2018.8310393
https://doi.org/10.1109/TCAD.2012.2185930
https://doi.org/10.1145/2749469.2750389
https://doi.org/10.1109/ASPDAC.2014.6742890
https://doi.org/10.1109/HPCA.2018.00015
https://doi.org/10.1109/IEDM.2017.8268341
http://dl.acm.org/citation.cfm?id=3045118.3045303
http://dl.acm.org/citation.cfm?id=3045118.3045303
https://doi.org/10.1145/3007787.3001163
https://doi.org/10.1109/HPCA.2018.00059
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://papers.nips.cc/paper/6573-binarized-neural-networks.pdf
http://papers.nips.cc/paper/6573-binarized-neural-networks.pdf
https://doi.org/10.1145/3079856.3080246

MaxNVM MICRO-52, October 12–16, 2019, Columbus, OH, USA

(2016), 88–91.
[36] Faraz Khan, Eduard Cartier, Jason C S Woo, and Subramanian Iyer. 2017. Charge

Trap Transistor (CTT): An Embedded Fully Logic-Compatible Multiple-Time
Programmable Non-Volatile Memory Element for high-k -metal-gate CMOS tech-
nologies. IEEE Electron Device Letters 38 (2017).

[37] S. Kim, M. Ishii, S. Lewis, T. Perri, M. BrightSky, W. Kim, R. Jordan, G. W. Burr,
N. Sosa, A. Ray, J. . Han, C. Miller, K. Hosokawa, and C. Lam. 2015. NVM
neuromorphic core with 64k-cell (256-by-256) phase change memory synaptic
array with on-chip neuron circuits for continuous in-situ learning. In 2015 IEEE
International Electron Devices Meeting (IEDM). 17.1.1–17.1.4. https://doi.org/10.
1109/IEDM.2015.7409716

[38] T. Kobayashi, K. Nogami, T. Shirotori, Y. Fujimoto, and O. Watanabe. 1992. A
current-mode latch sense ampli�er and a static power saving input bu�er for
low-power architecture. In 1992 Symposium on VLSI Circuits Digest of Technical
Papers. 28–29. https://doi.org/10.1109/VLSIC.1992.229252

[39] Alex Krizhevsky. [n. d.]. Learning Multiple Layers of Features from Tiny Images.
Technical Report https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.
pdf.

[40] Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, and
Fahim Kawsar. 2015. An Early Resource Characterization of Deep Learning on
Wearables, Smartphones and Internet-of-Things Devices. In Proceedings of the
2015 International Workshop on Internet of Things Towards Applications (IoT-App
’15). ACM, New York, NY, USA, 7–12. https://doi.org/10.1145/2820975.2820980

[41] Yann LeCun and Corinna Cortes. [n. d.]. The MNIST database of handwritten
digits. http://yann.lecun.com/exdb/mnist/.

[42] C. Lee, H. Lin, C. Lien, Y. Chih, and J. Chang. 2017. A 1.4Mb 40-nm embedded
ReRAM macro with 0.07um lt;sup gt;2 lt;/sup gt; bit cell, 2.7mA/100MHz low-
power read and hybrid write verify for high endurance application. In 2017 IEEE
Asian Solid-State Circuits Conference (A-SSCC). 9–12. https://doi.org/10.1109/
ASSCC.2017.8240203

[43] K. H. Lee, S. Y. Kung, and N. Verma. 2011. Improving kernel-energy trade-o�s for
machine learning in implantable and wearable biomedical applications. In 2011
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
1597–1600. https://doi.org/10.1109/ICASSP.2011.5946802

[44] Guanpeng Li, Siva Hari, Michael Sullivan, Timothy Tsai, Karthik Pattabiraman,
Joel Emer, and Stephen W. Keckler. 2017. Understanding Error Propagation in
Deep Learning Neural Network (DNN) Accelerators and Applications. In SC.

[45] T. Liu, T. H. Yan, R. Scheuerlein, Y. Chen, J. K. Lee, G. Balakrishnan, G. Yee,
H. Zhang, A. Yap, J. Ouyang, T. Sasaki, S. Addepalli, A. Al-Shamma, C. Chen,
M. Gupta, G. Hilton, S. Joshi, A. Kathuria, V. Lai, D. Masiwal, M. Matsumoto,
A. Nigam, A. Pai, J. Pakhale, C. H. Siau, X. Wu, R. Yin, L. Peng, J. Y. Kang, S.
Huynh, H. Wang, N. Nagel, Y. Tanaka, M. Higashitani, T. Minvielle, C. Gorla, T.
Tsukamoto, T. Yamaguchi, M. Okajima, T. Okamura, S. Takase, T. Hara, H. Inoue,
L. Fasoli, M. Mo�di, R. Shrivastava, and K. Quader. 2013. A 130.7mm lt;sup gt;2
lt;/sup gt; 2-layer 32Gb ReRAM memory device in 24nm technology. In 2013 IEEE
International Solid-State Circuits Conference Digest of Technical Papers. 210–211.
https://doi.org/10.1109/ISSCC.2013.6487703

[46] S. Ma, M. Donato, S. K. Lee, D. Brooks, and G. Wei. 2019. Fully-CMOS Multi-Level
Embedded Non-Volatile Memory Devices With Reliable Long-Term Retention
for E�cient Storage of Neural Network Weights. IEEE Electron Device Letters 40,
9 (Sep. 2019), 1403–1406. https://doi.org/10.1109/LED.2019.2930212

[47] Wenjia Meng, Zonghua Gu, Ming Zhang, and Zhaohui Wu. 2017. Two-Bit
Networks for Deep Learning on Resource-Constrained Embedded Devices. CoRR
abs/1701.00485 (2017). arXiv:1701.00485 http://arxiv.org/abs/1701.00485

[48] Microsoft. [n. d.]. Understanding Frames per Second. ([n. d.]). https://support.
microsoft.com/en-us/help/269068/understanding-frames-per-second-fps

[49] Kousuke Miyaji, Yasuhiro Shinozuka, and Ken Takeuchi. 2012. Zero Additional
Process, Local Charge Trap, Embedded Flash Memory with Drain-Side Assisted
Erase Scheme Using Minimum Channel LengthWidth Standard Complemental
Metal-Oxide-Semiconductor Single Transistor Cell. Jpn. J. Appl. Phys. 51 (2012).

[50] NASA. 2016. Autonomous car facts 2016. Keynote: Autonomous
Car A New Driver for Resilient Computing and Design-for-Test.
https://nepp.nasa.gov/workshops/etw2016/talks/15WED/20160615-0930-
Autonomous_Saxena-Nirmal-Saxena-Rec2016Jun16-nasaNEPP.pdf

[51] NVIDIA. 2017. NVIDIA Deep Learning Accelerator (NVDLA): a free and open
architecture that promotes a standard way to design deep learning inference
accelerators. nvdla.org

[52] S. Park, S. Choi, J. Lee, M. Kim, J. Park, and H. J. Yoo. 2016. 14.1 A 126.1mW real-
time natural UI/UX processor with embedded deep-learning core for low-power
smart glasses. In 2016 IEEE International Solid-State Circuits Conference (ISSCC).
254–255. https://doi.org/10.1109/ISSCC.2016.7418003

[53] S. Park, H. Kim, M. Choo, J. Noh, A. Sheri, S. Jung, K. Seo, J. Park, S. Kim, W.
Lee, J. Shin, D. Lee, G. Choi, J. Woo, E. Cha, J. Jang, C. Park, M. Jeon, B. Lee,
B. H. Lee, and H. Hwang. 2012. RRAM-based synapse for neuromorphic system
with pattern recognition function. In 2012 International Electron Devices Meeting.
10.2.1–10.2.4. https://doi.org/10.1109/IEDM.2012.6479016

[54] Vincenzo Piuri. 2001. Analysis of Fault Tolerance in Arti�cial Neural Networks.
J. Parallel and Distrib. Comput. (2001). http://www.sciencedirect.com/science/

article/pii/S0743731500916630
[55] M. Poggi and S. Mattoccia. 2016. A wearable mobility aid for the visually impaired

based on embedded 3D vision and deep learning. In 2016 IEEE Symposium on
Computers and Communication (ISCC). 208–213. https://doi.org/10.1109/ISCC.
2016.7543741

[56] Brandon Reagen, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, and David
Brooks. 2017. Deep Learning for Computer Architects. In Synthesis Lectures on
Computer Architecture.

[57] Brandon Reagen, Lillian Pentecost, Udit Gupta, Paul Whatmough, Sae Kyu Lee,
Niamh Mulholland, David Brooks, and Gu-Yeon Wei. 2018. Ares: A framework
for quantifying the resilience of deep neural networks.. In 2018 The 55th Annual
Design Automation Conference (DAC). https://doi.org/10.1145/3195970.3196083

[58] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee,
Sae Kyu Lee, Jose Miguel Hernandez-Lobato, Gu-Yeon Wei, and David Brooks.
2016. Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network
Accelerators. In ISCA. http://vlsiarch.eecs.harvard.edu/wp-content/uploads/
2016/05/reagen_isca16.pdf

[59] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV) 115, 3 (2015), 211–252. https:
//doi.org/10.1007/s11263-015-0816-y

[60] Cypress Semiconductor. 2017. What Types of ECC Should Be Used on Flash
Memory? http://www.cypress.com/�le/203021/download

[61] A. Sha�ee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu,
R. S. Williams, and V. Srikumar. 2016. ISAAC: A Convolutional Neural Network
Accelerator with In-Situ Analog Arithmetic in Crossbars. In 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA). 14–26.
https://doi.org/10.1109/ISCA.2016.12

[62] F Sijstermans. 2018. The NVIDIA deep learning accelerator. In Hot Chips.
[63] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-

works for Large-Scale Image Recognition. (2014).
[64] L. Song, X. Qian, H. Li, and Y. Chen. 2017. PipeLayer: A Pipelined ReRAM-Based

Accelerator for Deep Learning. In 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 541–552. https://doi.org/10.1109/
HPCA.2017.55

[65] Olivier Temam. 2012. A Defect-tolerant Accelerator for Emerging High-
performance Applications. In Proceedings of the 39th Annual International Sympo-
sium on Computer Architecture (ISCA ’12). IEEE Computer Society, Washington,
DC, USA, 356–367. http://dl.acm.org/citation.cfm?id=2337159.2337200

[66] P. N. Whatmough, S. K. Lee, D. Brooks, and G. Wei. 2018. DNN Engine: A
28-nm Timing-Error Tolerant Sparse Deep Neural Network Processor for IoT
Applications. IEEE Journal of Solid-State Circuits (2018), 1–10. https://doi.org/10.
1109/JSSC.2018.2841824

[67] J.Y. Wu, Y.S. Chen, W.S. Khwa, S.M. Yu, T.Y. Wang, J.C. Tseng, Y.D. Chih, and
Carlos H. Diaz. 2018. In 2018 International Electron Devices Meeting.

[68] Cong Xu, Dimin Niu, N. Muralimanohar, N. P. Jouppi, and Yuan Xie. 2013. Under-
standing the trade-o�s in multi-level cell ReRAM memory design. In 2013 50th
ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6.

[69] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen.
2016. Cambricon-X: An accelerator for sparse neural networks. In 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 1–12.
https://doi.org/10.1109/MICRO.2016.7783723

[70] X. Zhang, Y. Xu, H. Hu, Y. Liu, Z. Guo, and Y. Wang. 2013. Modeling and Analysis
of Skype Video Calls: Rate Control and Video Quality. IEEE Transactions on
Multimedia 15, 6 (Oct 2013), 1446–1457. https://doi.org/10.1109/TMM.2013.
2247988

[71] Y. Zhang, L. Zhang, W. Wen, G. Sun, and Y. Chen. 2012. Multi-level cell STT-
RAM: Is it realistic or just a dream?. In 2012 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). 526–532.

[72] H. Zhao, L. Xue, P. Chi, and J. Zhao. 2017. Approximate image storage with multi-
level cell STT-MRAM main memory. In 2017 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). 268–275. https://doi.org/10.1109/ICCAD.
2017.8203788

[73] Liang Zhao, Hong-Yu Chen, Shih-Chieh Wu, Zizhen Jiang, Shimeng Yu, Tuo-
Hung Hou, H. . P. Wong, and Y. Nishi. 2014. Improved multi-level control of
RRAM using pulse-train programming. In Proceedings of Technical Program - 2014
International Symposium on VLSI Technology, Systems and Application (VLSI-TSA).
1–2. https://doi.org/10.1109/VLSI-TSA.2014.6839673

[74] L. Zhao, H.-Y. Chen, S.-C. Wu, Z. Jiang, S. Yu, T.-H. Hou, H.-S. Philip Wong,
and Y. Nishi. 2014. Multi-level control of conductive nano-�lament evolution in
HfO2 ReRAM by pulse-train operations. Nanoscale 6 (2014), 5698–5702. Issue 11.
https://doi.org/10.1039/C4NR00500G

https://doi.org/10.1109/IEDM.2015.7409716
https://doi.org/10.1109/IEDM.2015.7409716
https://doi.org/10.1109/VLSIC.1992.229252
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1145/2820975.2820980
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1109/ASSCC.2017.8240203
https://doi.org/10.1109/ASSCC.2017.8240203
https://doi.org/10.1109/ICASSP.2011.5946802
https://doi.org/10.1109/ISSCC.2013.6487703
https://doi.org/10.1109/LED.2019.2930212
http://arxiv.org/abs/1701.00485
http://arxiv.org/abs/1701.00485
https://support.microsoft.com/en-us/help/269068/understanding-frames-per-second-fps
https://support.microsoft.com/en-us/help/269068/understanding-frames-per-second-fps
https://nepp.nasa.gov/workshops/etw2016/talks/15WED/20160615-0930-Autonomous_Saxena-Nirmal-Saxena-Rec2016Jun16-nasaNEPP.pdf
https://nepp.nasa.gov/workshops/etw2016/talks/15WED/20160615-0930-Autonomous_Saxena-Nirmal-Saxena-Rec2016Jun16-nasaNEPP.pdf
nvdla.org
https://doi.org/10.1109/ISSCC.2016.7418003
https://doi.org/10.1109/IEDM.2012.6479016
http://www.sciencedirect.com/science/article/pii/S0743731500916630
http://www.sciencedirect.com/science/article/pii/S0743731500916630
https://doi.org/10.1109/ISCC.2016.7543741
https://doi.org/10.1109/ISCC.2016.7543741
https://doi.org/10.1145/3195970.3196083
http://vlsiarch.eecs.harvard.edu/wp-content/uploads/2016/05/reagen_isca16.pdf
http://vlsiarch.eecs.harvard.edu/wp-content/uploads/2016/05/reagen_isca16.pdf
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
http://www.cypress.com/file/203021/download
https://doi.org/10.1109/ISCA.2016.12
https://doi.org/10.1109/HPCA.2017.55
https://doi.org/10.1109/HPCA.2017.55
http://dl.acm.org/citation.cfm?id=2337159.2337200
https://doi.org/10.1109/JSSC.2018.2841824
https://doi.org/10.1109/JSSC.2018.2841824
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/TMM.2013.2247988
https://doi.org/10.1109/TMM.2013.2247988
https://doi.org/10.1109/ICCAD.2017.8203788
https://doi.org/10.1109/ICCAD.2017.8203788
https://doi.org/10.1109/VLSI-TSA.2014.6839673
https://doi.org/10.1039/C4NR00500G

	Abstract
	1 Introduction
	2 Characterizing and Modeling eNVMs from Fabricated Examples
	2.1 Comparison and Modeling of eNVMs
	2.2 Multi-Level CTT Characterization
	2.3 Fault Model

	3 Evaluation Methodology
	3.1 Model Optimizations
	3.2 Sparse Encodings
	3.3 Error Correction and Mitigation
	3.4 Memory Modeling
	3.5 Architecture Performance Model

	4 Fault Tolerance of Sparse Encodings for DNN Inference
	4.1 Fault Injection Framework
	4.2 Vulnerability of Encoding Strategies
	4.3 Impact of Error Correction and Mitigation Techniques
	4.4 Optimal Storage Configurations

	5 Single Chip DNN Inference
	5.1 Area and Dynamic Read Energy
	5.2 System Performance
	5.3 Benefits of Non-Volatility

	6 Hybrid Memory Solution
	7 Discussion
	7.1 Write Latency

	8 Related Work
	8.1 eNVM technologies overview
	8.2 Analog eNVM Applications

	9 Conclusion
	Acknowledgments
	References

