Tutorial on Agile Research Test Chips
Introduction

Paul Whatmough Marco Donato Glenn G. Ko
Sae-Kyu Lee David Brooks Gu-Yeon Wei

School of Engineering and Applied Sciences

Harvard University

CHIPKIT Materials

IEEE Micro paper Open source Github project

 https://ieeexplore.ieee.org/document/9096507 e https://github.com/whatmough/CHIPKIT
* https://arxiv.org/abs/2001.04504

‘This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DO 10.1109/MM.2020.2995809, IEEE Micro —_—
<> Code Issues 0 Pull requests 0 Actions Projects 0 Wiki Security 0 Insights Settings
1
CHIPKIT: An agile, reusable open-source framework for rapid test chip development Edit

CHIPKIT: An agile, reusable open-source

framework for rapid test chip development e —
Branch: master v New pull request Create new file Upload files Find file
Paul N. Whatmough'2, Marco Donato!, Glenn G. Ko!, Sae Kyu Lee?, David Brooks!, and Gu-Yeon Wei' .
k whatmough Update README.md Latest commit c26e719 3 days ago
1 . .
Harvard Umverslty W ip Update README.md 4 months ago
2Arm Research
3IBM Research i tools Update README.md 2 months ago
[E) README.md Update README.md 3 days ago
Abstract—The current trend for domain-specific architectures (DSAs) has led to renewed interest in research test chips to Bl chipkitlogo.pn init o
new specialized Tape-outs also offer huge pedagogical value garnered from real hands-on exposure to the B SR g
whole system stack. However, success with tape-outs requires hard-earned experience, and the design process is time consuming and
fraught with challenges. Therefore, custom chips have remained the preserve of a small number of research groups, typically focused README.md V
on circuit design research. This paper describes the CHIPKIT a SoC subsy which provides basic 10, an

on-chip programmable host, off-chip hosting, memory and peripherals. This subsystem can be readily extended with new IP blocks to
generate custom test chips. Central to CHIPKIT, is an agile RTL development flow, including a code generation tool called VGEN.
Finally, we discuss best practices for full-chip validation across the entire design cycle.

Index Terms—Agile design, design reuse, testing, open-source

’

1 INTRODUCTION

RESEARCH test chips are the ultimate demonstration
of the true value of novel computer architecture and
circuits innovation. In addition, taping out test chips in
a research or academic setting provides huge pedagogical
value, offering real insight across the whole stack. Nonethe-
less, taping-out test chips remains very challenging, espe-
cially for the uninitiated. Custom chips are time consuming

285mm

Dual-AS3

L CHIPKIT: An agile, reusable open-source framework for rapid test

to design, fabricate and test, and are error prone - often re- TSMC 28HPC T oM 161 TC Chlp deve|opment
quiring expensive re-spins to fix problems. In this paper, we

https://ieeexplore.ieee.org/document/9096507
https://arxiv.org/abs/2001.04504
https://github.com/whatmough/CHIPKIT

Who are we?

Paul Whatmough Marco Donato Glenn G. Ko Sae-Kyu Lee David Brooks Gu-Yeon Wei
Arm Research Harvard University Harvard University IBM Research Harvard University Harvard University
Harvard University

20f11

Why build test chips in research?

Circuits research

* Measured test chip required for
tier-1 publication

Architecture research

* Understand the whole stack, soup
to nuts

 Know you are solving a real
problem

* Add real impact to your work; not
just another academic paper

All models are wrong, some are useful
* Many things are hard to simulate
convincingly
e Data to build models to design better
circuits

Training for industry

e Build a deep understanding of real
computers

* Problem solving, teamwork, time
management

* Extremely valuable depth of
experience

CHIPKIT tutorial

* Many groups routinely tape out test chips in research environments

* The first few are typically very challenging, climbing a steep learning curve by
trial and error

* Once you know how to do it, it’s easy — heavily reuse the last chip!

e Currently a huge amount of activity around open hardware
* Open source IP from universities
 Commercial IP available to academia

* Never been a better time to get into research test chips!
* But there is still a knowledge gap in terms of turn this into working test chips

4 of 11

Who is this tutorial for?

* Those looking to:
* Do their first tape outs
» Start develop more sophisticated test chips
* Reduce the time to develop and maintain their SoCs and custom IPs

50f11

Goals of the tutorial

* Provide a source of more fundamental material on research tape outs

* Provide high-level overview of the front-end design and validation of
* Asimple M-Class (Microcontroller) SoC
* Asimple A-Class (Apps Processor) SoC
* Asimple custom IP block

* An overview of the physical design flow
* An overview of bring up and testing

* Bring together researchers with a shared interest in research test chips
* Andrew Kahng (UCSD) — Open source implementation tools
e Christopher Batten (Cornell) — PyMTL3
* Adrian Sampson (Cornell) — Predictable accelerator design
e Thierry Tambe (Harvard) — High-level synthesis
* Shuojin Hang (Arm) — Arm academic enablement

6 of 11

R

Tutorial on Agile Research Test Chips
M-Class SoC Development

Paul Whatmough Marco Donato Glenn G. Ko
Sae-Kyu Lee David Brooks Gu-Yeon Wei

School of Engineering and Applied Sciences

Harvard University

CHIPKIT Materials

IEEE Micro paper

* https://ieeexplore.ieee.org/document/9096507
* https://arxiv.org/abs/2001.04504

Open source Github project
* https://github.com/whatmough/CHIPKIT

<> Code Issues 0 Pull requests 0 Actions Projects 0 Wiki Security 0 Insights Settings

CHIPKIT: An agile, reusable open-source framework for rapid test chip development Edit

CHIPKIT: An agile, reusable open-source
framework for rapid test Chip development - 44 commits ¥ 1 branch (1 0 packages © Oreleases 42 1 contributor

Paul N. Whatmough'?, Marco Donato’, Glenn G. Ko, David Brooks', and Gu-Yeon Wei' Branch: master v New pull request Createnewfile Upload files Find file
IHarvard University 4 whatmough Update README.md Latest commit c26e719 3 days ago
2Arm Research

o ip Update README.md 4 months ago
Abstract—The current trend for domain-specific architectures (DSAs) has led to renewed interest in research test chips to
demonstrate new specialized hardware. Tape-outs also offer huge pedagogical value garnered from real hands-on exposure to the B tools Update README.md 2months ago
whole system stack. However, successful tape-outs demand hard-earned experience, and the design process is time consuming and §
fraught with challenges. Therefore, custom chips have remained the preserve of a small number of research groups, typically focused [E) README.md Update README.md 3 days ago
on circuit design research. This paper describes the CHIPKIT framework. We describe a reusable SoC subsystem which provides
basic 10, an on-chip programmable host, memory and peripherals. This subsystem can be readily extended with new IP blocks to [E) chipkit_logo.png init 4 months ago
generate custom test chips. We also present an agile RTL development flow, including a code generation tool called VGEN. Finally, we
outline best practices for full-chip validation across the entire design cycle.

README.md y

Index Terms—Agile design, design reuse, testing, open-source

1 INTRODUCTION

ESEARCH test chips are the ultimate demonstration of

the true value of novel computer architecture innova-
tions. In addition, taping out test chips in a research or
academic setting provides huge pedagogical value, offering
real insight across the whole stack. Nonetheless, despite all il
the upsides, taping-out test chips remains very challenging, 4 z;‘:& Cz’s §
especially for the uninitiated. Custom chips are time con- :
suming to design, fabricate and test, and often error prone -
potentially requiring expensive re-spins to fix problems. In
this paper, we explore two key themes of agile and reusable ~ Fig. 1. Three recent chips [1], [2], [3] built using the CHPIKIT framework.
design, to help reduce the barrier to entry for chip tape-outs.
Emphasizing reuse greatly reduces development cost and at
the same time minimizes the opportunity for silicon bugs

aFPGA
252 Arry

TSMC 2BHPC TSMC 167+ TSMC 16FFC

[2], through to large multi-accelerator SoCs with Arm
Cortex-A multi-core CPU clusters [3]. However, they all

2001.04504v1 [cs.AR] 13 Jan 2020

Xiv

and allows the designer to focus on ing features.
While agile design seeks to follow a methodology where
changes can be readily implemented late into the design
cycle, without significant disruption or risk.

™

share the same basic framework, with the same SoC sub-
system for system bring up, communication and control.
Following this framework has allowed new tape-outs to be
developed with verv low-risk and high success rate. To help

CHIPKIT: An agile, reusable open-source framework for rapid test
chip development

https://ieeexplore.ieee.org/document/9096507
https://arxiv.org/abs/2001.04504
https://github.com/whatmough/CHIPKIT

Q&A session

CHIPKIT Tutorial
Sun. May 31, 2020

Different complexities of test chips

~
)
) S 5 28nm SoC Test Chip Cortex-MO Subsystem Accelerator Subsystem "7 Am Cortex-AB3 64-bit CPU Cluster ™\, Gache-Coherent Datapath Accelerators
> s s g ; ‘ ,
© ; : : s
™ | § NIC-400 64-bit Interconnect
o § ARM Voco i rocaertor bit Interconnec
0sc HCLK Cortex-MO DCO FCLK } Conerency|
usB UART ™ | i |
I 5], M - | | Il Acco
Scan SCAN _[™ 2| DNN % i |
2| Engine < P
GPIO GPIO - 3 RV S - .
] S
Low-BW Peripherals SYSCTL < s
2 W-MEM
H S
RiC e | ? e -
ThinLink '
S § D-MEM s 10 eFPGA i
2 Bridge 4 Banks H
uss UARTs o 64K8B Vce — Accelerator Logic 2x2 x1MB SRAM
BIST le——{ ™[Bridge [s] Viewe — SRAM Periphery EFLX4K | ENGINE Periph
Vsoc Vsoc Viiemc — SRAM Core i +SRAM

.. Always-On (AON) 32-bit Cortex-MO Cluster 4

2.4mm
A |
1
]
1
I
i
1
-
1
e ===
E o p———————— -
5 £ r ,
N n
-
LB ible B & B
FRE R TN NN
tttnabinieattssnalicsiedl P, AN
\/

Analog and Test Structures M-Class SoCs A-Class SoCs

Outline

* Opportunities for agile and reusable design

* SoC Bus Fabrics

e M-Class Off-Chip Interfaces

* On-Chip Memories: SRAMs and Control and Status Regs (CSRs)
* Clocks, Resets and Power Domains

* Summary

e Recommended Reading

4 of 11

Opportunities for agile and
reusable design

SM?2 —28nm DNN ENGINE Accelerator

* Programmable DNN Classifier for loT
* Parallelism/reuse 8-way SIMD, 10X data reuse @ 128b/cycle BW
* Small data-types 8-bit weights, —30% energy
e Sparse activation data +4X throughput and -4X energy

2.4mm

W-MEM
256KB
BANK3

2.4mm

DCO|
NGINE

Ny
s
N _lc
I
. |
. |
g
. |

»
<
3

b |
.

W-MEM
256KB
BANK1

. . - 100 1
* Algorithmic resilience +50% throughput or -30% energy ow o X A OW
28nm * * ‘
16 ; ;
: SNN
' . Sta” r\ . P :28nm
Sparse FC-DNN Pipeline M v : S s
1 At L I U m Bias N ; ;
SRAM ~ Q RelU B QO o @ ASRAML
Stall e § Bway 3 : 1§Onm
4 A E FXP <L() GSSI\:Nm) ¢ DNN‘ ENGINE (ISSCC'17)
Node Weight ol | £ MAC : @ TrueNorth (Science'l4)
SRAM AGU SRAM _'J) 1 T 85 4 Moons et al. (VLSI'16)
ol L u B Kim etal. (VLSI'15)
T Buhler et al. (VLSI'17)
Node List Sparse Index : Operand Load SIMD Unit Activation | ® Zhang et al. (VLSI'16)
80 L]
10 10 10° 10

[Whatmough et al., ISSCC’17, JSSC ’18, Hot Chips’17]

Energy/Inference (uj)

V-Class Test Chip Architecture

Everything else

you need...

0SC >I[
USB >I|
Scan >I|

GPIO <X

RTC —X

USB <X

VI-Class Test Chip Architecture P—

Everything else
you need...

CHIPKIT

32b AHB

-~

Your genius

CHIPKIT CHIPKIT

SoC Bus Fabrics

On-Chip Bus Protocols

* Stick to industry standard bus protocols
* Exploit well documented public standards
* Reuse protocol checkers and other verification IP
* Compatible with a broad IP ecosystem
* Avoid temptation to “modify”

 AMBA open standards
* APB —low-performance, low area
 AHB —general purpose
* AXI - high-performance

* Many others...
 WISHBONE (OpenCores)
e Open Core Protocol (OCP)
* CoreConnect (IBM)
« TileLink (RISC-V)

10 of 11

Advanced Peripheral Bus (APB)

e Simple bus for connecting master to multiple slaves

* Low hardware cost due to simple control and small number of signals
* |deal for low-bandwidth peripherals and control signaling

e Data width up to 32 bits

* Non-pipelined, slave can insert wait cycles
* Every transfer takes a minimum of two cycles

e Synthesis friendly
* Simple single-edge clocked timing, no tri-state buses
* One data bus for read and another for write

* APB is a reasonable option for very low-bandwidth peripherals and 10

11 of 11

APB — Basic Transactions

TO T T2 T3 T4
* Setup phase (T1) PeLK | I
* Transfer starts with address PADDR, write data PWDATA, PADDR XX Addr ¢
write signal PWRITE, and select signal PSEL, being PWRITE [
registered at the rising edge of PCLK PSEL 7)
* Access phase (T2), PENABLE T —
* Enable signal PENABLE, and ready signal PREADY, are PYDATA O Daat X
registered at the rising edge of PCLK PREADY i N

* When asserted, PENABLE indicates the start of the Access
phase of the transfer.

Figure 3-1 Write transfer with no wait states

* When asserted, PREADY indicates that the slave can 70 bt T2 T3 T4
complete the transfer at the next rising edge of PCLK. pakl [[L] L[L1,
 The address PADDR, write data PWDATA, and control PADDR XX Addr 1
signals all remain valid until the transfer completes at the = PwriTe !
end of the Access phase (T3). PSEL T T
PENABLE g
PRDATA X) Datat)
PREADY [/ \\

Figure 3-4 Read transfer with no wait states

1o VI AL

Advanced High-performance Bus (AHB)

 Similar to APB, this is a shared bus protocol for multiple masters and
slaves, but higher bandwidth is possible through burst data transfers.

* AHB-lite protocol is a simplified version of AHB, designed for a single-
master system

* Large bus-widths up to 1024 bits

* We recommend to use AHB-lite widely where performance is not critical
* Simple to implement and debug
* Good eco-system support
* Very low hardware cost

13 of 11

AHB

A typical AHB transaction consists of an address phase and a

subsequent data phase, which are pipelined

* A simple address decoder generates slave select signals and controls
the muxing of read data back to the master in the data phase

Master

Slave 1

—HWDATA[31:0]
——HADDR[31:0] ; I
~-HSEL_1 ;
Decoder HSEL_2
~HSEL_ §| .-t
Multiplexor >
select >
>
—
HRDATA_3
<4-HRDATA[31:0] HRDATA_2
HRDATA_1

Slave 2

Slave 3

Figure 1-1 AHB-Lite block diagram

14 of 11

AHB

e Every transfer consists of: < Address phase—»<—Data phase——»
e Address phase one address and control cycle HeLK %)O(I)O([&
. HADDR([31:0] A B
Data phase one or more cycles for the data N T -
* The address phase of any transfer occurs HRDATA31:0] Y Y \ Bata &) [
during the data phase of the previous transfer Hresoy Y V T
(I'e' they are plpellned) Figure 3-1 Read transfer
* A slave cannot request that the address phase
. <+——Address phase—»4———Data phase—»
is extended and therefore all slaves must be HOLK | | | —
capable of sampling the address in one cycle Haoorsto T) A X 5 0
. HWRITE] |\ 00
However, a slave can request that the master | . =, T R
extends the data phase using HREADY HREADY] v T

* This signal, when LOW, extends the transfer to
give the slave extra time

Figure 3-2 Write transfer

15 of 11

Advanced eXtensible Interface (AXI)

* The Advanced Extensible interface (AXI) is very common for higher performance
interconnects

More flexible
* Scalable point to point interconnect, easy to pipeline and close timing on big complex SoCs

* More features
» Supports multiple outstanding data transfers, burst data transfers, coherency (with extensions) etc

e Also... more variants

* AXI-stream protocol is effectively the basis of the AXI protocol, for streaming data from a master
to a slave using a simple valid/ready handshake

* AXI-lite protocol is a simplified version of AXI, removing burst data transfers

* AXI Coherency Extensions (ACE and ACE-Lite), extend AXI with additional signaling that enables
system wide coherency or |O coherency

* We’ll come back to AXI in the A-class SoC section
* AXI-lite can be useful for simpler test-chips, but AHB is even simpler

16 of 11

On-Chip Interconnect IP

* Choose bus interfaces based on required features and performance
» Strong eco-system around AMBA open standards, but there are other credible choices too ©

* RTL interconnect implementations need to be robust
 Critical to operation of SoC, must work 100% - verification is essential
» Should be flexible and easy/robust to make changes as the tape out project evolves

* Typically need multiple busses

» Often partition buses (even on simple chips) based on usage and traffic types and volumes
* Helps with throughput, as well as design and verification

* Use bridges to inter-connect buses of the same or different or protocols

» Use standard / verified bus interfaces and RTL implementations where possible
* Time to quality greatly reduced

* Minimize the chance of critical bugs that could lead to a dead block or even a broken SoC
* Spend time on the differentiating part

* Reuse protocol checkers and compatibility with the whole SoC eco-system

17 of 11

CHIPKIT AHB Interconnect IP

e Simple single-layer AHB-lite Interconnect IP
* Uses bundled SystemVerilog Interfaces to vastly reduce typing
* Configures address decoder based on a single memory map header file
* Easy to update as the tape out project evolves, by editing only a single file
e Automatic default slave in the decoder to catch accesses to unused regions

18 of 11

CHIPKIT AHB Interconnect IP

» ahb_master_intf

sm2_defs_pkg: :*;

input g /
input logic input logic HCL for assertions in interface
input logic HRESETn

logic
logic

ce 1s slave side Source is slave side
¢ source (input {SEL {ADDR {TRANS WRITE S WDATA {READY, output HREADYOU {RDATA RESP noc t source (input READ R ! DATA, output HTRAN
is bus matrix side k 1s bus

modpc sink output HSE ADDR {TRANS WRITE S WDATA {READY, 1input {READYOU {RDATA RESP ¢ sink output AD ' ! DATA, 1nput HTRAN
// Assertions on o oing slave signals SSer ons on outgoing Master signals
ERROR_slave_emitted_undefined_HREADY ERROR_master_emitted_undefined_signals
“ASSERT K(HCLK,HRESETn {RE Y "ASSERT_CL {CLK,HRESETn
ERROR_slave_emitted_undefined_HRESP TRAN 1:¢ WRITE,HSIZE,HADDR[31:0
*ASSERT K(HCLK,HRESETn {RESP

endinterface endinterface

CHIPKIT AHB Interconnect IP

* Wrap legacy IP to bundle bus interface
* This example shows an Arm Cortex-MO

ing gic HCL HRESETn
ahb_master_intf.source M

HPROT and HBURST.

logic txev_pulse, rxev_pulse

HRESETn
3-LITE

txev_pulse
rxev_pulse

CHIPKIT AHB Interconnect IP

valid »ss (1nclusive
inclu

localpa 1 logic
localparam logic
loca 1 logic
localparam logic
localpa 1 logic
localpa n logic
localp 1 logic
localpa 1 logic
loca 1 logic
localpa 1 logic
loca n logic
1 logic
logic
logic
logic
logic
logic
logic
logic [31:0] S9_ADDR_STAR 32'h2000 0000, // Lpper
logic ENI

loca

endpacka ge

M-Class Off-Chip Interfaces

Basic |O

e System clock
* From PCB crystal

* Power-on Reset (PoR)
* On a test chip, typically driven from a PoR circuit on the PCB

 Test pins, such as scan test IO
* Real-time clock
* CPU debug interfaces

* General-purpose |0

e Software programmable, very useful, e.g. for working around problems or
testing purposes

23 of 11

UART Slave Peripherals

* Important for software, typically retarget printf() to UARTs
* Plus use in RTL simulation to control simulation termination

* Speed typically not that important for simple terminal communication
* But, beware UARTSs limiting RTL simulation runtime
* Include a very high baud rate option just for RTL sims to avoid this problem

e Use a UART to USB transceiver on the PCB

* This allows a simple USB cable to a laptop, which can then communicate with
the test chip interactively using a terminal emulator or in a python script

e Can be useful to have multiple UART slaves, especially in multi-core
systems which are more difficult to bring-up and debug

24 of 11

CHIPKIT UART Master Peripheral IP

 For test chips, integrating higher-performance 10 is challenging and risky

* For example, HW and SW integration for on-chip USB is non-trivial
* In practice, many research chips use simple 10 for programming and moving data

* Simple IP for off-chip hosting over UART

* Very simple and robust bus master interface onto the SoC
* Perform on-chip bus transactions from laptop terminal over USB
* No CPU overhead, very simple to integrate HW and SW

* Provides a simple interactive text interface in the terminal, no SW required

* Write transaction -> w(rite) 0Ox0700000F OxDEADBEEF
* Read transaction -> r(ead) 0x0700000F (-> OxDEADBEEF)

* Python tool for loading data and scripting up tests
* Chip LOad Tool (CLOT)

25 0f 11

CHIPKIT VGEN 10 Script

* VGEN script for generating and managing 10 throughout the project
* Uses Python VGEN infrastructure for generators (we’ll come back to this)

* CSV database of |0 signals
* Entered manually or automatically generated from the top level SoC netlist
» Updated automatically as things are added/removed

* Generates/updates lots of useful “code” in seconds
* Pad ring RTL, pad ring instance, testbench interface, EDA scripts etc
* Very easily extensible

26 of 11

CHIPKIT VGEN 10 Script

O oo N s WN =

name direction
Clocks
HCLK input

EXTCLKO input
EXTCLK1 input

TLXFWD_CLEK output
TLXREV_CLK input

Resets
PORESETn input

TIVEWN DC rundtrrast

side

D
bump

3129
3 712
3711

211
1 A18

3 Y10

217

E
description

This is a clock (example description field)

module

VGEN:

}

VGEN:

input
input
input
output

input

\‘J AME

p instantia
> uTOP_PADS

.10

n.

Diagnostic (DIAG) Signal Mux

* Sometimes with test chips, things don’t go as planned ©
* Debugging problems inside a fabricated chip can be very challenging

* In the worst case, it can really help to have visibility into the system
* UART bus master allows access to the on-chip bus to poke registers and RAMs
e But what if there’s a more subtle problem?

It helps a lot to have visibility of key signals on-chip, but can’t pin out everything
* Clocks, resets, power rails, power gate enables, interrupts etc

Diagnostic (DIAG) signal mux allows more signals to be pinned out by using a big
mux to select a signal to drive a pin from a larger group of options

* Having two DIAG pins allows interaction of multiple things, e.g. check clock and reset at the
same time

* Easily generated automatically using a VGEN script

28 of 11

On-Chip Memories:
SRAMs and
Control and Status Regs (CSRs)

Scratchpad SRAMs

* SRAMs need to be wrapped with a bus interface
* This can range from very simple to very complex
* For M-Class systems, typically a simple AHB interface

* Easy to overlook verification things like memory-mapped SRAMs
« Common mistakes include accidental truncation of address bits somewhere
* Be sure to test across the full address range, not just the first few words

30 of 11

CHIPKIT Scratchpad SRAMs

« AHB_ MEM.sv

module £

ter AY 16 // Address width (16bits = 64KB)

sarameter Aw 1
l

parameter filename i // Initialization hex file

input logic HCLK, HRESETn
ahb_slave_intf.source S

Control and Status Registers (CSRs)

* CSRs are very common in memory maps at both SoC and IP -levels
e Additionally, in test chips it’s common to use a large number of CSRs
* Enabling features that you want to be able to turn on/off (chicken bits)
* Debug
* Test purposes

* Generating and maintaining CSRs involves a large number of files:
* Multiple RTL files
* Documentation
* Programming model and views
* Test cases

* For agile research test chips, very helpful to avoid doing this by hand!

32 of 11

CHIPKIT VGEN CSR Script

* CHIPKIT provides a simple flow to automatically generate CSRs from a
single database using a VGEN Python script

* Register definition described in comma separated value (CSV) format
e Can be manually or automatically generated and updated
 Signal naming pre/post fix convention to identify registers in RTL
* Very lightweight to update and maintain

e Automatically generates everything required
e RTL, documentation, tests and software definitions in both C and Python
* Register definition described in comma separated value (CSV) format

* Other open source alternatives for auto generating CSRs
* Vregs - https://www.veripool.org/wiki/vregs
* csrGen - http://asics.chuckbenz.com/csrGenUsersManual.pdf

33 of 11

Control and Status Registers (CSRs)

* CSRs in CSV database — populate by hand or self-populate (and
update as things change) from RTL module(s)

Sl name idx nbits start access test rval desc

2

Ll # Integration test registers

L de_dummyO 0 32 0 rw 0 Ox0000000 Dummy 32b register
Ll dc_dummyl 1 32 0rw 0 Ox0000000 Dummy 32b register
T dc_dummy?2 2 32 0rw 0 Ox0000000 Dummy 32b register
J dc_dummy3 3 32 0rw 0 Ox0000000 Dummy 32b register
8

I # NIC

./vgen_regs.py -;update ../CRG.sv ——csv cregs.csv —prefix dc_

34 of 11

CHIPKIT VGEN CSR Script

* VGEN script reads the CSV database and automatically generates an
RTL module for the registers and an instantiation template...

./vgen_regs.py ——generate cregs.csv —clock HCLK ——reset HRESETn ——output output

module logic [8:8] dc_dap_jtagtop
logic [0:8] dc_dap_dbgswenable

VGEN: MODULE NAME logic [@:8) dc_dap_deviceen
logic [08:8] dc_eflx_pwr_on_en

cregs u_cregs

// clocks and resets // clocks and resets
input logic clk(HCLI
input logic rstn(HRESETn

// Synchronous register interface // Synchronous register interface
reg_intf.sink regbus regbus cregs.sink

VGEN: OUTPUTS FROM REGS // reg file signals
output logic [31:08] dc_dummy® / X : Dummy 32b register */ dc_dummy®(dc_dummy®[31:0
output logic [31:0] dc_dummyl / x #1: Dummy 32 dc_dummyl(dc_dummyl1/31:8
output logic [31:0] dc_dummy2 / x #2: Dumm e dc_dummy2(dc_dummy2(31:0
output logic [31:8] dc_dummy3 / X #3: Dummy 32b register

outpuyt . C B:0) / dx #4 % /

dc:dummy3 dc_dummy3[31:0
dc_nic _dco _en(dc nic _dco en[0:0

CHIPKIT VGEN CSR Script

class Cregs(object):
def __init__(self,base_offset):

self.base_offset = base_offset

self.DC_DUMMYO
self.DC_DUMMY1

self.base_offset
self.base_offset
self.base_offset

base_offset

self.DC_DUMMY2
self.DC_DUMMY3

DC_DUMMY®; /* Offset: Ox® (R/W) Dummy 32b 1
DC_DUMMY1; [% O r: Ox4 (R/W) Dummy 32b 1
DC_DUMMY2; [% O r: @x8 (R/W) Dummy 32b 1
DC_DUMMY3; /% Offset: @xc (R/W) Dummy 32b 1
DC_NIC DCO EN; /% Off) %/

CHIPKIT VGEN CSR Script

* Automatically generates tests in C or Python

/ This test i1s intended to check initial
cregs_initial_value_test(void) {
num_errors=0;

(SM2_CREGS->DC_DUMMY® |= 0) {num_errors
(SM2_CREGS->DC_DUMMY1 |= A) {num_errors
(SM2_CREGS->DC_DUMMY2 I|= 0) {num_errors
)
| =

e

1; puts("ERROR:
1; puts(”

1; puts(" OR:
1; puts("ERROR:

+

+
I |

(SM2_CREGS->DC_DUMMY3 |= 0 {num_errors
(SM2 CREGS->DC_NIC DCO_EN

e

) {num errors += 1; puts("ERROR:

CHIPKIT VGEN CSR Script

* Automatically generates documentation in Markdown

// VGEN START: Autogenerated by /group/pwhatmough/smiv/soc/logical/chipkit/vgen2/vgen.pyc on 15:51:24 29/04/2017

// VGEN START: Autogenerated by /group/pwhatmough/smiv/soc/logical/chipkit/vgen2/vgen.p
yc on 15:51:24 29/04/2017

Programmers Model

Programmers Model

Module: CREGS Module: CREGS

I Address Offset I Signal Name I Access : Bit width l Start bit l Description : Address Offset Signal Name Access Bitwidth Startbit Description
| , .
: ::gg) gﬁmfii : E:‘; : 33 : 2 gﬂ::g 3;: izg ia :Ei 0x0 DC_DUMMYo RW 32 0 Dummy 3ab register
: ::gg:gﬂmzi:: : g::: : :333 : g gﬂ::z ggg izgiziii 0x4 DC_DUMMY1 RW 32 o Dummy 32b register
e L L] L 0x8 DC_DUMMY2 RW 32 0 Dummy 32b register
oxc DC_DUMMY3 RW 32 0 Dummy 32b register

0x10 DC_NIC_DCO_EN RW 1 0

Clocks
Resets
Power Domains

Clocks

* Demands careful design, documentation and RTL hygiene
* Keep as simple as possible and document very clearly!
. Iddeally, every block only has a single clock and reset and does not span clock domains by
esign
* Low-frequency clocks can be supplied from the PCB through the package
* Limited by the PCB/packaging parasitics and 10 cell slew limitations — typically works okay up
to about 100MHz or so
* Typically also want faster clocks, especially in deep-nm technologies
* Do not generate clocks inside the IP, deliver from the SoC for better control / visibility / debug

* Internally-generated clocks

* Fixed-ratio of the bus or system clock
* Possible to use avoid async bridge for data moving between clock domains
* But, will need a more careful implementation of clock tree and timing closure

* Asynchronous requires a full asynchronous bridge CDC
e Caution: Dragons be here!! If you must do this, use pre-verified code and be careful

40 of 11

CHPIKIT On-chip clock generation

Standard IO cells do not work well above ~100MHz or so
* On-chip clock generation for faster clocks

PLLs and related synthesizers
* Very low noise and drift
* High quality reference clock
* Dedicated clean decoupled power supply
* Careful layout integration
* Availability and cost

Digitally-tuned open-loop oscillator
* Cheap and straightforward, no hand layout or analog macros
 Sufficient noise performance for high-performance digital
* Dedicated clean decoupled power rail

All-digital implementation!
* Verilog netlist of standard cell instantiations
* \Verify and tune using SPICE simulation
* Place and route automatically, or using constraints/directives

CLK,,

e

Hlo .

v

D b Froe
st LDV

-

-

D P=Dummy NAND Gate

T,

1

[

Ves -D
v

o o

oo
A

“A 40-550 MHz Harmonic-Free All-Digital
Delay-Locked Loop Using a Variable SAR
Algorithm”, R-J Yang et al., JSSC’07

41 of 11

Resets

* Conceptually straightforward, but can easily cause catastrophic issues
* Keep as simple as possible and document very clearly!

e Stick to asynchronous active-low resets
* This uses the async reset pin on standard library flip-flops
* Don’t get hung up on this, it’s just a convention ©

* Only one reset per IP block clock domain
* in which case, use one reset per clock
* Ensure that reset generation is not done inside IP — do at SoC level instead

* Do not use reset synchronizers when crossing clock domains
* Use the clock-off strategy instead

42 of 11

Power Domains

 Many reasons to have multiple power domains in your research test chips
* Functional —e.g. IO cells and analog macros typically need various voltages
* Performance — e.g. per-cluster or per-core voltage scaling, or clean PLL rails

* Measurement — split out power consumption of different components (e.g. RAM vs
logic power, or cache vs core power)

* But, power domains add a huge amount of complexity in both RTL and
(especially) implementation, and a lot of risk!

* For research test chips, we suggest using a lightweight approach
* Multiple rails where necessary to achieve your research goals

* Try and avoid power gates and level-shifters, which add a huge amount of EDA
complexity and risk

. Beffcareful with package design and pin allocation to ensure that power integrity is
sufficient

43 of 11

100; 1ES)
Bier aag

Y R
F -

SoC RTL Validation

Front-End Validation Environment

* Setup a Makefile for front-end validation to make it easy to run single validation
tasks or longer regressions
* Lint — commercial tools, simple checkers
Multiple synthesis tool front-ends
Simulation regressions, RTL, synth/layout netlist +notiming, netlist SDF corners
Logical equivalence checking (LEC)
Formal verification
Power-optimization tools — clock gates and RAM enables

* Compiled simulators - VCS/Verilator for fast regressions, possibly modelsim etc
for interactive debugging

* Don’t underestimate compute and disk space requirements, especially for regressions
» Escalates quickly for netlist sims and especially with timing annotation (will need runtime optimization...)

* Keep back-end stuff in a separate Makefile flow
* Front-end design will mainly use Synthesis, power analysis, timing analysis, etc

45 of 11

SoC Test Coverage

* Basic tests
* Clock / reset / power stress tests

e Off-chip communication stress tests

e Per-block exercise test

* Transactions to cover all regs and mems
* Can be slow in some cases - optimize for good coverage
* |deally write/readback assuming R/W location in memmap
» Basic functionality tests, ideally fairly fast

 Whole memory map test
* Transactions to cover everything on the memory map
e Test unmapped regions too!

* Targeted application tests
 |deally every test you want to measure on the silicon when it comes back

46 of 11

M-Class SoC: Summary

* Keep things as simple as possible
* Essential to balance feature creep against risk and time

* Timing closure will be easier with good hierarchy choices
* And general hygiene - e.g. hard timing boundaries inside block 10

* Invest in scripting for repetitive tasks
* Much easier to make changes and maintain
* Better reuse between projects

* Setup whole SoC as early as possible and build up incrementally
e Use integration shells for any new IP that does not yet exist
* Same for back-end implementation

47 of 11

810

P, 0

Tutorial on Agile Research Test Chips
Part 3: A-Class SoC

Paul Whatmough Marco Donato Glenn G. Ko
Sae-Kyu Lee David Brooks Gu-Yeon Wei

School of Engineering and Applied Sciences

Harvard University

M-Class SoC architecture example

0SC
USB
Scan

GPIO

RTC

uSB

28nm SoC Test Chip

HCLK

Cortex-MO Subsystem

ARM
Cortex-MO

M

.
>

N\

i
w

Accelerator Subsystem

Y

UART

A 4

SCAN

A

A 4

A 4

Low-BW Peripherals

Y

GPIO

A

A

SYSCTL

A

I-MEM
64KB

A

D-MEM
64KB

A

Timers |S [« >
o
Wdog |S |« E
UARTs [s |« IS
on
BIST S |«
VSOC

Bridge

S

A

VSOC

A

32b AHB

A 4

VDCO
> S DCO |—FCLK
M|
= DNN
>)
2| Engine
S |«
W-MEM
1MB

Vacc — Accelerator Logic
Vmeve — SRAM Periphery

Vuvevc — SRAM Core

128b AXI

CHIPKIT + Arm DesignStart

Outline

e SMIV — A-Class SoC architecture

 |Interconnect fabric
e NIC400 and AXl interfaces
e TLX400

* Socrates IP tooling flow
* Import IPs from arm IP catalog
* Configure and build a NIC400 interconnect
* Generate Verilog RTL

A-Class SoC architecture

Arm Cortex-A53 64-bit CPU Cluster ™, I/' Cache-Coherent Datapath Accelerators

__

L (b K= NIC-400 64-bit Interconnect

i ! Accelerator! i
: Coherency |
| . Port ! |
A 1 (ACP) | |

() | § ACC2 Accs

1

3]

\ U

\ / ’
. v i .
Vo o527 -7

NIC 4OO 128 blt Interconnect

P B s .
g N
y \
i \

AHB 32-bit Interconnect

|

10 i
Bridge 4 Banks . M-class
" x1MB SRAM E FC i
| avenN=N MESTTN | Sub-system
; +SRAM ;

DRAM 3
PCle “._ Always-On (AON) 32-bit Cortex-MO Cluster

- 29”

ThinLink -

Interconnect fabric

NIC400 interconnect

* Flexible interconnect that can host up to 128 master and 64 slave AMBA interfaces
* AMIBs and ASIBs provide AMBA master/slave interfaces

* |Bs provide domain crossing and buffering functions

CoreLink NIC-400 Network Interconnect
AMBA AMBA
Slave Master
AMBA slave . AMBA master
interface | Interface—AXI-p AXI P Interface—"" |
Block Block
(ASIB) (AMIB)
Switch Interface
—AXI signals®»{ A —AXI>, Block (IB) —AXI»
Switch
—A'x,?ﬁfifle* ASIB —AXI—p B
—A X s|gna|s_’ > AMIB _AMBA master_»
_AXI-’ interface
* Routing omitted Switch
for clarity C
Default _ AX -
slave f signals > AMIB _AMBA master_>
___AMBA slave - ASIB L—| Distributed Global AXI interface
interface > Programmers R —
View (GPV)

AX| interface

 AMBA AXl interface for high-throughput, low-latency
* Flexible
e Backward compatible with AHB and APB

* Interface uses 5 independent channels
e 2 address channels (read/write)
» 2 data channels (read/write)
e 1 response channel (write)

* Allows to operate with separate address/control data
phases

e Supports unaligned data transfers using byte
strobes

* Burst-transactions (fixed, incremented, or
wrapped)

Master
interface

Write address channel

Address
and control

—

Write data channel

Master
interface

Write Write Write Write Slave
data data data data interface
_, —> —> —>
Write response channel
Write
response
47
Read address channel
Address
and control
>
Slave

Read data channel

Read
data

Read
data

Read
data

Read
data

 — ¢ 4/ 4—

interface

AX| handshaking

AXI uses global clock and reset signals (ACLK and ARESETn)

Each of the 5 channels uses VALID/READY signals to
implement the same handshaking protocol
* The source generates the VALID signal when the
information is available
* The sink generates the READY signal when it can accept
the information
e The transaction takes place when both VALID and READY
are high

Both read and write data channels include a LAST signal which
is asserted when the last transfer in a burst transaction is
being driven

T1 T2 T3
ACLK] |
INFORMATION | \)
VALID i A\
READY [2“

AXI variations

AXI-Lite targets simpler control register-style interfaces that might not need
full AXI functionality

e Burst length fixed to 1
e Supports a data bus width of 32-bit or 64-bit

Write address Writedata Writeresponse Readaddress Readdata

Global
channel channel channel channel channel

ACLK AWVALID WVALID BVALID ARVALID RVALID
ARESETn AWREADY WREADY BREADY ARREADY RREADY
- AWADDR WDATA BRESP ARADDR RDATA

- AWPROT WSTRB - ARPROT RRESP

AXl4-Stream protocol is used as a standard interface to connect
components that wish to exchange data

 Used to implement the point-to-point connection for data transfer

TLX Bridge (ThinLink)

* Optional feature for the NIC400 interconnect
* Reduce number of signals compared to AXI
* Interconnect routed over a longer distance

* Supports only a single M/S interface to implement a forward and reverse link
* Supports clock domain crossing

TLX—400>

Master

Y
Y

>\’ TLX-400

Slave

* The physical layer is AXI-stream compliant

» Used for off-chip Wide I/O bridge to FPGA
e Access to additional IP (DRAM, PCle, USB, etc.)

Arm Socrates flow

Arm Socrates IP tooling flow

CorelLink interconnect workflow

* Arm IP configuration
* Cortex A53, system IPs

 External macro configuration Iﬁ

Specification

IP-XACT
e Accelerators and custom blocks []
<= High-level Synthesis
. NIC400 A B -
* Clock domains definition N
S D f' H f Interfaces and pArChitectur‘e 0 H .
e Ine Inter aces Corelink Design choices Refinement
* Memory map L]
. Generate Deliverables
 Build
e RTL Verilog

+ Design

« Testbench
\/ * Implementation scripts
* Reports

Arm IP configuration - Cortex-A53

IP catalog offers a set of Arm IPs:
e Graphics and multimedia cores (Mali)
* Cortex A-, M-, and R- cores —

Create Configured IP for arm.com-Cores-CortexA53-rOp4-51rel2

[Syste m cO ntro I I ers Create a new configured IP for Cortex-A53
Parameters
NUM_CPUS (Number of cores in the cluster)
v B Processors NEON_FP (TRUE - NEON and FPU in each CPU) TRUE
v [E] Corte X'A Series CRYPTO (TRUE - Enables cryptography in the NEON and FPU for each core) FALSE

LEGACY_V7_DEBUG_MAP (FALSE - selects V8 debug map) FALSE

» { Cortex-A32 Processor
» {I Cortex-A35 Processor
v i Cortex-A53 Processor
® rOp4-51rel0
® rOp4-51rel2

Bus Interface Parameters
ACE (FALSE - CHI Interface for external memory) TRUE

ACP (Include ACP interface on SCU) TRUE

L1 Cache Parameters

L1_ICACHE_SIZE (Instruction cache size) 64KB
» I Cortex-A57 Processor L1_DCACHE_SIZE (Data cache size) 64KB
> D COI'te X'A72 Processor CPU_CACHE_PROTECTION (FALSE - No ECC protection) TRUE
» & Cortex-A73 Processor +2 Cache Farameters
> @ CorexAB rocesso SR o
> @ COI’tex-AQ Processor SCU_CACHE_PROTECTION (FALSE - No ECC protection) TRUE
> @ COrteX"M SerieS L2_INPUT_LATENCY (L2 data RAM input cycle latency) 1
> @ Corte X'R SerieS L2_OUTPUT_LATENCY (L2 data RAM output cycle latency) 2

» B System IP

JEEE]

3|k

JEIE]

FIEEEE]

NI1C400 clocks

Clock domain creation and clock relationships

Clock domains
createClockDomain(deCC, => "clk1l", :frequency => "100", :powerdomainref => "pd@")
createClockDomain(deCC, => "clk2", :frequency => "100", :powerdomainref => "pdo")

createClockDomain(deCC, : => "clk3", :frequency => "100", :powerdomainref => "pd0")

Clock relationships

createClockRelation(deCC, :clockrefl "clk1l", :clockref2 "clk@", :relationship "asynchronous")
createClockRelation(deCC, :clockrefl "clk@", :clockref2 "clk2", :relationship "identical")
createClockRelation(deCC, :clockrefl "clk@", :clockref2 "clk3", :relationship ""'synchronous", :synchronoustype
createClockRelation(deCC, :clockrefl "clk2", :clockref2 "clk3", :relationship "synchronous'", :synchronoustype =

createClockRelation(deCC, :clockrefl "clk@", :clockref2 "clk3", :relationship "synchronous'", :synchronoustype =

NIC400 configuration

Accelerator:
Coherency !
Port
(ACP)

ACC2 ACC3

Define interfaces

intf = createMasterIF(deCC, :name => "AXI_Master_ ACCO0", :clockref => "clk3")

setProtocolAttributes(intf, :protocol => "AXI4MasterProtocol", :datawidth => 128, :addresswidth => 32,
:multiregion =>"false", :trustzonemaster => "secure", :idwidthreduction => "false",
:programmable => "true")

masters << "AXI4_Master4_ACCO"

intf = createSlaveIF(deCC, :name => "AXI_Slave_ACC@", :clockref => "clk3")

setProtocolAttributes(intf, :protocol => "AXI4SlaveProtocol", :datawidth => 128, :addresswidth => 32, :programmable
:vidwidth => "6", :trustzoneslave => "secure", :readacceptance => "1", :writeacceptance
: localgroupref => "axi_inputs")

createPath(deCC, :source => "AXI_Slave_ACC@", :targets => masters)

slaves << "AXI_Slave_ACC0"

NIC400 memory map

Each slave can have its own address map

Address regions must not overlap

Regions must be aligned to 4KB boundaries

Undefined memory regions routed to internal default slave

i} Mapped Blocks for selected Memory Map|

0x00100000 AX14_Master UMEMO AXI4_Master UMEMO
0x32000000 0x00100000 AXl4_Masterd HLS AXl4_Masterd HLS
0x33000000 0x05000000 AXl4_Master_FLEXNLP AXI4_Master_FLEXNLP
0x31000000 0x00100000 AHB_Master BGMA AHB_Master BGMA
0x08000000 0x00020000 AX|_Master_IMEM AXI_Master_IMEM
0x0c000000 0x00010000 AX|_Master DMEM AX|_Master DMEM
0x40000000 0xc0000000 TLX_Master TLX_Master
0x2c000000 0x00100000 AXI_GIC_Master AXI_GIC_Master
0x2a020000 0x00010000 APB_Master APB_Master
0x2a030000 0x00002000 APB_RTC APB_RTC
0x2a000000 0x00001000 APB_UARTO APB_UARTO
0x2a010000 0x00001000 APB_UART1 APB_UART1
0x2b000000 0x00100000 GPV GPV

NIC400 [P integration

cmO0_subsys [

u_DAP

E@APB_SIave_NIC APB_Master_A53|

DAPLITE

u_NIC_ACP

MACP_HLS ACP_Master A53|

nic400_acp4
u_GIC
MMBIST Interface
MAXLS AXI4_St 00_M
[AXI4_Stream00_S Sl
MCPU. —Act e00 : el
i Wake_Request00|
[1SPI032_063
PPIOO

gic500_2

u_A53

[Minterrupt_slave_FIQO
[Minterrupt_slave_FIQ1
[AXI4Stream_slave_DISTRIBUTOR
[IRESET _slave_CPU_PORESETO
MRESET_slave_CPU_PORESET1
[IAPB_slave_DEBUG
[Q-Channel_slave_L2

[Staticcfg_slave_CFGENDO

[staticcfg_slave_CFGEND1
[1Q-Channel_slave_NEONO
[0Q-Channel_slave_NEON1

[P Staticcfg_slave_CFGTEOQ

[Staticcfg_slave_CFGTE1
[Minterrupt_slave_VIRQO
[Minterrupt_slave_VIRQ1
[interrupt_slave_VFIQO
[Minterrupt_slave_VFIQ1
[ACP_slave

[Staticcfg_slave_VINITHIO
Staticcfg_slave_VINITHI1
[JRESET_slave_MBIST
MStaticcfg_slave_CLUSTERIDAFF1
[DAuthentication_slave_CPUO
[Authentication_slave_CPU1

[Staticcfg_slave_CP15SDISABLEO
[Staticcfg_slave_CP15SDISABLE1
[IChannel_slave_CTI_CHIN

[Staticcfg_slave_RVB_ARADDR1

[Staticcfg_slave_SYSBARDISABLE
[Staticcfg_slave_GICC_DISABLE

[0 Staticcfg_slave_AA64nAA32_CPUO
[Staticcfg_slave_AA64nAA32_CPU1
MStaticcfg_slave_BROADCASTINNER
MRESET_slave_CORE_RESETO
[IRESET_slave_CORE_RESET1
[Minterrupt_slave_SEIO
[Minterrupt_slave_SEI1

[staticcfg_slave_CLUSTERIDAFF2

[Minterrupt_slave_IRQO
[Minterrupt_slave_IRQ1
[IRESET_slave_L2
[Minterrupt_slave_VSEIO
[interrupt_slave_VSEI1
[IEVENT_slave_EDBGRQO
[IEVENT_slave_EDBGRQ1

[Staticcfg_slave_DBGROMADDR
[1Q-Channel_slave_CPUO
[1Q-Channel_slave_CPU1

[Staticcfg_slave_BROADCASTOUTER
[Staticcfg_slave_RVB_ARADDRO
[DWTimestamp_slave

[l Staticcfg_slave_DBGROMADDRV
[Staticcfg_slave_PERIPHBASE
[Minterrupt_slave_REIO
[Minterrupt_slave_REI1

[Staticcfg_slave_BROADCASTCACHEMAINT

interrupt_master_VCPU_MNT_IRQO|
interrupt_master_VCPU_MNT_IRQ1
TimerEventinterface_master_CPUO
TimerEventinterface_master_CPU1
ATB_master_CPUO|
AXI4Stream_master_PROCESSOR
Channel_master_CTI_CHOUT]
interrupt_master_INTERRIRQ|
ACE_master

ATB_master_CPU1
interrupt_master_COMMIRQO
interrupt_master_COMMIRQ1
interrupt_master_PMU_IRQO
interrupt_master_PMU_IRQ1
interrupt_master_EXTERRIRQ

-

~

u_NIC400
AHB_Master_BGMA
APB_Master|
APB_RTC|
APB_UARTO)|
APB_UART1
A53_Slave AXI4_Master4_HLS
AHB_Slave0 - .
AXI_Slave_HLS AXI4_Master_FLEXNLP

AXl4_Master UMEMO
AXI_GIC_Master]|
AXI_Master_DMEM
AXI_Master_IMEM
TLX_Master]|

CortexA53_2

_

nic400_8

/

u_BGMA

MAHBLiteTarget BGMA

BGMA
u_RTC

u_UARTO

cmsdk_apb_uart

u_UART1

_ap

u_FLEXNLP

FLEXNLP

u_ADMEM

AXI_MEM_128_64KB

u_AIMEM

AXI_MEM_128_128KB

u_TLX

M1 m_s M1_m_m|

TLX

u_UMEMO

AXI_MEM_128_1MB

Q&A session

CHIPKIT Tutorial (Part 3)
Sun. May 31, 2020
10:30 AM - 10:45 AM

Lo iER g 1
R 3

Tutorial on Agile Research Test Chips
Custom [P Development

Paul Whatmough Marco Donato Glenn G. Ko
Sae-Kyu Lee David Brooks Gu-Yeon Wei

School of Engineering and Applied Sciences

Harvard University

CHIPKIT Materials

IEEE Micro paper

* https://ieeexplore.ieee.org/document/9096507
* https://arxiv.org/abs/2001.04504

Open source Github project
* https://github.com/whatmough/CHIPKIT

<> Code Issues 0 Pull requests 0 Actions Projects 0 Wiki Security 0 Insights Settings

CHIPKIT: An agile, reusable open-source framework for rapid test chip development Edit

CHIPKIT: An agile, reusable open-source
framework for rapid test Chip development - 44 commits ¥ 1 branch (1 0 packages © Oreleases 42 1 contributor

Paul N. Whatmough'?, Marco Donato’, Glenn G. Ko, David Brooks', and Gu-Yeon Wei' Branch: master v New pull request Createnewfile Upload files Find file
IHarvard University 4 whatmough Update README.md Latest commit c26e719 3 days ago
2Arm Research

o ip Update README.md 4 months ago
Abstract—The current trend for domain-specific architectures (DSAs) has led to renewed interest in research test chips to
demonstrate new specialized hardware. Tape-outs also offer huge pedagogical value garnered from real hands-on exposure to the B tools Update README.md 2months ago
whole system stack. However, successful tape-outs demand hard-earned experience, and the design process is time consuming and §
fraught with challenges. Therefore, custom chips have remained the preserve of a small number of research groups, typically focused [E) README.md Update README.md 3 days ago
on circuit design research. This paper describes the CHIPKIT framework. We describe a reusable SoC subsystem which provides
basic 10, an on-chip programmable host, memory and peripherals. This subsystem can be readily extended with new IP blocks to [E) chipkit_logo.png init 4 months ago
generate custom test chips. We also present an agile RTL development flow, including a code generation tool called VGEN. Finally, we
outline best practices for full-chip validation across the entire design cycle.

README.md y

Index Terms—Agile design, design reuse, testing, open-source

1 INTRODUCTION

ESEARCH test chips are the ultimate demonstration of

the true value of novel computer architecture innova-
tions. In addition, taping out test chips in a research or
academic setting provides huge pedagogical value, offering
real insight across the whole stack. Nonetheless, despite all il
the upsides, taping-out test chips remains very challenging, 4 z;‘:& Cz’s §
especially for the uninitiated. Custom chips are time con- :
suming to design, fabricate and test, and often error prone -
potentially requiring expensive re-spins to fix problems. In
this paper, we explore two key themes of agile and reusable ~ Fig. 1. Three recent chips [1], [2], [3] built using the CHPIKIT framework.
design, to help reduce the barrier to entry for chip tape-outs.
Emphasizing reuse greatly reduces development cost and at
the same time minimizes the opportunity for silicon bugs

aFPGA
252 Arry

TSMC 2BHPC TSMC 167+ TSMC 16FFC

[2], through to large multi-accelerator SoCs with Arm
Cortex-A multi-core CPU clusters [3]. However, they all

2001.04504v1 [cs.AR] 13 Jan 2020

Xiv

and allows the designer to focus on ing features.
While agile design seeks to follow a methodology where
changes can be readily implemented late into the design
cycle, without significant disruption or risk.

™

share the same basic framework, with the same SoC sub-
system for system bring up, communication and control.
Following this framework has allowed new tape-outs to be
developed with verv low-risk and high success rate. To help

CHIPKIT: An agile, reusable open-source framework for rapid test
chip development

https://ieeexplore.ieee.org/document/9096507
https://arxiv.org/abs/2001.04504
https://github.com/whatmough/CHIPKIT

Outline

* Overview

* Interface and Control

* Hardware Description

e SystemVerilog Coding Guidelines
* Summary

2 of 11

Overview

Custom IP Development

0SC
USB
Scan

GPIO

RTC

USB

28nm SoC Test Chip

HCLK

ARM
Cortex-MO

M

i
w

UART

A 4

SCAN

A

Low-BW Peripherals

—» Timers

S

Wdog

S

A

\ 4

\ 4

UARTSs

S

A

\ 4

BIST

A

32b APB

Y

GPIO

Cortex-MO Subsystem
>\

A 4
N

A

A

SYSCTL

A

I-MEM
64KB

A

D-MEM
64KB

A

S

VSOC

A

Bridge

S

A

VSOC

32b AHB

Accelerator Subsystem

Vbco
S DCO |—»FCLK
M«
S DNN
5| Enei
p2 ngine
S |«
W-MEM
1MB

Vacc — Accelerator Logic
Vimeve — SRAM Periphery

Vuvieve — SRAM Core

128b AXI

Custom IP Development

Custom Machine

AGILE!!

E

2

* |

; 5

ST T Feen T
Interface and :

Control . Index DM,

Interface and Control

Accelerator Interfaces

e Simple slave control — “passive” accelerator programming model

* Configure accelerator for job
 Move data into internal RAM
 Start task and wait for a done signal (IRQ or poll register)

e Slave control with master for data (internal DMA)
* Configure accelerator for job
* Accelerator accesses data from provided addresses
* Run task and (optionally) move results to somewhere in memory

 Job queue control with master for data (internal DMA)
* Accelerator fetches job for queue in memory
* Accelerator accesses data from provided addresses
* Run task and (optionally) move results to somewhere in memory

7 of 11

Accelerator Interfaces

* Very active and arguably understudied aspect of modern SoCs
* Data movement cost
* Virtualization
* Coherency

* Arm A-Class cores feature Accelerator Coherency Port (ACP)
* Allows access directly into L2 cache of the CPU cluster
* Coherent to the CPU cache, without implementing dedicated coherency logic

 Arm Coherent Accelerator Interface (ACAI)
* Implements a coherent (ACE-lite) accelerator interface with RTL & SW
* All the benefit of coherency, without the complexity of implementing it!

8 of 11

Arm Coherent Accelerator Interface (ACAI)

 Hardware and software framework to enable easy adoption of
accelerators on SoC platforms

e Easier hardware accelerator integration

 ACAI provides accelerator with a coherent cache and virtual addressing capabilities
e Accelerator interfaces to ACAIl using standard AXI protocol
 Compatible with Xilinx Vivado HLS (High-Level Synthesis)

e Simpler programming model

* Linux user application written in C/C++ runs on CPU - easier to debug & modify

e ACAI software libraries and drivers assist with job creation, scheduling and dispatch
e Support for accelerator virtualization (sharing across different processes)
 Maximize performance gains and enable fine-grained task acceleration

Arm Coherent Accelerator Interface (ACAI)

Full System Coherence

« HW accelerator connected to ACAI HW IP AL FAGE
* User application written in C/C++ runs on CPU C/C++ Hardware
« ACAI SW libraries assist with job creation, Application Accelerator
scheduling and dispatch
, o ACAI SW AP
* ACAI kernel driver sets up application context,
page tables and configures ACAI IP ACAI Kernel Driver ACAI HW IP
* ACAI HW IP configures the accelerator, Linux OS MMU L1/12$
provides a coherent cache and memory
Interface AXI ACE AXI ACE

* User accelerator executes on user described 2
job Cache Coherent Interconnect (CCI-400)

Reduced accelerator dispatch time Shared System Memory
* No explicit data copies
* No CPU flush/invalidate required

e Supports hardware pointer dereferencing

FPGA Prototype Platform

Arm Coherent Accelerator Interface (ACAI)

Setup and dispatch an FFT job on ACAI framework

void main() {

// initialize acail

module ha_fft (
input wire clk,
input wire reset_n,

acai *p_acai = new acai();

p_acai->init();

// setup job chain with a single job

// Memory interface (AXI4 Master)

// vector<acaijd> job_chain;

job_chain.reserve(1);

// Configuration interface (AXI4-Lite Slave)

// setup job descriptor to write 3 registers

2L job_chain.push_back(acaijd(3, 0));
input wire ai_job_star't_i, job_chain[0][@] = (uint32_t)length;
output wire ai_job_complete o Job_chain[@][1] = (uint32_t)src_data;

); job_chain[@][2] = (uint32_t)result data;
reg [31:0] length;
reg [31:9] src_addr; // start and wait on the job to complete
reg [31:0] result_addr; p_acai->start_job(job_chain(e]);

p_acai->wait_job(job_chain[@]);

// more code

// cpu reads results

endmodule // ha_fft /7
¥

RTL IP Integration Shell

e Accelerator will need an internal memory map
* This is usually relative to whatever address it resides at the SoC-level
e Typically truncate address bits to the required internal address space
 Ensure RAMs and architectural registers are bus accessible for debug

 An RTL IP integration shell should be the first RTL task
 Effectively a bus functional model in synthesizable RTL
* This should be well thought out and documented

* Very useful for SoC designers and for back-end designers early on
* All inputs and outputs should be registered for easy timing closure

* The accelerator interfacing should ideally not change, even while the
internal blocks are being developed

e Clear documentation
* A set of simple (SoC) tests will help ensure this

12 of 11

Control

e Simpler accelerators usually incorporate a control FSM
* Think carefully about the design of this, bugs may be difficult to work around

* Try and think through all the tests you need to do on silicon
 Various functional scenarios and use cases
* Debug scenarios — visibility # when things go wrong

* Measuring performance
* cycle counters, memory accesses, instruction/operation counts
* Counter stop/start/clear conditions

* Measuring power
* Infinite loop mode, self-test mode

13 of 11

RAMs and Control and Status Registers (CSRs)

* Make all RAMs bus accessible
* Really helps with debug, testing, margining etc

* CSRs are best scripted unless very minimal
* See previous example on the CSR VGEN script

14 of 11

Hardware Description

Digital Hardware Desigh Methodologies

. . L. Old — not Il suited t d HW
* Native Hardware Description Languages (HDLs) O et

e Verilo Poor templating support
& Strongly typed > 2o bl

* VHDL Verbose

o SystemVeriIog Big improvement
Poor templating support
 Add-ons to HDLs Add compile-time checking
e Linting tools Extra step
e Genesis? Fix language templating deficiencies

* New non-native languages
* Chisel (Scala) Nice languages
 MyHDL, PyMTL (Python) Extra generation/translation step

RHDL (RUby) More familiar object-oriented language
i High-|EVE| Synthesis Serial program with pragmas to infer parallelism

e SystemC

System modeling benefit
Slow tools and tricky to debug

16 of 11

Object-Oriented HLS Design Flow

 C++ to RTL to gates

« MatchLib: library of commonly-used macro-architectural
components in HLS-able C++

« All communication between SystemC modules pass
through Latency-Insensitive Channels and interconnects

* Reuse of C++/SystemC testbenches for simulation of
HLS-generated RTL

* Productivity improvement over manual RTL coding and
existing ad-hoc HLS-based flows

Spedﬁcaﬁonq{

Model

MatchLib
(C++/SystemC)

(C++/SystemC)

e Verification
Architectural LA

(SystemC)

LI Channels
(SystemC)

Legend

HLS scripts models
((rcy)] J

‘—* HLS Compilation

2

Automatic RAM

inputs ’I{

]7

e
)7 CVaifde;mmc

(TCL) J{

HLS-generated RHH
Syn scripts (o

RTL cosim

Intermediate
Files

Results and
Metrics

il

L

Tools

[Khailany et al., DAC’18]

Logic Synthesis J{
sk FSDBt
) b)
_ﬂ Power Analysis
4
e

SystemVerilog Coding Guidelines

Why SystemVerilog?

* We’ve had very fast results with HLS, potentially great for exploration

* For higher-performance designs, sometimes it’s nice to have more control
over pipelining
* We’'ve used SystemVerilog extensively
* Native support in commercial EDA tools

* Much more compile time checking
* No translation step

* We’'ve used a strict subset of SV for synthesizable code with good results
e Easy to learn
 Removes a large number of common bug classes
* Great PPA results
e Great correlation through front-end and back-end

* One drawback is less support for some features in open source simulators

19 of 11

Combinational Logic

e Separate combinational logic and sequential logic (flops)
* Extra compile time checking, easier pipeline adjustments, code readability

* Use logic type exclusively
* No need for the confusing wire/reg types

e Except for netlists — use wire and use default nettype none to catch undeclared nets
that are usually typos

» Use lower-case signal names with underscores (_)
* Except for top-level module port signals — all caps by convention

e Use always _comb keyword for all combinational logic
* Compile-time checking that latches or flops are not inferred (enforces above)

e Be careful with multiplexers
* Be careful with sighed numbers in SV

20 of 11

Combinational Logic

module my_module (
// ..signals..

)

// Always split out Llogic and flops!

logic a, b, c;
logic d, e, f;

always_comb a = b & c;

always_comb begin

d =e & f;
// more code
end

endmodule // my_module

// Use Llogic type only
// Lower-case signals

// Single-Lline Llogic

// multi-Line Llogic

21 o0f 11

Sequential Logic

e Separate combinational logic and sequential logic (flops)
* Extra compile time checking, easier pipeline adjustments, code readability

e Use the always ff keyword
 Compile-time checking that no flops are inferred in block (enforces above)

* Stick to positive-edge clocked, active-low asynchronous reset flops

* Use macro definition for inferring flops
* Enforces separation of logic and flops
* More compact, but still readable
* Easily swap out for different flops, e.g. synchronous reset for FPGA

* Use flop/RAM enable terms -> clock/RAM gating

22 of 11

Sequential Logic

module my_module (“include RTL.svh
// ..signals..
)s module my_module (
// ..signals..
// Always split out logic and flops!)s
logic d_in, q_out; // Use Llogic type only // Always split out Llogic and flops!
always_ff @(posedge clk, negedge rstn) begin logic d_in, g_out; // Use Llogic type only
if(!rstn)
g_out <= ‘0; “FF(d_in, q_out, clk, en, rstn, €9);
else
if(en)
g_out <= d_in; endmodule // my _module
end

endmodule // my module

23 of 11

Module Declarations and Instantiations

e Use the SV syntax for module declarations
* Saves typing

* For module instantiation, use the automatic SV connections
* Use SV packages to group common functions and definitions

24 of 11

Module Declarations and Instantiations

module my_module (
input Llogic clLR,
input logic rstn,

// ..more signals..

);
// Module body

my_module2 u@ (
.CclR, // automatic connect

.rstn,

// ..more signals..

.signal99(),v // unused output
.Signalle@(other_sig) // override automatic

)5

endmodule // my module

25 0f 11

VGEN Scripts

e SystemVerilog still has poor support for templating
* Generate statement and parameterization are both quite hard to use

* The perennial workaround for this is to write generators

* VGEN is a simple Python framework for writing generators quickly
* CSV database of objects, could be registers, pins, rams, pads, anything
* Implemented in Python as a list of dictionaries

* Tools to automatically populate and update this database from RTL, C,
Python, or even documentation
* Easy to use signal or module name pre/post -fix to mark things for automation

* Tools to generate RTL modules/instances, Python code, C code, Markdown, ...

26 of 11

VGEN Scripts

RTL Modules

-
Pl N

my_sig{csr

Postfix

vgen -update

ﬁ

l
\-_' e o o
Customi Update database

with new
matching signals

- 7

Human-Editable
CSV Database

my sig csr

/—\
N—

N—

vgen -generate
ﬁ

Generate code
from database

Generated Code

RTL (*.v)
Instance (*.v)
Docs (*.md)

SW (*.c, *.py)

Tests (*.c, *.py)

- 7'

27 of 11

Module logging

* Opening waveforms should be a last resort during RTL development
* Simulation is slower
* Opening and working with a GUI is slow and clumsy

* Printing signals from a block-level test bench is quite clumsy

* Logging directly from an RTL module is a better approach
* Wrap non-synthesizable debug code in ‘ifndef SYNTHESIS
* Use reset signal to mask junk during reset
e Can generate a lot of clutter in the simulation transcript

* Even better is to log to file with module name
* You know where to look for module specific debug data
* Easy to parse in python to check against a model (especially datapath)

28 of 11

Module Logging

// Macro prototype

module my_module (
“LOGF (clk, rstn, enable, format_expr)

// ..signals..
);

// Module body

// Logging code

" LOGF_INIT // This macro opens the Llog
“LOGF(clk, rstn, enable, format_expr)
“LOGF(clk, rstn,

iss.valid,
(”| %s | %s |”,iss.op,iss.data)

)5

endmodule // my _module

29 of 11

RAMs

* Think about physical design early on and for each node / library
e Understand the “best” RAM shapes/sizes in terms of PPA and features

* Use a generic RAM module interface to wrap actual instances with
* Makes changes much easier
* Wrap multiple smaller instances to make a big logical RAM
e Swap out RTL model, IP instantiation, FPGA inference template, etc

e Recommend that IP-internal RAMs are memory mapped
* Makes bring up and test much easier
e Configuring margin adjustments
* Bus access timing paths can be made very slow if necessary, to aid timing closure

e Perform validation with RAM initial state of “X”

30 of 11

Special cells

III

* "Architectural” clock gates are very common
» Different to inferred clock gates
e Useful to be able to turn off a whole block or turn off a whole clock domain etc

* Synchronization flip-flops

e Usually a double or triple back-to-back flop cell with some circuit optimizations
e Used for any async signals:

clock domain crossing signals

Input pins

Async interrupts

Reset synchronizers (but, don’t use these!)

* For all these things, use a simple wrapped model for development, and be
sure to swap this for a wrapped version of the library cell at
implementation time

e Same as for RAMs

31o0f 11

Front-End Validation

* RTL integration shell + tests

* Block level design
* Unit tests
* Linting
 LINKTO SV UNIT LEVEL TESTING

* Block integration tests
* Feature complete
* Clock gate / RAM enable optimization

* SoCintegration tests

* Synthesis trials
* Timing analysis -> timing closure
e Power analysis -> power closure

e RTL freeze

32 of 11

Summary - Custom IP Development

* Think about IP interfacing carefully

* Use an IP integration shell to define connectivity early on
* Think about the usage model of the IP

» SystemVerilog subset for synthesis

* Front-end validation

33 of 11

72

fie i

arm

Tutorial on Agile Research Test Chips:
Physical Design

Paul Whatmough Marco Donato Glenn G. Ko
Sae-Kyu Lee David Brooks Gu-Yeon Wei

School of Engineering and Applied Sciences

Harvard University

EDA Tools Overview

* Design capture tools
* netlist entry, schematic, HDL, state diagram entry

 Simulation and verification tools
* functional (logic) sim and timing sim
* Synthesis and optimization tools
* creating netlists and optimizing them for timing and power

 Layout tools
 floorplanning, CTS, routing

Compute Platform Roadmap

Synopsys Compute Platform Roadmap

Foundation ROs

2020.09
2020.12

2021.03

2019.12
2020.03

2020.06

2019.09
P 2019.06
2019.03
2018.12
(o] 2018.09
2018.06
2018.03
N 2017.12
2017.09
2017.06
M 2017.03
2016.12

Linux O/S Versions

RHEL 6.6+, 7.x, 8+
CentOS 6.6+, 7.1.1503+, 8+
SLES 12+, 15+

RHEL 6.6+, 7.x, 8+
CentOS 6.6+, 7.1.1503+, 8+
SLES 12+, 15+

RHEL 6.6+, 7.x
CentOS 6.6+, 7.x
SLES 11.4+ and 12.x

RHEL 6.6+, 7.x
CentOS 6.6+, 7.x
SLES 11.4 and 12.x

RHEL 6.6+, 7.x
SLES 11.x and 12.x

RHEL 6.6+, 7.x
SLES 11.x and 12.x

Windows
Platform

Windows
7,10
Windows
Server 2016

Windows

7,10

Windows
Server 2008 R2,
2016

Windows 7, 10
Windows
Server 2008 R2,
2016

Windows 7, 10
Windows
Server 2008 R2,
2016

Windows 7, 8,
10

Windows 7, 8,
10

Starting 2019.03 CentOS becomes the “build” platform
and RHEL will be supported as a “binary compatible” OS

2019-2021 Cadence Compute Platform Roadmap

Arch (o}
Name

x86_64 RHEL

SLES

Ubuntu
CentOS*

Windows

IBM RHEL LE
POWER

Arm v8 RHEL

Supported

oS
Version

6.5+

7

8

11 SP4

12

14.04

6.5+

7

8

Win 7

Win 10
Server 2012
Server 2016
7.2

8.1

7.4+

8

Selected products

2019

2020

Not supported

2021

Dropped

Cadence supports CentOS but disclaims any
liability for any errors or bugs in CentOS

Hierarchical Design

* vs. flat design
* better for complex chip design
* runtime is fast (run individual blocks)
 can fix timing issues on individual blocks
* incremental functional and timing fixes

* Timing budgeting is required

* Floorplanning is important
* interconnects between blocks
* routing congestions
* 1/O budgeting

* Signoff is usually done using a flat view

ASIC Design Flow

Design . . Floor Clock Tree) .
[Entry][Synthesis][Partltlonmg][PIanning][PIacement][Synthesis][Routing][DFM][Sign-off]

Design Entry

Design
Entry

* Input: RTL or System-C (other high-level language)
e Qutput: Verified RTL

e Functional simulation and testbench verification
» Tools: Synopsys VCS, Cadence Xcelium

* High-level Synthesis

* Tools: Synopsys Synphony C, Cadence Stratus, Mentor Catapult

* refer to Part 2: "Closing the algorithm/hardware design and verification loop with speed via high-level
synthesis", Thierry Tambe (Harvard)

Synthesis

Design

Entry Synthesis

* Input: RTL, library files
* OQOutput: Gate level netlist

* Synthesizes gate level netlist from RTL
* Reports area, power, timing estimations

* (DFT Insertion)

* Tools: Synopsys Design Compiler, Cadence Genus-RTL

Partitioning

[[:Eens;lrgyn][Synthesis][Partitioning]

* Partitioning involves dividing the logic into different logical groups
and clock groups

* Synopsys IC Compiler Il, Cadence Innovus

Top-level Floor Planning

i Fl
[?::fyn][Synthesis][partitioning][Pla:r(\)i:\g]

Inputs: synthesized netlist, view definitions (libraries, corners, constraints, etc.)
* |/O constraints: aspect ratio, I/O to core clearance, boundaries

I/0 pad, bump allocation
Placement of macros and SRAMs, halos for them, /O filler cells

Synopsys IC Compiler Il, Cadence Innovus

Block-level Floor Planning

Design . N Floor
P
[Entry][Synthesis][artltlonmg][PIanning]

Inputs: synthesized netlist, view definitions (libraries, corners, constraints, etc.)
* |/O constraints: aspect ratio, I/O to core clearance, boundaries

Place of SRAM cells, halos around SRAM, boundary cells and well traps
Place Macro ports

Synopsys IC Compiler Il, Cadence Innovus

Block-level Floor Planning Example

Design . e I Floor I
P
[Entry][e][artltlonmg] Planning

Power planning

i Fl
[?::fyn][Synthesis][partitioning][Pla:r(\)i:\g]

* Core power ring, macro power ring, metal straps, vias over VDD and
VSS power structures

* Tools: Synopsys IC Compiler Il (+PrimePower), Cadence Innovus

Placement

Design Synthesis Partitioning FIoo_r Placement
Entry Planning

* Preplace, in-placement, post-placement optimization before CTS

* Synopsys IC Compiler Il, Cadence Innovus

Clock Tree Synthesis

Design . N Floor Clock Tree
P
[Entry][Synthesis]I artltlonmg][Planning][Placement]l Synthesis |

e Buffer sizing, relocation, fix hold, post placement optimization after
CTS, clock gating

* Synopsys IC Compiler Il, Cadence Innovus

Routing

Design . . Floor Clock Tree .
[Entry][Synthesis][Partltlonmg][Planning][Placement][Synthesis][Routing]

* Timing and congestion driven, net constraints, global route, track
assignments, detail route, search and repair, post route optimization,
via and wire length optimization

* Synopsys IC Compiler Il, Cadence Innovus

DFM

Design) I Floor Clock Tree)
[Entry][Synthesis][Partltlonmg][Planning][PIacement][Synthesis][Routing][2l]

* Notch and metal filling, filler cell insertion, fiducial insertion

* Synopsys IC Compiler Il, Cadence Innovus, Cadence Virtuoso

Timing Analysis and SI Analysis

Design . o Floor Clock Tree . .
[Entry][Synthesis][Partltlonmg][PIanning][PIacement][Synthesis][Routing][DFM][Sign-off]

* Inputs: .SPEF file

* RC extraction
* Synopsys StarRC, Cadence Quantus

* Signoff static timing analysis using parasitics
* Synopsys PrimeTime, Cadence Tempus

Functional Verification

Design . o Floor Clock Tree . .
[Entry][Synthesis][Partltlonmg][PIanning][PIacement][Synthesis][Routing][DFM][Sign-off]

* Inputs: .SDF file

* SDF back-annotated functional simulation
 contains timing information from the layout

* Synopsys VCS, Cadence Xcelium,

Formal Verification

Design . o Floor Clock Tree . .
[Entry][Synthesis][Partltlonmg][PIanning][PIacement][Synthesis][Routing][DFM][Sign-off]

* Inputs: .v or .db netlist

* Formal equivalence verification

* Synopsys Formality, Cadence JasperGold

Physical Verification

Design . o Floor Clock Tree . .
[Entry][Synthesis][Partltlonmg][Planning][Placement][Synthesis][Routing][DFM][Sign-off]

* Inputs: GDS Il

 Design rule checking (DRC) and Layout Versus Schematic (LVS)

* Mentor Calibre + Cadence Virtuoso
(Or Synopsys IC Validator, Cadence Pegasus)

Complete flow

Design . . Floor Clock Tree . _—
[Entry][Synthesis][Partltlonmg][PIanning][PIacement][Synthesis][Routing][DFM][Sign-off]

* May reiterate different parts of the flow as needed

Focus: Logic Design to Physical Design

Design . o Floor Clock Tree . .
[i][SyntheS|s][Partltlonmg][Planning][Placement][Synthesis][Routing][DFM][Sign-off]

Write RTL
Do functional verification
Run synthesis with constraints

Check if results are satisfactory
* If not run go backto3or1

5. Run functional and formal verification on the results

B w N e

Functional, Timing, Formal Verifications

Design) e Floor Clock Tree . _—
[Entry][Synthesis][Partltlonmg][PIanning][PIacement][Synthesis][Routing][DFM][Sign-off]

* This is an example of when you where you may want to perform
functional verification, STA and Eg. checking to make sure the timing
requirement is met and that the resulting gate-level netlist is
functionally equivalent to the original RTL

. Block-level

Example

Mentor
Calibre

Virtuoso

Drclvs_pre_dum

Mentor
Calibre

Gen_netlist

Cadence
Virtuoso

w
>
=

|
-
w
o
a
o
—
o
a
E

Cadence
Innovus

Synopsys
Design Compiler

Design_planning
Route_opt

Compile

Top-level

Example

Mentor
+ Calibre

Cadence
Virtuoso

Mentor
Calibre

Cadence
Virtuoso

Cadence
Innovus

Synopsys
Design Compiler

Floor planning

Synthesis

DRC & LVS
for LVS Verification

Netlist generation

Macros and SoC
design import
Fiducial Insertions

-
=
[
=
[
Q

S

(-

Tips

* Watch the disk space

e Sharing machine resources

» Use Skylake or newer machines for layout if possible
* More DRAM the better; 128GB+ or more

* Do DRC and LVS on initial design as soon as you can
 esp. if first time through the flow

* Do practice tape out to MOSIS well before the deadline

Q&A Session

e CHIPKIT Tutorial (Part 5)
* Sun. May 31, 2020
* 11:00 AM - 11:15 AM

100 E8

| U

Tutorial on Agile Research Test Chips
Part 6: Bring-up and Testing

Paul Whatmough Marco Donato Glenn G. Ko
Sae-Kyu Lee David Brooks Gu-Yeon Wei

School of Engineering and Applied Sciences

Harvard University

Outline

e Test Board overview
* Connectivity
e Functional blocks

* C(Clot testing software
 Run programs on the SoC
 \Voltage and Frequency scaling functions
 Measurement sweep template

Test board overview

A-Class SoC architecture

Arm Cortex-A53 64-bit CPU Cluster ™, I/' Cache-Coherent Datapath Accelerators

__

L (b K= NIC-400 64-bit Interconnect

i ! Accelerator! i
: Coherency |
| . Port ! |
A 1 (ACP) | |

() | § ACC2 Accs

1

3]

\ U

\ / ’
. v i .
Vo o527 -7

NIC 4OO 128 blt Interconnect

P B s .
g N
y \
i \

AHB 32-bit Interconnect

|

10 i
Bridge 4 Banks . M-class
" x1MB SRAM E FC i
| avenN=N MESTTN | Sub-system
; +SRAM ;

DRAM 3
PCle “._ Always-On (AON) 32-bit Cortex-MO Cluster

- 29”

ThinLink -

Test board and FPGA setup

« DARPA CRAFT BGA flip chip socket
e Power supply connections
e USB to UART interface

* General Purpose 10 for debugging

= — 2 SMIV TEST BOARD L.

: s ’@5 ZEXV}\%«S SEAS P ‘ ! .
— BGA=acket | 4 SMA clock connections

* FPGA Mezzanine Card (FMC) connector
* Kintex KCU105

USB/UART GPIO

Power Delivery — mode |

Vpp is generated from a 5V switching power
supply and an on-board voltage regulator

Useful for nominal operation and initial

debugging
00 [@]0)
5POV I I IVD6
5 REG_IVD6
us o)
s 3N ouT 2 = 12 | R19 o 0.1
v |
B L 41 \ca 5] 3M9457-02-ND
Ll o 2 1 c8

3 D EN —— 10uF LED3

L & 8 —T 6.3V.X5R B
X5R 3 PIN JUMPER 9 | GND 7 11 8.2K 0603 =
TSW-103-07-T-S TAB FB anA B

— = — Voltage R12 30.1K

regulator YT

Power Delivery — mode | with current read

Vpp is generated from a 5V switching power
supply and an on-board voltage regulator

Useful for nominal operation and initial

debugging

Supply current can be measured with a DMM

5POV

o REG_IVD6
(5} o)
~ 3 6
JP30 | 4 | N OUT 5 7
1 NC4 cs
3 N 2 2 EN 1 =t 10uF
L a 8 T 6.3V,.X5R
[GND 0603
3 PIN JUMPER 9 7 11 8.2K
TSW-103-07-T-S TAB FB anA e
u — Voltage 301K
) regulator

DMM

]

O
O

2
1

R19

0.1

IVD6

3M9457-02-ND

LED3

Power Delivery — mode ||

The power pin is decoupled from the on-board

voltage regulator PSU
Vpp is generated from a programmable PSU f
1
|
Required for running voltage scaling i
measurements v
(0JO) 00O

IVD6

R19 0.1])

LED3

2
1
2
1

Clocking and Resets

Single off-chip clock (HCLK)
* HCLKis connected to the SoC input pin and
a SMA connector for debugging

* Faster clocks are generated on chip and can
be routed internally to the DIAG block

1P8V

JP2
1E|2

R160,

C286
0.1uF

16V, X7R

Y1 —= 0402

[26] PORESETn >>—3@
The board is design with power-on reset
capabilities 0
* The reset can be manually triggered via <
push-button
* During power-on, PORESETn is asserted
when the supply voltage Vpp becomes

higher than 1.1 V and deasserted after a

1P8V

4

R152
50

1P8V
o

N|(")<I‘LO

.||+

OE/ST/NC VDD
NC

GND ouT

SiT2001B

u18

1P8V

CT VCC

fixed delay time (200ms)

6.3V,X5R
© swi ; 0603

E‘ FSM4JSMATR

MR

R103, 20 PORESETn

GND RESET
TPS3838E18

—o

C288
=t 0.1uF
[16V, X7R
0402

[2,6]

1
@ 142-0701-201
SMA

J43

USB interface

UART

I

1P8V
C285 C284 C283
0.1uF L 4.7uF 0.1uF

16V, X7R™ T 6.3V,X5R 16V, X7R
0402 0402 0402

= — u17
= = 1 30 R81 100
. o, VCCIO TXD - UART_M_RXD
USB - mini B Receptacle Connector 5 Position RXD %2 sgg - 188 UART M TXD
Through Hole, Right Angle, Horizontal 19 RTS# [Rea 00 UART_M_CTS
VBUS vce CTS# m UART_M_RTS
J42 31
6 1 DTR# 5
7| GND_T1 VBUS [o 15 DSR# [
GND_T2 D- 3 oy 74| DM DCD# |3
D+ 3 T DP RI# 15‘)8V
D75 SM_LED_GRN
GND CR1 \/ CR2 22 LED16C XX A R85, 100
2xPGB 1010603 ggﬂg? 21 LED17C__ "% A R86 o 100
USB_CONNECTOR 10
TE 2xPGB1010403 CBUS2 17— SM_LED_GRN
1734510-2 . CBUS3 [
R80 0 CBUS4
1 18
O RESET# 20
27 GND_3 47
— RED 3P3V FT 28 | OSCI GND_2 7
- - 0sCco GND_1
16 24
3V30UT AGND |55
C282 TEST
0.1uF FT232RQ

16V, X7R
0402

USB UART IC

[2]

[2]
[2

Clot testing software

CLOT — Chip LOad Tool

CLOT provides a set of python functions that allow to talk to the UART interface:
* Check the status of the slave interface

e Configure the DIAG mux for debugging internal signals

* Load hex files to a user-specified memory

* Dump memory content to a hex file

* Memory testing capabilities

e Configure internal CRG registers for clock and reset

* Run programs loaded in memory

Uses VISA API to interface with other instrumentation (PSU, Scope, DMM)

MO load and run example:

clot -load imem hex/M@/hello.vhx -run

def write_mem_hexfile(ser,base_addr,hex_file,size=None):

‘ I_O | — I—O a d 1 Keep writing until reach end of file or hit size bytes.

Each line in the hex file must either be "", start with "//",

or contain no more than 8 hex digits

pen file

assert os.path.isfile(hex_file), 'File missing: %s' % hex_file

f_hex = open(hex_file, "r")
. # Write to MEM line by line
* Open hex file
for line in f_hex:

if size != None and not i < (size / 4):
* Read 32bit word break

Ignore comment lines

line = line.rstrip()

if line == or "//" in line:

* Compute next address and write
assert len(line) <= 8

addr = base_addr + (i * 4)
wr(ser, addr, int(1line,16))

i+=1

if(0):

pass

return

CLOT — Run (2)

* Open UART slave port and switch the
AHB MASTER MUX from UART to MO

 Read from UART Slave until:
* End of Transmission (EOT) is
detected
* Timeout

* Switch AHB MASTER MUX back to
UART

uart_slave = serial.Serial(**USB_UART_SLAVE@_CONFIG)
print_info('Run')

ahb_master_mux(uart_master,1)

start_time = time.time()
elapsed = 0
done = False
timeout = 10000.0
while not done:
out = "'
while uart_slave.inWaiting() > 0:
out += uart_slave.read(1)
if out != '':
print(out)

elapsed = time.time() - start_time

if ('\x@04' in out):

done = True

elif (elapsed > timeout):

done = True

print_error('Timed out"')

ahb_master_mux(uart_master, Q)

uart_slave.close()

CLOT — A53 example

MO is used to run a bootstrap routine for A53
and the SoC

e Set all DCO clocks to HCLK (50MHz)

* Release all resets (except A53)
Load test binary on A53 instruction memory

clot -load imem hex/M@/run_a53_t1lx.vhx -load aimem hex/A53/dhrystone.vhx —run

DRAM on the FPGA is used for larger binaries which cannot fit on the on-chip SRAM

clot -load imem hex/M@/run_a53_t1lx.vhx -start

clot -load aimem hex/A53/sys/jump_aimem_t1lxdram.vhx -1load tlx-dram hex/A53-DRAM/dhrystone.vhx

DVFES functions

Configure DCO A53 Clock * Frequency and voltage Sweeps

clot —-clock A53_CLK true DCO 63 7

* Clock Reset Generator
configuration with internal
registers

Program and Measure PSU voltage

vicon -set_ps_volt 3 0.8

vicon —meas volt 3)
. e VISA control functions for

PSU/Scope programming and data
Measure Frequency acqu isition

vicon —-meas_freq 2

DVES sweeps

Running C code tests on any of the internal macros using memory
mapped registers:

* Write test vectors to internal registers

* Assert macro/accelerator enable signal

* Read back test results and compare to golden values
* Write error flags to test registers

This routine can be repeated for different values of V5 and frequency
tofind f__,

C test code

Write test vectors

puts("Write test vectors");

if (write_read_regs((void %) &SM5_PREGS—>DP_I_DCST_SIZE, 32, 0x00014000) != @) err_code |= 1<<0;

if (write_read_regs((void %) &SM5_PREGS—->DP_I_DCST_DEST, 8, 0x01) != @) err_code |= 1<<1;
if (write_read_regs((void x) &SM5_PREGS->DP_I_DCST_WEN, 8, 0x01) != 0) err_code |= 1<<1;
if (write_read_regs((void %) &SM5_PREGS—->DP_I_DCST_RBANK, 8, 0x00) != @) err_code |= 1<<1;
write_regs((void *) &SM5_PREGS->DP_I_DCST, 8, 0x01);
write_regs((void x) &SM5_PREGS—>DP_I_DCST, 8, 0x00);

for (i=0; i<input_size; i+=4) {

write_regs((void %) SM5_PGMA_DCOST@_BASE+i, 32, input_arraylil]);

C test code

Run test and check for done flag

puts("Run test");

int dcst_done;

dcst_done = read_regs((void %) &SM5_PREGS—>DP_0_DCST_DONE, 32);
while(dcst_done != 1)

{

dcst_done = read_regs((void *) &SM5_PREGS->DP_0_DCST_DONE, 32);

C test code

PASS/FAIL check

puts(“Check test results")

if (err_code> 0) {

int readvalue; .
puts ("Failed");

int diffcount=0; _
printf ("Error code : %x\n", err_code);

write_read_regs((void x) &SM2_PREGS->DP_DUMMYQ, 32, 0x00000001);
for (i=base_addr; i<mem_size; i+=8) {
write_read_regs((void x) &SM2_PREGS->DP_DUMMY1, 32, 0x00000000);
readvalue = read_regs((void %) SM5_PGMA_GLOBAL_BASE+i, 32);

return 1;

} else {

if (readvalue !'= goldvaluel[il)

{

diffcount = diffcount +1; puts (Passed\n®);

write_read_regs((void x) &SM2_PREGS->DP_DUMMY@, 32, 0x00000000);

} write_read_regs((void x) &SM2_PREGS->DP_DUMMY1, 32, 0x00000001);

printf("Total different counts: %d\n", diffcount); return 0;

if (diffcount != @) err_code |= 1<<1;

rm = visa.ResourceManager('@py"')

for vdd in vdds:

Python sweep wrapper

f_max_flag = 0

time.sleep(wait_time)
Template for VF sweeps

meas() uses VISA functions to report:
* Average supply voltage/current

* Average power

e Operating frequency

set_ps_volt(rm, 2, vdd)
time.sleep(1)

dco_sel = sel_reset
dco_div =1
time.sleep(wait_time)

. avg_volt, avg_cur, avg_pwr, freq = meas(rm,diag_div)
run_binary() runs test code on A53:

Load binary on imem/aimem

Reset block under test and set clock
configurations

Run program and return the test
signature

while(f_max_flag == 0):
signature = run_binary(rm, vdd, dco_sel, dco_div, diag_div)
time.sleep(1)
if signature != gold_signature:
Pick dco_sel, dco_div for lower frequency

The test signature is compared to a gold else:

Value to Check for PASS/FA”_ # Pick dco_sel, dco_div for higher frequency

All working (dco_sel, dco_div) values have been tested

Iset f_max_flag =1

Sweep results

-2
) 10
Fixed Function 1.0378 TOPS/W M Dual-A53 M eFPGA
Accelerath j M Dual-A53 SIMD H CCA

= ‘ 312.4 GOPS/W
S > = 3
S~ - -
v ; = 107
% Reprogrammable =
) Hardware 3
) &
: -4
o Fully Software ; w10
T Programmable Dual-A53

‘ Dual-A53 SIMD

2x2 eFPGA

‘ Quad-CCA

‘ 10

) 1 2

10 10 10 MEP NOM

Throughput (GOPS)

Q&A session

CHIPKIT Tutorial (Part 6)
Sun. May 31, 2020
11:15 AM -11:30 AM

