
Context-Sensitive Editing for the MEDFORD
Metadata Language

Liam Strand1,0009−0005−9712−1689, Andrew Powers2,0009−0002−4878−9752,
Polina Shpilker1,0000−0002−6761−7326, Lenore Cowen1,0000−0001−6698−6413,

Alva Couch1,0000−0002−4169−1077, and Noah M. Daniels2,0000−0002−9538−825X

1 Department of Computer Science, Tufts University, Medford, MA 02155, USA,
2 Department of Computer Science and Statistics, University of Rhode Island,

Kingston, RI 02881, USA
noah daniels@uri.edu

Abstract. The MEDFORDmetadata description language was designed
to enable creation of structured metadata in an ordinary text editor. This
paper provides a tool that improves the ease of writing correct MED-
FORD within the popular VSCode editor. This tool provides syntax
highlighting and autocompletion features that generate real-time feed-
back in the form of suggestions which improve the discoverability of lan-
guage semantics, as well as useful and informative error messages. This
tool leverages the Language Server Protocol, and thus is easily ported to
other text editors.

1 Introduction

The recent MEDFORD metadata description language is designed to create
structured metadata for research objects (e.g. manuscripts, datasets, software,
experiments) in a format that is simple to read and write for both humans and
machines [6]. Designed to be easy to learn, the MEDFORD language can be used
by researchers of any domain to describe metadata using any standard text edi-
tor. In MEDFORD, the structured metadata fields are indicated by a controlled
vocabulary following the @ character. A MEDFORD file is then coupled with the
BagIt standard [4] to allow users to reference or optionally package their data
along with their metadata [6].

The medford parser checks completed MEDFORD files for syntactic and se-
mantic errors. In keeping with our goal of making it easy for humans to write
correct MEDFORD files in a basic text editor, we wanted also to build an ex-
tension to that text editor to help users write correct MEDFORD files by giving
real-time feedback during editing. This feedback improves the discoverability of
the MEDFORD language by suggesting auto-completions, and also highlights
errors as they are made.

In recent years, the proliferation of user-friendly programming languages
(e.g. Python, Typescript, Dart) and data-description languages (e.g. TOML,
YAML, JSON) has led to the development of user-assistance tools for popular



2 Liam Strand et al.

text editors. Beyond simple syntax highlighting, these tools have typically sug-
gested completions for partially-typed keywords (including variable, function, or
method names), provided inline display of warnings and errors (such as from a
syntax checker, type checker, or linter), and provided quick access to build tools
and documentation [7]. Effective language tools ease the learning curve of an
unfamiliar language to a user [3]. In this paper, we develop such a user-assistant
tool for the MEDFORD metadata language.

Our tool leverages the Language Server Protocol (LSP), a JSON-based schema
for communication between a text editor and a language-specific parser, intro-
duced by Microsoft within the last decade. Before the existence of the LSP,
providing a language-specific parser required a Cartesian explosion of software
to be written: for every combination of editor, language, and operating system,
a custom plug-in required development and testing. This served as a barrier to
adoption of new text editors, new languages, and less-popular operating systems.

A language server implementing the LSP can, in principle, serve as a “Rosetta
stone” or translation hub between any text editor that supports the LSP and
any language for which an LSP implementation exists. Thus, only one language
server needs to be written per language, rather than the Cartesian product of
languages, editors, and operating systems. In practice, some editor-specific tools
may still need to be developed, but they are much simpler and smaller than
an entire plug-in specific to an editor, language, and possibly operating system.
Below we describe the MEDFORD editor tool in the context of the popular
Microsoft Visual Studio Code editor (henceforth VSCode), but its use of the
LSP means it is also easily portable to other editing environments.

2 MEDFORD’s Vocabulary

Oftentimes, when beginning to write technical syntax or code in a new language
or format, a common hardship is the lack of knowledge of the language [3]. The
MEDFORD language is designed to be extended by users as they write, where
users are always free to make up new @ tags. The MEDFORD parser treats any
such tag that is unknown to it as a ”note” tag and passes the content through
unchanged. However, MEDFORD becomes much less useful if some users are
using @author while others are using @contributor and others @writer; thus a
common vocabulary of MEDFORD terms known to the parser and standardized
(as well as standard formats for dates and GPS coordinates, and so on) are
greatly preferred. In fact, the parser will protect and restrict these standards for
its syntactic checking of MEDFORD files.

We have documented all the MEDFORD tags which are known to the cur-
rent (1.0) version of the MEDFORD parser, in a complete user manual and
tutorial [5]. We have designed editor support for this set of MEDFORD tags,
making use of the tools built into the average IDE in the form of support for the
language server protocol.

Prior to this new work, we found anecdotally, in feedback from domain sci-
entsts (coral researchers) who were informally testing MEDFORD in their re-



MEDFORD Editing 3

search groups, that users had trouble utilizing MEDFORD to its fullest potential.
Our editor support helps users by solving the following problems:

1. Users must learn how the parser sees a file, i.e., what parts of the docu-
ment have special meaning. Users need to develop an intuition for how the
document is structured.

2. Users need to learn what major and minor tokens are known to the parser.
3. The parser’s feedback is separated both temporally and spatially from the

document being written. The user must learn how to understand the parser’s
error messages in order to fix them.

4. More advanced features such as macro substitution were never exposed to
the user, impeding discoverability of such features.

Our work to build an editor support tool for MEDFORD alleviates these
problems while retaining the language’s flexibility and extensibility. A major
contribution of the current work is the incorporation of autocompletion into our
VSCode extension for the language. As the user is writing syntax, suggestions
will appear similarly to how search engines display suggested searches when
making a query. In MEDFORD, this feature has been implemented into the
language server, and thus is present in the VSCode extension for the language.
The advantage of this method is that the user will begin to learn the language in
real time with the suggestions shown to them. In addition, a built in hover feature
shows more information about the already-written syntax when the cursor is
placed over it. Primarily, the benefit of this feature for MEDFORD is that it
allows for users to easily see the related tokens of any given token, which are a
key part of the language.

One key concept in MEDFORD is that major tokens, such as @Contributor,
associate with subsidiary tokens, calledminor tokens, such as @Contributor-Role.
A minor token by itself makes no sense without the “parent” major token, but
in designing MEDFORD, we deliberately avoided any sort of nesting or hierar-
chy (for instance, we did not want nested brackets). In this context, the hover
feature allows the editor to suggest related minor tokens only once the user has
already typed a major token. This prevents users from having to outright use
documentation unless necessary and introduces an organic way for them to learn
new minor tokens for major tokens that they may use frequently. As a new user,
one may not be aware of every minor token associated with a given major tokens,
and the benefits of this feature help to mitigate this problem. Using this feature,
rather than memorize or consult the user manual, users can instead discover new
tokens organically using the provided autocompletion and hover capabilities.

3 Seeing A Document Through the Parser’s Eyes

A key part of attaining fluency in MEDFORD is understanding how the parts
of a document are assigned semantic meaning. For example, it is important that
a user understand that the metadata line:



4 Liam Strand et al.

@Contributor-Role Author

is formed from the keywords @ and -, the expected major token Contributor,
the expected minor token Role, and the metadata itself Author. Without any
help, these distinctions are not immediately clear.

A strong intuition for document structure allows users to quickly and con-
fidently make changes in the appropriate places. We help users develop this intu-
ition by highlighting the different parts of a line in different colors.

Fig. 1. MEDFORD syntax highlighting.
Here, @ and - are highlighted with the key-
word color, Contributor and Role with the
expected token color, and Author with the
color representing metadata values. Note
that the metadata associated with a token
(in this case, Contributor-Association) is al-
lowed to span multiple lines.

The syntax highlighter uses colors de-
fined by the user’s editor theme, so it
does not make sense to discuss specific
colors. Instead we will use terminol-
ogy like “keyword color” or “expected
token color” to describe how text is
highlighted.

For the example above, as shown
in Figure 1, we highlight @ and - with
the keyword color, Contributor and
Role with the expected token color,
and Author with the color represent-
ing metadata values.

In this simple example, the high-
lighting is straightforward, but much
more complicated metadata strings
are possible, using macros, inline La-
TeX, comments, and expected and user-defined tokens. The highlighting system
helps elucidate the meaning of complex nested syntax.

4 Real-Time Feedback

We cannot expect users to write MEDFORD documents perfectly on their first
attempt; even experienced MEDFORD users are likely to make small errors on
a regular basis. The current paradigm for identifying these errors involves the
user first writing the document to the best of their ability, then submitting
that document to the parser for validation. Though we attempt to make the
resulting error messages clear and specific, having the errors appear separated
from the document text removes their context and makes resolving the errors
more challenging.

A new user could be easily overwhelmed by dozens of lines worth of er-
ror messages after writing a few major-token blocks. This discouragement and
overwhelming of new users is well-studied (and not new) in the context of in-
troductory programming courses [2], and carries over even to non-programming
languages such as MEDFORD.



MEDFORD Editing 5

Fig. 2. MEDFORD error
highlighting. In VSCode,
the error is marked with
a squiggly red underline.

To mitigate user discouragement, we implemented
a system that provides immediate and contextualized
feedback to the user as they type. Users are made
aware of their mistakes immediately and can choose
to fix them immediately, without having their writ-
ing ”flow” disrupted. Furthermore, error messages are
much easier to understand and resolve because they
appear in the context of the text to which they refer.
In VSCode, an error message appears as a red squig-
gly line below the erroneous text, as in Figure 2, while
other editors might display errors differently.

Fig. 3. MEDFORD auto-
completion. In VSCode,
possible completions
appear as a drop-down
menu.

The system is as permissive as possible. Users can
keep writing even after the system displays error mes-
sages. Furthermore, the system continues to check for
errors later in the document even after spotting a first
error. When the system marks an error, it is not say-
ing ”stop everything and fix this”, it is instead saying
”you’ll want to come back to this soon”.

In addition to marking errors that signify an in-
valid MEDFORD document, we also provide feed-
back for likely mistakes. An example of this would
be the user indicating that an author is cor-
responding with a line like @Contributor-Role

Corresponding Author, but failing to provide an
associated @Contributor-Email. Similar likely mis-
takes, like including the template token [..] used for
indicating metadata that must be inserted by the user, or writing a malformed
DOI can also be caught with this system.

Finally, we enable discoverability by showing possible completions of tokens a
user has typed, as illustrated in Figure 3. With this system for real-time feedback,
users can write confidently, knowing that they will be made aware of any mistakes
as soon as they make them.

5 Future Directions

We will add support to other platforms for writing MEDFORD files. In particu-
lar, any editor uses the Microsoft Language Server Protocol may be considered.
This potentially includes Sublime Text, Neovim, Emacs, and some others. While
the LSP implementation itself need not change, a lightweight “shim” is needed
for some editors, while other editors can talk to the language server directly. Of
course, testing is needed across all editors.

Beyond editor support, there is also interest in whether generative AI can
be utilized to more intelligently correct or prompt users to document metadata
fields. Recent developments in large language models [1] have enabled prompt-
based generation of functioning code, unit tests, and documentation across a



6 Liam Strand et al.

number of programming languages. Of course, in the case of MEDFORD, writ-
ing a prompt with all the metadata would be as much work as writing the MED-
FORD markup itself. However, we plan to investigate how large language models
can be given a data source, such as the PDF of a journal article, and simultane-
ously extract the metadata and mark it up appropriately as valid MEDFORD.
We can envision extending this concept to other data sources, such as photo
collections, genomic or other sample data, and the like.

6 Availability

The MEDFORD parser and editor support are freely available at:

– https://github.com/TuftsBCB/medford
– https://github.com/TuftsBCB/medford-language-server
– https://github.com/TuftsBCB/medford-vscode

7 Acknowledgments

We thank the anonymous reviewers for their valuable suggestions. The initial de-
velopment of MEDFORD was supported in part by the National Science Foun-
dation under NSF grants OAC-1939263. OAC-1939795 and OAC-1940233. The
current work was supported by a seed grant from the Tufts Data Intensive Study
Center (DISC). Liam Strand thanks the Tufts University Summer Scholars pro-
gram and the Fowler Family.

References

1. L. Floridi and M. Chiriatti. Gpt-3: Its nature, scope, limits, and consequences.
Minds and Machines, 30:681–694, 2020.

2. M. Harman and S. Danicic. Using an interpreter to teach introductory programming.
WIT Transactions on Information and Communication Technologies, 7, 1970.

3. A. J. Ko, H. H. Aung, and B. A. Myers. Design requirements for more flexible
structured editors from a study of programmers’ text editing. In CHI ’05 Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’05, page 1557–1560,
New York, NY, USA, 2005. Association for Computing Machinery.

4. J. Kunze, J. Littman, E. Madden, J. Scancella, and C. Adams. The bagit file
packaging format (v1. 0). Technical report, 2018.

5. A. Powers, L. Strand, L. Cowen, A. Couch, P. Shpilker, and N. Daniels. MEDFORD
User Guide, Aug. 2023.

6. P. Shpilker, J. Freeman, H. McKelvie, J. Ashey, J.-M. Fonticella, H. Putnam,
J. Greenberg, L. Cowen, A. Couch, and N. M. Daniels. Medford: A human-and
machine-readable metadata markup language. Database, 2022, 2022.

7. V. K. Swarnkar and K. Satao. A survey on performance of different text editor,
2013.


