Multiclass Classification

COMP 135 Intro to Machine Learning
Liping Liu

slides modified from Roni Khardon’s with permission

Multiple classes

• Each label \(y_i \in \{1, ..., L\} \)
• Need classifiers \(f: R^d \to \{1, ..., L\} \)
• Methods
 - Extending binary classifiers
 - Combining binary classifiers

Extend existing classifiers

• Method 1: extend the predictive probability \(p(y|x) \) to a categorical distribution

• Method 2: output \(L \) scores, \(\eta_1, \eta_2, ..., \eta_L \), from an instance \(x_i \), and then choose the class with the largest score

Extending predictive probability

• KNN
 - Estimate \(p(y|x) \) from neighbors by counting
• Trees
 - Calculate information gain from multiple classes (need to calculate entropy of classes within each node)
 - Estimate \(p(y|x) \) from each leaf by counting

Extending predictive probability

• Logistic regression
 - Use a vector \(w_\ell \) for each class
 - Extend the predictive probability as
 \[
 p(y = \ell|x) = \frac{\exp(\eta_\ell)}{\sum_{\ell'=1}^{L} \exp(\eta_{\ell'})}
 \]
 \[
 = \frac{\exp(w_\ell x_i + w_0)}{\sum_{\ell'=1}^{L} \exp(w_{\ell'} x_i + w_0)}
 \]

Multiple class scores

• SVM
 - Use a vector \(w_\ell \) for each class
 - Soft loss \(\xi_i \) is defined as below when the true label is \(y_i = \ell \)
 \[
 w_\ell x_i - w_{\ell'} x_i \geq 1 - \xi_i, \forall \ell' \neq \ell
 \]
 - Equivalently
 \[
 w_\ell x_i - \max_{\ell' \neq \ell} w_{\ell'} x_i \geq 1 - \xi_i
 \]
 - Principle: the most confusing label should get a score with margin 1, or suffer loss

Ensemble classifiers

- Random forests & BAgging
 - Vote to decide the class label
- Gradient boosting
 - Construct \(L \) sequences of trees, each one output a score \(\eta^\ell(x) \) for a label \(\ell \) from instance \(x \)
- AdaBoost
 - Need to consider how to update weights of data points (out of the scope of this course)

One-vs-All classification

- For each class, train a classifier
 - Positives: instances from this class
 - Negatives: instances from all other classes
- Choose the class with the largest predictive score
- Need to train \(L \) binary classifiers

One-vs-One classification

- For each pair of classes, train a binary classifier to classify the two classes
 - Need to train \(\frac{L(L-1)}{2} \) classifiers
- Classifiers vote to decide final class label

Evaluation and diagnosis

- Confusion matrix
- Cost matrix: different cost for different types misclassifications

One-vs-One classification

- For each pair of classes, train a binary classifier to classify the two classes
 - Need to train \(\frac{L(L-1)}{2} \) classifiers
- Classifiers vote to decide final class label

Error-Correcting Output Coding

- Convert a multiclass classification problem into binary classification problems

Other types of classification problems

- Each instance can take multiple labels
 - Multilabel learning
 - Labels of single instances have structures