Logistic Regression

COMP 135 Intro to Machine Learning
Liping Liu

slides modified from Roni Khardon’s with permission

Predictive prob from linear functions

• Recall: directly fit $p(y|x)$ for prediction
• Linear function with a link function g
 \[\eta = w^T x + w_0, \]
 \[p(y = 1|x) = \mu = g^{-1}(\eta) \]
 - Which function g^{-1} to use?
 - How to learn values of w and w_0?

Link function g is from the tradition of statistics.
We always directly specify $g^{-1}(\cdot)$

Link function

• Choices of link functions:
 - Logistic function
 \[g^{-1}(\eta) = \frac{1}{1 + \exp(-\eta)} = \frac{\exp(\eta)}{1 + \exp(\eta)} \]

Likelihood of training instances

• Likelihood of a single instance
 \[\mu = p(y = 1|x; w, w_0) = g^{-1}(x; w, w_0) \]
 \[\log p(y|x; w, w_0) = \begin{cases}
 \log \mu, & \text{if } y = 1 \\
 \log (1 - \mu), & \text{if } y = 0
\end{cases} \]
 - Write it together as
 \[\log p(y|x; w, w_0) = y \log \mu + (1 - y) \log (1 - \mu) \]
 Log likelihood of Bernoulli random variable

Predictive prob from linear functions

• Recall: directly fit $p(y|x)$ for prediction
• Linear function with a link function g
 \[\eta = w^T x + w_0, \]
 \[p(y = 1|x) = \mu = g^{-1}(\eta) \]
 - Which function g^{-1} to use?
 - How to learn values of w and w_0?

Link function g is from the tradition of statistics.
We always directly specify $g^{-1}(\cdot)$

Link function

• Two considerations
 - Requirement of domain and range
 \[g^{-1}: \mathbb{R} \to [0, 1] \]
 - Smooth: small changes of x do not cause big changes of y
Principle of MLE

- Maximize the likelihood of the data to estimate the parameters
 - We have data \((y_i, x_i), i = 1 \ldots N\)
 - We have a model \(p(y|x; \theta)\)
 - We maximize the data likelihood to estimate \(\theta\) by
 \[
 \max_{\theta} \sum_{i} p(y_i \mid x_i; \theta)
 \]
 - We predict by \(p(y_{\text{new}} \mid x_{\text{new}}; \theta)\)

Again assume instances are independent. Why?

Learn the logistic regression

- MLE estimation
 \[
 (w, w_0) = \arg \max_{w, w_0} \sum_{i} \log p(y_i \mid x_i; w, w_0)
 \]
- The learned model is \((w, w_0)\)

Will talk about solving the optimization problem later.

Prediction by logistic regression

- Prediction
 - Decision rule
 \[
 \hat{y} = \begin{cases}
 p(y = 1 \mid x) > 0.5 & \text{if } \hat{y} = w^T x + w_0 > 0
 \end{cases}
 \]

Geometric understanding

- Linear decision boundary

Linear decision rule

- The classification rule \(\hat{y} = [w^T x + w_0 > 0]\) is powerful
 - Express \(y = (x_1 \text{ and } x_2 \text{ and } x_3)\),
 \(y = [x_1 + x_2 + x_3 > 3]\)
 - Express \(y = (x_1 \text{ or } x_2 \text{ or } x_3)\):
 \(y = [x_1 + x_2 + x_3 > 1]\)

- The classification rule \(\hat{y} = [w^T x + w_0 > 0]\) has weakness
 - It cannot represent XOR

Image from [RN] AIMA
Linear decision rule

- Relation with the data dimensionality
 - In 2d sample space, can you find 3 different instances of two classes that cannot be linearly separated?
 - In 3d sample space, can you find 4 different instances of two classes that cannot be linearly separated?
 - In general, instances in high dimensional space is easier for linear decision rule

Overfitting

- Common data problem
 - Label is random for the same x
 - Label are not “smooth” with large variations within a small area of x
 - Not enough data to reveal such variations

Overfitting

- Model learns some patterns that cannot generalize
 - Model works hard in learning to fix every training error
 - Performs well on training set but badly on test set
 - Analogy in real world: memorize all answers of exercise problems, but cannot solve problems in tests
- Solution: use simpler/more rigid model

Regularization

- Linear model is more likely to overfit high dimensional data
- Penalize model complexity
 - Minimize a regularizers $R(w, w_0)$ together with the maximization of the likelihood
 - Examples of regularizers:
 \begin{align*}
 R(w, w_0) &= w^T w = ||w||^2_2 \\
 R(w, w_0) &= \sum_i |w_i| = ||w||_1
 \end{align*}

Objective with regularization

- Add regularizer to the optimization problem
 - The parameter λ tradeoff the two objectives
 - The number $\frac{1}{2}$ is to cancel the number 2 in derivative of $||w||^2_2$
 \begin{align*}
 \max_{w, w_0} & \sum_i \log p(y_i | x_i; w, w_0) - \frac{\lambda}{2} ||w||^2_2 \\
 \min_{w, w_0} & -\sum_i \log p(y_i | x_i; w, w_0) + \frac{\lambda}{2} ||w||^2_2
 \end{align*}

More explanation of regularization

- More explanations
 - A large λ drives w to zero
 - With large λ the model is rigid
 - negative log-likelihood plays less important role in training
 - $\lambda = 0$ recovers the basic model
 - Model is more susceptible to variances in training sets

Will focus on 2-norm in this course.
See more norms in [ICML]
Learning the model

• Solve the optimization problem

\[
\min_{w,w_0} L(w, w_0) = -\sum_i \log p(y_i | x_i; w, w_0) + \frac{\lambda}{2} \|w\|^2
\]

• Recall: need to find a \(w, w_0\) such that

\[
\frac{\partial L(w, w_0)}{\partial w} = 0, \quad \frac{\partial L(w, w_0)}{\partial w_0} = 0
\]

• No closed-form solution, need iterative solution

Mini-tutorial of optimization

• You have a function \(f(x)\), need to find \(\min_x f(x)\)

• Gradient descent

- Start at an initial point \(x_0\)
- Iteratively do: \(x_{t+1} = x_t - \alpha_t f(x_t)\)
- Until \(x_t\) or \(f(x_t)\) does not change much

Gradient descent - illustration

• One dimension

Optimization

• How do I set step size?
 - A small number in general (many studies on this problem)
 - E.g., \(\alpha_t = \frac{\alpha_0}{t}\), with \(\alpha_0\) being a constant

• Will I reach the optimal point?
 - Gradient descent methods are guaranteed to get global minimum for convex function
Back to our problem

- Useful fact about sigmoid
 \[L(w, w_0) = -\sum_i \log p(y_i | x_i; w, w_0) + \frac{\lambda}{2} \|w\|_2^2 \]
 - Our problem is convex!
 - Need to calculate the gradient (work on white board)

Final algorithm

Start with \(w^0, w_0^0 = 0 \)
For \(t = 0, \ldots, (T-1) \)
\[
\begin{align*}
 w^{t+1} &= w^t - \frac{\alpha}{t} \nabla L(w^t, w_0^t) - \lambda w^t \\
 w_0^{t+1} &= w_0^t - \frac{\alpha}{t} \nabla L(w^t, w_0^t) - \lambda w_0^t
\end{align*}
\]
if \(L(w^{t+1}, w_0^{t+1}) - L(w^t, w_0^t) < \delta \)
break
Return \(w^T, w_0^T \)

Discriminative and generative

- Generative model
 - Model data likelihood \(p(y, x; \theta) \)
 - Example: Naive Bayes
- Discriminative model
 - Model \(p(y|x; \theta') \)
 - Example: logistic regression
 - Most classifiers are discriminative

Discriminative and generative

- Discriminative model generally performs better
 - Intuitive understanding: generative models implicitly fit \(p(x) \), which is unnecessary, since \(x \) will be known at testing stage
 \[
 \log p(x, y; \theta) = \log p(x; \theta) + \log p(y|x; \theta)
 \]

Recap: Logistic regression model

- Expressive for high dimensional data
- Has limitations, rigid decision boundary
- Easy geometric understanding
- Discriminative model
- Need iterative optimization for model fitting, but still relatively easy problem