Learning Theory

COMP 135 Intro to Machine Learning
Liping Liu

Questions

• Do we have guarantee that we can learning good classifiers?
 - Yes with a few assumptions

• What factors affect classification error?

• More insightful understanding of bias/variance?

Setup

• Hypothesis space (model space): all possible classifiers

• Training set/training error
• Expected classification error
• If we minimize training error, can we say anything about expected classification error?

Training process is a process of excluding ‘bad’ classifiers

A game: classification problem

• Predict whether a person likes “yellow” color or not

Example: training set

• Training set: randomly sampled from the population

A game: classifiers

\[H = \epsilon_0 + \epsilon_1 + \epsilon_2 \]

Error rate
A game: classifiers

- I'm one classifier, and my rule is:
 - If the first letter of one's name is before "O" predict "YES"
 - Otherwise, predict "NO"

Example: expected training error

- Training: keep a classifier that have ZERO training error
 (a simple theoretical analysis here, don't worry overfitting)

- Is the trained classifier good (error rate < \(\epsilon \), say 0.05)?

A game: probability of a good result

- What's the possibility that AT LEAST ONE bad classifier (say Peter or I) can cheat all training examples?
 - The probability at least one bad classifier of making all instances correct is \(\leq |H| \cdot (1 - \epsilon)^N \), assuming we have \(N \) training instances (by union bound)

The first formal result

With probability at least \(1 - |H| \cdot (1 - \epsilon)^N \), the training process (of picking a classifier with zero training error) will return a classifier with an error rate less than \(\epsilon \) given the training set with \(N \) training instances.
PAC Learning

• Probably Approximately-Correct (PAC) learning

DEFINITION: An algorithm A is an (ε, δ)-PAC learning algorithm if, given samples from a distribution, the probability that it returns a “bad function” is at most δ, where a “bad” function is one with test error rate more than ε on the distribution.

Our result: With probability at least $1 - \delta = 1 - H \cdot \frac{1}{\varepsilon}$, the training process (of picking a classifier with zero training error) will return a classifier with an error rate less than ε, given the training set with N training instances.

Infinite hypothesis space

• What is the hypothesis space is infinite?
 - SVM, logistic regression, trees, ...

• VC-dimension to characterize the complexity of the classifier
 - Higher VC-dim \Rightarrow larger model space
 - Lower VC-dim \Rightarrow smaller model space

Second formal result

With probability $1 - \delta$, the learning algorithm can return a classifier with error at most ε, given a training set with $N \geq \frac{1}{\varepsilon} \log_2 \frac{1}{\delta} + 8V(C)\log \frac{1}{\delta}$ instances

VC-dimension

• Definition:
 For data drawn from some space X, the VC dimension of a hypothesis space H over X is the maximal K such that: there exists a set $S \subseteq X$ of size $|S| = K$, such that for any binary labeling of S, there exists a function $f \in H$ that matches this labeling.

• Example:
 - linear classifier for R^2, VC-dim = 3
 - linear classifier for R^d, VC-dim = $d+1$

Theory on agnostic learning

• Does not assume zero training error
• Bounding the difference between training error and expected classification error
• More realistic

(out of the scope of this class)

A summary of learning theory

• Relation among N, H, and (ε, δ)
 - Assuming H always containing the true hypothesis
 $N \gtrsim (\varepsilon, \delta)

The theoretical result we just talked is about the relation among the four values: $VC(H)$, N, δ, ε. We bound δ or ε with other three fixed.