Decision Trees

COMP 135 Intro to Machine Learning
Liping Liu

slides modified from Roni Khardon's with permission

Learning a classifier

- Two approaches
 - Maximize predictive probability
 - Minimize binary loss
- Function form
 - Linear
 - KNN
- Today's topic: Decision trees.

Decision Trees

Let's look at a simple dataset for motivation:

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temp</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Mild</td>
<td>High</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cool</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cool</td>
<td>Normal</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Mild</td>
<td>Normal</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>No</td>
</tr>
</tbody>
</table>

- Class: Play tennis
- Attributes:
 - Outlook
 - Temp
 - Humidity
 - Windy

Decision Trees

- Comparing to kNN:
- DTs give a different way to identify regions in instance space:
 Recursively split on values of features to define regions that have single label
- What does this look like with numerical features? (with threshold node tests, for example temp>23)

- Decision trees can represent any discrete function of discrete attributes!
- Why?
Decision Trees

- Given training set, can we build a tree that agrees with the data? (yes; easy; why?)
- What is a good decision tree?
- Given training set, how can we build a good tree?

Decision Trees

- To develop the algorithm
- Let's focus on a simpler question first: which attribute should we choose for root of tree?
- Our choices are ...

Decision Trees

- Which attribute should we choose for root of tree?
- A numerical example:
 - [Pos,Neg] before and after split
 - \([50,50]\) → \([35,15] + [15,35]\)
 - \([50, 0] + [0,50]\)
 - \([10,30] + [30,10] + [10,10]\)
 - \([25,25] + [25,25]\)

Decision Trees

- Assume for the moment that we have some good method of picking root attribute. What's next?

Continuing to Split

- Assume we picked Outlook for the root. Then we must continue splitting each branch Until ... ?
Decision Tree Learning Algorithm

• If data has a pure class
 – Make leaf node with that class
• Otherwise
 – Pick feature to split on
 – Divide data into sub-datasets according to the feature’s values
 – Recursively build a tree for each subset

Decision Trees

• Several selection criteria have been proposed and used.
• Information gain is commonly used (C4.5, J48)
 • We need to learn about entropy …

Decision Trees

• Entropy quantifies the uncertainty of a distribution

\[Ent(p_1, \ldots, p_n) = \sum p_i \log \frac{1}{p_i} = -\sum p_i \log p_i \]

For 2 classes \(p_1 = p, p_2 = 1 - p \) and this simplifies to

\[Entropy(p) = -p \log p - (1 - p) \log (1 - p) \]

Decision Trees

• Uncertainty reduction of a split

Now consider a split \(S \rightarrow S_1, \ldots, S_k \)
where the \(S_i \) are subsets of \(S \)
and may include examples from multiple classes

\[Gain(Split) = Ent(S) - \sum \frac{|S_j|}{|S|} Ent(S_j) \]

\(Ent(S) \) is the entropy of labels in the set \(S \). Same for \(Ent(S_j) \)
Example: calculating Gain

- **Outlook = Sunny:**
 \[\text{entropy}(2/5, 3/5) = -\frac{2}{5} \log(2/5) - \frac{3}{5} \log(3/5) = 0.971 \text{ bits} \]
- **Outlook = Overcast:**
 \[\text{entropy}(1,0) = -\log(1) = 0 \text{ bits} \]
- **Outlook = Rainy:**
 \[\text{entropy}(3/5, 2/5) = -\frac{3}{5} \log(3/5) - \frac{2}{5} \log(2/5) = 0.971 \text{ bits} \]

Expected information for attribute:
\[\text{info}(3,2,4,0,[3,2]) = (5/14) \times 0.971 + (4/14) \times 0 + (5/14) \times 0.971 = 0.693 \text{ bits} \]

\[\text{gain}(\text{Outlook}) = \text{info}(9,5) - \text{info}(2,3,4,0,[3,2]) = 0.940 - 0.693 = 0.247 \text{ bits} \]

\[\text{gain}(\text{Temperature}) = 0.029 \text{ bits} \]
\[\text{gain}(\text{Humidity}) = 0.152 \text{ bits} \]
\[\text{gain}(\text{Windy}) = 0.048 \text{ bits} \]

Decision Tree Learning Algorithm
- If data has a pure class
 - Make leaf node with that class
- Otherwise
 - Pick feature that maximizes information gain to split on
 - Divide data into sub-datasets according to the feature’s values
 - Recursively build a tree for each subset

Improved Heuristic for Wide Splits
- Information Gain prefers wide splits
- Cancel the effect by split information

\[\text{Heuristic for wide splits} \]
\[\text{Gain}(\text{Split}) = \text{Ent}(S) - \sum_j \frac{|S_j|}{|S|} \text{Ent}(S_j) \]
\[\text{SplitInfo} = \sum_j \frac{|S_j|}{|S|} \log \frac{|S_j|}{|S|} \]
\[\text{GainRatio} = \frac{\text{Gain}}{\text{SplitInfo}} \]
Other Criteria

- Reduce other criteria other than entropy

 The Gini Criterion = \(2p(1 - p)\)

 Classification error = \(\min(p, 1 - p)\)

 What do these looks like?

Regression tree

- Reduce squared error

 Squared error = \(\frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2\), with \(\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i\)

 Note: \(y_i\) is continuous here

Let \(R\) be the set of instances in parent node, and \(R_L\) and \(R_R\) be the sets for two children, \(R = R_L \cup R_R\)

Error reduction = \(\text{sq_err}(R) - \frac{|R_L|}{|R|} \text{sq_err}(R_L) - \frac{|R_R|}{|R|} \text{sq_err}(R_R)\)

Real Valued Attributes

- Naïve treatment makes a very wide split with possibly one example per branch.

- Is this good?

- Alternative picks threshold \(t\) and tests (feature \(\geq t\)) to get a binary split.

- How can we pick \(t\)?

Missing Attribute Values

- Common in real data

- We can handle this in a way that works across algorithms (that is, also for kNN).

- How?

- But we can do better with a solution tailored for decision trees. How?

The Bad News

- So far great news

- Simple recursive algorithm

- And some improvements

- But …
The Bad News

- This is an example of **overfitting**

![Graph showing overfitting](image)

Overfitting in DT

- Why Does this happen?
 - Few examples at lower levels in tree
 - Quantities calculated "not reliable" in this case
 - Even worse with "noisy data"
 - And when features not sufficiently rich
- Solutions?

Overfitting in DT

- Min # points at leaf for split to be legal
- Stop growing tree if "no information"
- Pruning: grow full tree and then test whether some parts should be removed.
- How? Note that full tree always looks better on training data so just using accuracy on training data will not work

Overfitting in DT

- Solution 1 (C4.5, J48): uses a confidence interval based on class ratio at leaf and number of examples in the training set.
- This is not fully justified but works well in practice.
- Solution 2: use a validation set. Known as reduced error pruning (REP)

Pruning in C4.5 / J48

- **p** is true error and **f** is observed error
- Algorithm uses
 \[f \sim N \left(p, \frac{p(1-p)}{n} \right) \]
 and some reasoning to claim that (actual formula used by C4.5 is more complex):
 \[p \leq f + \frac{1}{\sqrt{4n}} Z_{\alpha} \]
- The error rate at each node is replaced with the upper bound
- Then the best pruning can be chosen
Overfitting in DT

- Solution 1 (C4.5, J48): uses a confidence interval based on class ratio at leaf and number of examples in the training set.
- This is not fully justified but works well in practice.

- Solution 2: use a validation set. Known as reduced error pruning (REP)

REP Example

<table>
<thead>
<tr>
<th>Decision</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep</td>
<td>3</td>
</tr>
<tr>
<td>Prune</td>
<td>5</td>
</tr>
</tbody>
</table>

REP Example

<table>
<thead>
<tr>
<th>Decision</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep</td>
<td>3</td>
</tr>
<tr>
<td>Prune</td>
<td>4</td>
</tr>
</tbody>
</table>
DT Recap

- DT divide the example space through recursive splits of feature values
- Recursive learning algorithm relies of good choice of root attribute
- IG and other criteria are used for choice
- Several variants, improvements and generalizations
- Overfitting is a significant issue: solved by pruning or other methods