Clustering

COMP 135 Intro to Machine Learning
Liping Liu

slides modified from Roni Khardon’s with permission

Unsupervised Learning

Clustering is often a form of data exploration allowing us to identify groupings that are otherwise not apparent

<table>
<thead>
<tr>
<th>Domain/problem</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene-array data</td>
<td>Similar activity patterns</td>
</tr>
<tr>
<td>Text</td>
<td>Word Classes</td>
</tr>
<tr>
<td>Customer Activity</td>
<td>Customer “types” (phone; web; movies; etc)</td>
</tr>
</tbody>
</table>

Clustering

• Here we assume data is in \mathbb{R}^d
 - $X = \{x_i; i = 1, ..., N\}, x_i \in \mathbb{R}^d$
 - No labels any more
• Task: partition data X into groups, or clusters, in some sensible way,
 - each cluster containing instances similar to each other
 - "Similar": short distance
 - No order of clusters
 (Some methods can work with distance directly without assuming \mathbb{R}^d space)

Clustering

• Formal definition
 - Partition the dataset into clusters $C_1, ..., C_K$
 - Cluster means
 \[
 \mu_k = \frac{1}{|C_k|} \sum_{i \in C_k} x_i
 \]
 - Objective: minimize within-cluster similarity
 \[
 \min L = \frac{1}{|C_k|} \sum_{i \in C_k} \|x_i - \mu_k\|^2
 \]

Toy examples

- Linearly separable
- Not linearly separable
- Even more complex problem, not linearly separable

k-Means Clustering

• Pick k cluster centers (talk later)
• Repeat:
 - Associate examples with centers
 - Re-calculate means as average of examples in cluster
• Until convergence
k-Means Clustering

Visualization from Carla Brodley's slides
k-Means Clustering

- Properties
 - Always converge (why?)
 - Converge fast in practice (though slow in theory / worst cases)
 - Always form linearly separable clusters

- Result sensitive to initialization
 - Initial cluster centers should be far apart and representative

- Methods:
 - Repeat k-Means with random initializations
 - k-Means++: iteratively choose cluster centers far from other cluster centers

- Calculation of mean is sensitive to outliers
 - k-Medoids Clustering

Next update: nothing changes!
How to Choose k?

• Solution 1:
 - Run algorithm with \(k = 2, 3, \ldots \)
 - Evaluate criterion (e.g. CS) for each run
• Hope to see big drop in criterion until we get "the right \(k \)" and moderate drop after that

How to Choose k?

• Solution 2: BIC criterion – add penalty for number of clusters
 \[\text{BIC} = L + k \log(N) \]
• Increase \(k \):
 • CS goes down, penalty goes up
 • For some \(k \) total starts going up

Clustering Evaluation

• How can we evaluate how good our clustering is?
 - Evaluation by our criterion
 - Evaluation by expert
 - Evaluation by using clustering result for other task.
• Comparing different clustering results (and/or comparing to labels)
 - Evaluation by NMI - defined later on slides

Comparing Clustering Results

• Sometimes it is useful to check if two clustering results are close or not
• For purpose of evaluating new clustering algorithm: we can compare its results to labels on a labeled dataset

• Normalized Mutual Information (NMI)

Mutual Information

• MI for clustering: information about the second clustering result, given the first cluster result

Comparing Clustering Results

• Probability of cluster assignments
 Let \(C_1, \ldots, C_m \) be one clustering result, \(C'_1, \ldots, C'_m \) be another clustering result, then
 \[p(z^1 = k_1, z^2 = k_2) = \frac{n_{k_1 k_2}}{N} \]
 Similarly calculate \(p(z^1 = k_1), p(z^2 = k_2), \) and \(p(z^1 = k_1 | z^2 = k_2) \)

<table>
<thead>
<tr>
<th>(C_1)</th>
<th>(C'_2)</th>
<th>(C'_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_2)</td>
<td>(n_{12})</td>
<td>(n_{22})</td>
</tr>
<tr>
<td>(C_1)</td>
<td>(n_{11})</td>
<td>(n_{21})</td>
</tr>
<tr>
<td>(C'_1)</td>
<td>(n_{10})</td>
<td>(n_{20})</td>
</tr>
</tbody>
</table>

\[\text{Table 1: contingency table, } n_{ij} = |C_i \cap C_j| \]
Comparing Clustering Results

- Mutual information of cluster assignments
 \[I[z^1, z^2] = \sum_{k_1} \sum_{k_2} p(z^1 = k_1, z^2 = k_2) \log \frac{p(z^1 = k_1, z^2 = k_2)}{p(z^1 = k_1)p(z^2 = k_2)} = H[z^1] - H[z^1 | z^2] \]

NMI

- Mutual Information is sensitive to the number of clusters
 - more clusters will artificially have higher mutual information
- Normalized Mutual Information corrects for that.
 - normalize MI by the average entropy
 \[NMI = \frac{I[z^1, z^2]}{H[z^1] + H[z^2]} \]

Soft k-Means Clustering

- Pick k cluster centers
- Repeat:
 - Associate examples with centers
 \[p_{i,j} \sim \text{similarity } b/w \text{ example } i \text{ and center } j \]
 - Re-calculate means
 as weighted average of examples in cluster
- Until convergence

Alternatives: k-Medoids Clustering

- Pick k cluster medoids
- Repeat:
 - Associate examples with medoids
 pick nearest medoid
 - Re-calculate medoid
 the example in cluster that has the smallest mean distance to other points in the cluster
- Until convergence

Alternatives: Spectral Clustering

- Can use any distance function
- Or a weighted adjacency matrix of graph induced by examples
- To produce "Laplacian" similarity matrix
- Performs standard clustering on eigendecomposition of that matrix
- [details beyond scope of course]