Recommender System and Collaborative Filtering

COMP 135 Intro to Machine Learning
Liping Liu & Hao Cui

slides modified from Roni Khardon’s & Liping’s with permission

Outline

• What & Why?
• How?
• Content-Based
• Collaborative Filtering

What is Recommender System?

• A automatic system that recommend items to users, such that ________
 A. Users can find what they need/like ASAP
 B. Users can spend long time on the website
 C. Users can explore as much as possible on my items
 D. etc

Why important?

• Need recommendation everywhere
 Google, Amazon, LinkedIn, eBay, The New York Times, Yelp, Trivago, Facebook, Santander, Airbnb

Long-tail effect

• Online system makes more items available
 - Many items have only a small user population
 - Recommendation has great benefit

Recommender Systems

• What & Why?
• How?
• Content-Based
• Collaborative Filtering
A motivating example

- Items
- Users
- User “ratings” of items

The utility matrix

- The “value” of items to users
 - Only known when ratings happen
 - Very sparse

The utility matrix

<table>
<thead>
<tr>
<th></th>
<th>Chibi (User1)</th>
<th>Tammy (User2)</th>
<th>Hanawa (User3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Rating</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Methodologies for RecSys

- Content-Based
 - Based on similarity among items
- Collaborative Filtering
 - Based on similarities among users
- Session-Based
 - Based on recent user activities
- MDP-Based
 - Same as Session-Based, but optimizing cumulative reward from users

Content-based item recommendation

- Represent items with feature vectors
- A supervise problem
 - Train a regressor for each user
 - Train a classifier on user’s decision

Item features

- Movie
 - Set of actors, director, genre, year
- Document
 - Bag of words, topic (obtained from topic modeling)
- Product
 - Tags, reviews
Collaborative Filtering

- Recommendation only based on incomplete utility matrix
 - No separate information about items or users

<table>
<thead>
<tr>
<th></th>
<th>i1</th>
<th>i2</th>
<th>i3</th>
<th>i4</th>
</tr>
</thead>
<tbody>
<tr>
<td>u1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>u2</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>u3</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Collaborative Filtering

- Principle
 - If two users share similar views toward one item, they tend to share similar views toward another item

Vector representations

- User i represented by vector $\mathbf{u}_i \in \mathbb{R}^k$
- Item j represented by vector $\mathbf{v}_j \in \mathbb{R}^k$
- The inner product $\mathbf{u}_i^T \mathbf{v}_j$ approximates the utility M_{ij}
- Intuition:
 - Two items with similar vectors get similar utility scores from the same user;
 - Two users with similar vectors give similar utility scores to the same item

The formal formulation

- Objective
 - $\mathbf{U} = (\mathbf{u}_i; i = 1, ..., N)$, $\mathbf{V} = (\mathbf{v}_j; j = 1, ..., M)$
 - Regularization terms to prevent overfitting
 - Minimization with stochastic gradient
 $$\min_{\mathbf{U}, \mathbf{V}} \sum_{ij} (M_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2 + \lambda \sum_i \|\mathbf{u}_i\|_2^2 + \lambda \sum_j \|\mathbf{v}_j\|_2^2$$

Formulation with intercept term

- Objective
 - Intercept term s_i, t_j to indicate popularity
 - (similar to w_0 in linear classifier, Why?)
 $$\min_{\mathbf{U}, \mathbf{V}} \sum_{ij} (M_{ij} - \mathbf{u}_i^T \mathbf{v}_j - s_i - t_j)^2 + \lambda \sum_i \|\mathbf{u}_i\|_2^2 + \lambda \sum_j \|\mathbf{v}_j\|_2^2$$

Recommendation

- Populating the utility matrix
- For a user i, choose top items to recommend
 $$\hat{M}_{ij} = \sum_k u_{ik} \cdot v_{jk}$$
Evaluation

- Ranking measures
 - Rank items with recommendation scores
 - Calculate ranking measures by user's ratings/usage
 - Usually pay more attention to top ranked items
 - Examples: precision@k, mean precision@k, DCG, NDCG

<table>
<thead>
<tr>
<th>Item ranking</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual usage</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Cold start

- New user entering the system
 - Matching similar users
 - Trial-and-error
- New item entering the system
 - Content-based recommendation
 - Trial-and-error

Implicit feedback

- An item is not rated/used/visited by a user
 - Might be an indication that the user does not like the item
 - Include such item as negative examples

Issues

- Recommendation system and users form a loopy system
 - RS changes user's behavior
 - User generate data for RS
- User groups becoming more homogeneous
 - Youtube recommendation of politic videos: recommend videos from the same camp