
Distributed Training of ML Models:
Optimal rates for stochastic non-convex problems

Usman A. Khan
Electrical and Computer Engineering, Tufts University

Machine Learning and Statistical Signal Processing for Data on Graphs
McGill–Bellairs Research Institute, Barbados

January 17, 2023

1 / 44



Acknowledgments

Reza D. C. Xi S. Safavi F. Saadatniaki

R. Xin M. I. Qureshi A. Swar H. Raja

2 / 44



Motivation and Overview

3 / 44



Learning from Data

Data science and machine learning hold a lot of potential

Image classification, Medical diagnosis, Credit card fraud, . . .

What architectures do we use to run ML algorithms?

Centralized
Semi-centralized (or Federated)
Completely distributed

This talk: Distributed peer-to-peer architectures

4 / 44



A simple case study . . .

Figure 1: Performance of an ML model trained with 10,000 32× 32 pixel images

Can distributed methods match the centralized accuracy?

Under what conditions?

How fast?
5 / 44



Example: Recognizing Traffic Signs

Identify STOP vs. YIELD sign

Figure 2: Image classification: (Left) Training phase (Right) Testing phase

Input data: features (e.g., images) {θj} and their labels {yj}
Model: A classifier x that predicts a label ŷj for each image θj

Changing x changes the predicted label ŷj(x;θj)

Pick a classifier x∗ that minimizes some loss ` over all images

x∗ = argmin
x∈Rp

∑
j

`
(
yj , ŷj(x;θj)

)
6 / 44



Example: Recognizing Traffic Signs (cont...d)

Pick a classifier x∗ that minimizes some loss over all images
when the data is distributed over n machines

x∗ = argmin
x∈Rp

∑
i

∑
j

`
(
yij , ŷij(x;θij)

)
i ∈ machines j ∈ local dataset

Data sharing is not permitted
Machine communication has constraints

7 / 44



Minimizing Functions

min
x

f (x), f :=
∑
i

∑
j

`
(
yij , ŷij(x;θij)

)
: Rp → R

Different predictors ŷ and losses ` lead to different cost functions f

Quadratic: Signal estimation, linear regression, LQR

(Strongly) convex: Logistic regression, SVM

Nonconvex: Neural networks, reinforcement learning, blind sensing

Stochastic: Sampling from mini-batches, Imperfect gradients

This talk

First-order (gradient-based) methods over various function classes
When the training data is distributed over a network of nodes
(machines, devices, robots)

8 / 44



Some Preliminaries

9 / 44



Smooth function classes

f : Rp → R is L-smooth and f (x) ≥ f ∗ > −∞,∀x
Not necessarily convex, bounded above by a quadratic
Assumed throughout

f : Rp → R is convex (lies above all of its tangents)

f is µ-strongly-convex (convex and bounded below by a quadratic)

For S & SC functions, we have κ := L/µ ≥ 1

Figure 3: Nonconvex: sin(ax)(x + bx2). Convexity. Strong Convexity.

10 / 44



Finding minima of smooth functions f : Rp → R

Search for a stationary point x∗ ∈ Rp, i.e., ∇f (x∗) = 0p

Figure 4: Function classes restricted to L-smooth functions

Nonconvex: x∗ may be a minimum, a maximum, or a saddle point

Convex functions: f (x∗) is the unique global minimum

Strongly convex functions: x∗ is the unique global minimizer
11 / 44



First-order methods (Gradient Descent)

min
x∈Rp

f (x)

Search for a stationary point x∗, i.e., ∇f (x∗) = 0p
Intuition: Take a step in the direction opposite to the gradient

At ?, ∇f (x∗) = 0p

Figure 5: Minimizing strongly convex functions: R→ R and R2 → R

Gradient Descent (GD) intuition: xnew ' xold −∇f (xold)

f (xnew ) ≤ f (xold)

12 / 44



GD: Performance metrics and Rates

Gradient Descent: xk+1 = xk − α · ∇f (xk)

Figure 6: Function classes restricted to L-smooth functions

Convergence rates of GD (non-stochastic and not accelerated):
Nonconvex: ||∇f (xk)|| → 0 at O(1/

√
k)

Convex: f (xk)− f (x∗)→ 0 at O(1/k)
SC: f (xk)− f (x∗)→ 0 exponentially (linearly on the log-scale)

‖xk − x∗‖ is also often used

13 / 44



Gradient Descent: Optimality

Gradient Descent: xk+1 = xk − α · ∇f (xk)

Is this the fastest first-order algorithm? No!

Consider ellipses in R2: f (x1, x2) = Lx2
1 + µx2

2 , with L� µ

L-smooth and µ-strongly convex functions, in general

Figure 7: Convergence when κ := L/µ = 100: First 25 iterations

To get ε close to the minimizer, GD requires κ ln(1/ε) iterations

14 / 44



The Heavy-ball Method (Accelerated GD)

Gradient descent with heavy-ball acceleration [Polyak 1964]

xk+1 = xk − α · ∇f (xk) + β · (xk − xk−1)

Figure 8: Convergence when κ = 100: First 25 iterations

To get ε close, for L-smooth and µ-strongly convex functions

GD: κ ln(1/ε) vs. HB:
√
κ ln(1/ε)

Nesterov acceleration has similar results with better guarantees
This type of acceleration does not buy us much in stochastic
nonconvex problems .. more on this later!

15 / 44



Distributed optimization
How to extend GD when the data is distributed?

16 / 44



Linear regression over distributed data

min
slope, int.

machines∑
i=1

local data∑
j=1

(yij − (slope · dij + int.))2

Figure 9: Linear regression: Locally optimal solutions

Implement local GD at each node i : xik+1 = xik − α · ∇fi (xik)

Local GD does not lead to agreement on the optimal solution

Requirements for a distributed algorithm
Agreement: Each node agrees on the same solution
Optimality: The agreed upon solution is the optimal

17 / 44



Distributed Optimization (formally)

min
x∈Rp

F (x), F (x) :=
n∑

i=1

fi (x)

f1(x)
f2(x)

fi(x)

Figure 10: A peer-to-peer or edge computing architecture

Assumptions

Each fi is private to node i (nodes do not share their data)

Each fi is Li -smooth and µi -strongly-convex (assumed for now!)

The nodes communicate over a network (a connected graph)

18 / 44



Distributed Gradient Descent (DGD)

xik+1 =
n∑

r=1

wir · xrk − α · ∇fi (xik)

Mix and Descend [Nedić et al. ’09]
The weight matrix W = {wij}≥0 is doubly stochastic
DGD converges linearly (on a log-scale) up to a steady-state error for
smooth and strongly convex problems
Exact convergence with a decaying step-size but at a sublinear rate

0 2000 4000 6000 8000 10000
10-3

10-2

10-1

100

101

Figure 11: (Left) An undirected graph. (Right) DGD performance.

19 / 44



Recap

GD and Distributed GD

0 500 1000 1500 2000 2500 3000
10 -8

10 -6

10 -4

10 -2

100

101

Figure 12: Performance for smooth and strongly convex problems

How do we remove the steady-state error in DGD?

20 / 44



Distributed Gradient Descent
with

Gradient Tracking

21 / 44



GT-DGD: Intuition

Problem: minx
∑

i fi (x), i.e., search for x∗ such that
∑

i ∇fi (x∗) = 0p

DGD does not reach x∗ because x∗ is not its fixed point

xik+1 =
∑n

r=1 wir · xrk − α · ∇fi (xik)
x∗ 6= 1 · x∗ − α · ∇fi (x∗)

This is because ∇fi (x∗) 6= 0 but only the sum gradient is

Fix: Replace ∇fi (xik) with yik that tracks the global gradient ∇F

Linear convergence in distributed optimization (SSC)

Undirected graphs: [Xu et al. ’15], [Lorenzo et al. ’15]

Directed graphs1,2 : [Xi-Khan ’15], [Xi-Xin-Khan ’16,’17], [Xin-Khan ’18]

1. C. Xi and U. A. Khan, “DEXTRA: A Fast Algorithm for Optimization Over Directed Graphs,” IEEE Transactions on Automatic
Control, vol. 62, no. 10, 4980-4993, Oct. 2017. Arxiv: Oct. 2015.

2. R. Xin, S. Pu, A. Nedić, and U. A. Khan, “A general framework for decentralized optimization with first-order methods,”
Proceedings of the IEEE, 118(11), pp. 1869-1889, Nov. 2020.

22 / 44



AB Algorithm (our work)

Problem: minx
∑

i fi (x)
DGD: xik+1 =

∑n
r=1 wir · xrk − α · ∇fi (xik)

Algorithm 1 [Xin-Khan ’18]: at each node i

Data: xi0 ∈ Rp; α > 0; {air}nr=1; {bir}nr=1; yi0 = ∇fi (xi0)
for k = 0, 1, . . . , do

xik+1 =
∑n

r=1 air · xrk − α · yrk
yik+1 =

∑n
r=1 bir · yrk +∇fi (xik+1)−∇fi (xik)

end

A = {air} is row stochastic and B = {bir} is column stochastic
Existing work by then: Both A and B are doubly stochastic

AB unifies many existing algorithms
ADDOPT [Xi-Xin-Khan ’16] and PUSH-DIGing [Nedić et al. ’17]
FROST [Xin-Xi-Khan ’16, ’18]†: Only requires RS matrices
†EURASIP 2022 Best Journal Paper Award for articles published over 2017-2021

23 / 44



AB Algorithm (our work)

Problem: minx
∑

i fi (x)

DGD: xik+1 =
∑n

r=1 wir · xrk − α · ∇fi (xik)

Algorithm 1 [Xin-Khan ’18]: at each node i

Data: xi0 ∈ Rp; α > 0; {air}nr=1; {bir}nr=1; yi0 = ∇fi (xi0)
for k = 0, 1, . . . , do

xik+1 =
∑n

r=1 air · xrk − α · yrk + β · (xik − xik−1)

yik+1 =
∑n

r=1 bir · yrk +∇fi (xik+1)−∇fi (xik)

end

AB converges linearly to x∗ with the help of Gradient Tracking

For SSC functions and over both directed and undirected graphs

We can further add heavy-ball or Nesterov momentum

24 / 44



AB Algorithm (our work)

Challenge: In general, neither a row stochastic matrix A nor a
column stochastic matrix B leads to a contraction in 2-norm

‖W −W∞‖2 < 1 (W1 = 1, 1>W = 1>)

‖A− A∞‖2 ≮ 1

‖B − B∞‖2 ≮ 1

Key to the precise analysis and rates are two new norms

Matrix norms induced by weighted vector norms

‖ · ‖A := ‖diag(
√
πr )(A− A∞)diag(

√
πr )
−1‖2 < 1

‖ · ‖B := ‖diag(
√
πc)(B − B∞)diag(

√
πc)−1‖2 < 1

where π>r A = π>r and Bπc = πc

25 / 44



AB: Results (Smooth and Strongly convex)

Linear convergence of AB over both directed and undirected graphs
[Xin-Khan ’18]: For a range of step-sizes α ∈ (0, ᾱ]
[Xin-Khan ’18]: For non-identical step-sizes αi ’s at the nodes
[Pu et al. ’18]: Over mean-connected graphs
[Saadatniaki-Xin-Khan ’18]: Over time-varying random graphs
[Various authors]: Asynchronous, delays, nonconvex analysis (but
without explicit rates)

Condition number dependence
GD κ, AB undirected κ

5/4, AB directed κ2

Gradient tracking with heavy-ball momentum
[Xin-Khan ’18]: Linear convergence for a range of alg. parameters
Acceleration is not proved analytically and remains an open problem

Gradient tracking with Nesterov momentum
[Qu et al. ’18]: Undirected graphs κ

5/7

[Xin-Jakovetić-Khan ’19]: Convergence and acceleration are shown
numerically over directed graphs
Directed graphs: Convergence and acceleration both remain open

26 / 44



Performance comparison

GD, HB, DGD, AB, ABm

0 2000 4000 6000 8000 10000
10 -16

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

100

Figure 13: Performance for smooth and strongly convex problems, κ = 100

Addition of gradient tracking recovers linear convergence (proved!)

Acceleration can be shown numerically but it is not proved (yet!)

What happens when the gradients are imperfect?

27 / 44



Distributed Stochastic Optimization

Stochastic gradients with noise variance ν2

0 2000 4000 6000 8000 10000
10 -16

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

100

0 2000 4000 6000 8000 10000
10 -16

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

100

Figure 14: Full gradients (ν2 = 0) vs. stochastic gradients

DSGD: Residual decays linearly to an error ball [Yuan et al. ’19]

lim sup
k→∞

1

n

n∑
i=1

E[‖xik − x∗‖2
2] = O

( α
nµ
ν2 +

α2κ2

1− λ
ν2 +

α2κ2

(1− λ)2
η
)
,

where η quantifies local-vs.-global bias '
∥∥∇fi (x∗)−

∑
i ∇fi (x∗)

∥∥
Gradient tracking eliminates η but the variance remains

28 / 44



Distributed Stochastic Optimization
Batch problems: The GT+VR framework

29 / 44



Batch problems: Setup

min
slope, int.

machines∑
i=1

local data∑
j=1

(yij − (slope · dij + int.))2︸ ︷︷ ︸
fij (x)︸ ︷︷ ︸

fi (x)

Figure 15: Linear regression (revisited)

Each node i possesses a local batch of mi data samples

The local cost fi is the sum over all data samples
∑mi

j=1 fij

30 / 44



Batch Problems

Minimize F :=
∑

i

∑
j fij over arbitrary data distributions

Figure 16: Arbitrary data distribution over the network

Computing local batch gradient
∑

j ∇fij is typically expensive

Distributed Stochastic GD: xik+1 =
∑

r wir · xrk − α · ∇fiτk (xik)

Choose τk randomly from 1, . . . ,mi

Challenges: ∇fiτk 6= ∇fi 6= ∇F

31 / 44



GT+VR framework

Problem: Minimize F :=
∑

i

∑
j fij

The GT+VR framework1,2: From ∇fi,τk to ∇F
Local variance reduction: Sample then Estimate

∇fi,τk + VR→ vi ' ∇fi =

mi∑
j=1

∇fij

Global gradient tracking: Fuse the estimates over the network

vi + GT→ yi ' ∇F =
n∑

i=1

∇fi

Popular VR methods: SAG, SAGA, SVRG, SPIDER, SARAH

Our work1 : GT-SAGA, GT-SVRG, GT-SARAH2

1. R. Xin, S. Kar, and U. A. Khan, “Gradient tracking and variance reduction for decentralized optimization and machine learning,”
IEEE Signal Processing Magazine, 37(3), pp. 102-113, May 2020.

2. R. Xin, U. A. Khan, and S. Kar, “Fast decentralized nonconvex finite-sum optimization with recursive variance reduction,” SIAM
Journal on Optimization, 32(1), 2022.

32 / 44



GT-SARAH

GT-SARAH (StochAstic Recursive grAdient algoritHm)
The blue boxes show sample and estimate

33 / 44



GT-SARAH: Smooth and nonconvex
Almost sure and mean-squared results

min
x

n∑
i=1

m∑
j=1

fij(x)

GT plus SARAH based VR

Assume mi = m, ∀i , for simplicity
The estimate at each node converges to a stationary point both in
almost sure and mean-squared sense

Theorem (Xin-Khan-Kar ’20)

At each node i , GT-SARAH’s iterate xik follows

P
(

lim
k→∞

‖∇F (xik)‖ = 0

)
= 1 and lim

k→∞
E
[∥∥∇F (xik)

∥∥2
]

= 0.

34 / 44



GT-SARAH: Smooth and nonconvex

min
x

n∑
i=1

m∑
j=1

fij(x)

Total of N = nm data points divided equally among n nodes

How many gradient computations are required to reach
an ε-accurate solution?

Theorem (Gradient computation complexity, Xin-Khan-Kar ’20)

Under a certain constant step-size α, GT-SARAH, with O(m) inner loop
iterations, reaches an ε-optimal stationary point of the global cost F in

H := O
(

max
{
N

1/2, n
(1−λ)2 ,

(n+m)
1/3n

2/3

1−λ

}(
c · L + 1

n

∑n
i=1 ‖∇fi (x0)‖2

)1

ε

)
gradient computations across all nodes, where c := F

(
x0

)
− F ∗.

35 / 44



GT-SARAH: Smooth and nonconvex
Optimal complexity

min
x

n∑
i=1

m∑
j=1

fij(x)

Total of N = nm data points divided equally among n nodes

How many gradient computations are required to reach
an ε-accurate solution?

In a big-data regime n ≤ O(m(1− λ)6) : H = O(N
1/2ε−1)

Matches the centralized optimal lower bound [SPIDER: Fang et al. ’18]

Other notable features [Xin-Kar-Khan ’20, Xin-Khan-Kar ’22]:

Independent of the variance and the local vs. global bias
Network-topology independent convergence rate and performance
Linear speedup: GT-SARAH is n times faster than the cent. SARAH

36 / 44



Experiments: Nonconvex binary classification

Performance Comparison

0 10 20 30 40
Epoch

10 3

10 2

10 1

St
at

io
na

ry
 g

ap

a9a
DSGT
D-GET
GT-SARAH

Big-data regime

10× 10 grid graph

0 20 40 60 80 100
Epoch

10 4

10 3

10 2

10 1

St
at

io
na

ry
 g

ap

Large-scale net. regime: the a9a dataset

DSGD
GT-SARAH
GT-SAGA

IoT regime

Nearest neighbor graph

37 / 44



Distributed optimization: Demo

Full gradient, distributed linear regression, n = 100 nodes

One data point per node; collaborate to learn the slope and intercept

https://www.eecs.tufts.edu/~khan/Demos/LR_int_digraph_KHAN_n500_1.mp4

38 / 44

https://www.eecs.tufts.edu/~khan/Demos/LR_int_digraph_KHAN_n500_1.mp4


Conclusions

Gradient tracking for distributed optimization

GT eliminates the local vs. global dissimilarity bias
Linear convergence for smooth and strongly convex problems
Acceleration is achievable but analysis is hard!

GT+VR: Gradient tracking for distributed batch optimization

GT-SAGA, GT-SVRG, GT-SARAH (optimal in the big-data regime)
Network synchrony and storage tradeoffs

Gradient tracking for distributed streaming problems

Shown best known rates for strongly convex and nonconvex problems
Decaying step-sizes eliminate the variance due to the stochastic grad
Hybrid VR techniques

Network-independent convergence behavior

Outperforms the centralized analogs in applicable regimes

39 / 44



There is a lot more being done and a lot more to do!

Some reader-friendly overview articles

P-IEEE Special Issue, vol. 108, no. 11, Nov. 2020
U. A. Khan, Lead Editor, with Guest Eds.: Bajwa, Nedić, Rabbat, Sayed

Our May 2020 SPM article

40 / 44



GT-SARAH: Analysis

41 / 44



GT-SARAH: Analysis

Use the L-smoothness of F

F (y) ≤ F (x) + 〈∇F (x), y − x〉+ L
2
‖y − x‖2 , ∀x, y ∈ Rp,

to establish the following lemma

Lemma (Descent inequality)

If the step-size follows that 0 < α ≤ 1
2L , then we have

E
[
F
(
xT+1,K)] ≤ F (x0,1)−

α

2

K,T∑
k,t

E
[∥∥∥∇F (xt,k )

∥∥∥2
]

− α

 1

4

K,T∑
k,t

E
[∥∥∥vt,k∥∥∥2

]
−

K,T∑
k,t

E
[∥∥∥vt,k−∇f(xt,k )

∥∥∥2
]
− L2

K,T∑
k,t

E
[∥∥∥xt,k − 1⊗ xt,k

∥∥∥2

n

]

The object in red has two errors that we need to bound

Gradient estimation error: E[‖vt,k −∇f(xt,k)‖2]
Agreement error: E[‖xt,k − 1⊗ x̄t,k‖2]

42 / 44



GT-SARAH: Analysis

Lemma (Gradient estimation error)

We have ∀k ≥ 1,
T∑
t=0

E
[
‖vt,k −∇f(xt,k )‖2

]
≤

3α2TL2

n

T−1∑
t=0

E
[
‖vt,k‖2

]
+

6TL2

n

T∑
t=0

E
[‖xt,k − 1⊗ x̄t,k‖2

n

]
.

Lemma (Agreement error)

If the step-size follows 0 < α ≤ (1−λ2)2

8
√

42L
, then

K∑
k=1

T∑
t=0

E
[
‖xt,k − 1⊗ x̄t,k‖2

n

]
≤

64α2

(1− λ2)3

‖∇f(x0,1)‖2

n
+

1536α4L2

(1− λ2)4

K∑
k=1

T∑
t=0

E
[
‖vt,k‖2

]
.

Agreement error is coupled with the gradient estimation error

Derive an LTI system that describes their evolution

Analyze the LTI dynamics to obtain the agreement error lemma

Use the two lemmas back in the descent inequality

43 / 44



GT-SARAH: Analysis

Lemma (Refined descent inequality)

For 0 < α ≤ α := min
{

(1−λ2)2

4
√

42
,
√
n√

6T
,
(

2n
3n+12T

) 1
4 1−λ2

6

}
1

2L
, we have

1

n

n,K,T∑
i,k,t

E
[
‖∇F

(
xt,ki

)
‖2
]
≤

4(F
(
x0,1
)
−F∗)

α
+

(
3

2
+

6T

n

)
256α2L2

(1− λ2)3

∥∥∇f(x0,1)
∥∥2

n
.

Taking K →∞ on both sides leads to
∑∞,T

k,t E[‖∇F (xt,ki )‖2] <∞
Mean-squared and a.s. results follow

Divide both sides by K · T and solve for K when the R.H.S ≤ ε
Gradient computation complexity follows by nothing that GT-SARAH
computes n(m + 2T ) gradients per iteration across all nodes
Choose α as the maximum and T = O(m) to obtain the optimal rate

44 / 44


	Motivation and Overview
	Some Preliminaries
	Distributed optimization  How to extend GD when the data is distributed? 
	Distributed Gradient Descent  with  Gradient Tracking 
	Distributed Stochastic Optimization  Batch problems: The GT+VR framework
	GT-SARAH: Analysis

