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Motivation and Overview
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Learning from Data

m Data science and machine learning hold a lot of potential

m Image classification, Medical diagnosis, Credit card fraud, ...

m What architectures do we use to run ML algorithms?
m Centralized
m Semi-centralized (or Federated)
m Completely distributed
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m This talk: Distributed peer-to-peer architectures
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A simple case study ...
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Figure 1: Performance of an ML model trained with 10,000 32 x 32 pixel images

m Can distributed methods match the centralized accuracy?
m Under what conditions?

m How fast?
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Example: Recognizing Traffic Signs

m Identify STOP vs. YIELD sign
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Figure 2: Image classification: (Left) Training phase (Right) Testing phase

m Input data: features (e.g., images) {6;} and their labels {y;}
m Model: A classifier x that predicts a label y; for each image 6;
m Changing x changes the predicted label yj(x; 8;)

m Pick a classifier x* that minimizes some loss ¢ over all images

= argmin Zﬁ(yj, yi(x; 0; ))

xERP
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Example: Recognizing Traffic Signs (cont...d)

m Pick a classifier x* that minimizes some loss over all images
when the data is distributed over n machines

x* = argmin sz(y,'ja j/\,j(x;O,'j))
xERP i j

i € machines j € local dataset

m Data sharing is not permitted
® Machine communication has constraints
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Minimizing Functions

minf(x),  f = ZZ((yJ y,-j(x;e,-j)) 'RP R
i

m Different predictors y and losses ¢ lead to different cost functions f
m Quadratic: Signal estimation, linear regression, LQR

m (Strongly) convex: Logistic regression, SVM

m Nonconvex: Neural networks, reinforcement learning, blind sensing
m Stochastic: Sampling from mini-batches, Imperfect gradients

m This talk

m First-order (gradient-based) methods over various function classes
® When the training data is distributed over a network of nodes
(machines, devices, robots)
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Some Preliminaries
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Smooth function classes

m f:RP — Ris L-smooth and f(x) > f* > —o0, Vx
m Not necessarily convex, bounded above by a quadratic
m Assumed throughout

m f:RP — R is convex (lies above all of its tangents)

m f is p-strongly-convex (convex and bounded below by a quadratic)
m For S & SC functions, we have k :=L/u >1
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Figure 3: Nonconvex: sin(ax)(x + bx?). Convexity. Strong Convexity.
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Finding minima of smooth functions f : R? — R

m Search for a stationary point x* € RP, i.e., Vf(x*) =0,

L-Smooth functions
bounded below

PL condition Convex

=> every stationary point Strongly bounded below

convex
global minimizeris unique

is a global minimizer by tangents

Figure 4: Function classes restricted to L-smooth functions

m Nonconvex: x* may be a minimum, a maximum, or a saddle point
m Convex functions: f(x*) is the unique global minimum
m Strongly convex functions: x* is the unique global minimizer
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First-order methods (Gradient Descent)

min f(x)

xERP

m Search for a stationary point x*, i.e., Vf(x*) =0,

m Intuition: Take a step in the direction opposite to the gradient
m At x, VF(x*) =0,

vf(x)
.

VX (x)

>
« vf(x)>0
vf(x)<@

Figure 5: Minimizing strongly convex functions: R — R and R? — R

m Gradient Descent (GD) intuition: X,ey, =~ Xoig — VF(Xo1d)
L] f(xnew) < f(xold)
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GD: Performance metrics and Rates

m Gradient Descent: x,.1 = xx — a - VI(xg)

L-Smooth functions
bounded below
11 VE(x) 11 > 0

@\/

PL condition Strongly Convex
=> every stationary point convex bounded below
is a global minimizer global minimizer s unique by tangents
f(x) —f* >0 Hezeml 20 fx)—f*>0
\/ (-

Figure 6: Function classes restricted to L-smooth functions

m Convergence rates of GD (non-stochastic and not accelerated):
= Nonconvex: ||Vf(xk)|| — 0 at O(1/vk)
m Convex: f(xx) — f(x*) = 0 at O(1/k)
m SC: f(xx) — f(x*) — 0 exponentially (linearly on the log-scale)

m [|xx — x*|| is also often used
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Gradient Descent: Optimality

m Gradient Descent: x 1 = xx — - VI (xk)
m Is this the fastest first-order algorithm? No!

m Consider ellipses in R?: f(x1,x0) = Lx? + pux3, with L>> p
m L-smooth and p-strongly convex functions, in general

w

Figure 7: Convergence when r := L/, = 100: First 25 iterations

m To get € close to the minimizer, GD requires x In(1/€) iterations
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The Heavy-ball Method (Accelerated GD)

m Gradient descent with heavy-ball acceleration [Polyak 1964]
Xkp1 = Xk — - V(%) + 0+ (X — X—1)

Figure 8: Convergence when xk = 100: First 25 iterations

m To get € close, for L-smooth and p-strongly convex functions
GD: k1n(1/€) VS. HB: vk In(1/¢)

m Nesterov acceleration has similar results with better guarantees
m This type of acceleration does not buy us much in stochastic
nonconvex problems .. more on this later!
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Distributed optimization

How to extend GD when the data is distributed?
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Linear regression over distributed data

machines  local data

min Z Z (v;j — (slope - dj + int.))?

slope, int. % -
i=1 j=1

Figure 9: Linear regression: Locally optimal solutions

= Implement local GD at each node i: x}_; = x} — a - Vfi(x})
m Local GD does not lead to agreement on the optimal solution

m Requirements for a distributed algorithm
m Agreement: Each node agrees on the same solution
m Optimality: The agreed upon solution is the optimal
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Distributed Optimization (formally)

xERP

min F(x),  F(x):= Z fi(x)

Figure 10: A peer-to-peer or edge computing architecture

Assumptions

m Each f; is private to node i (nodes do not share their data)
m Each f; is L;-smooth and p;-strongly-convex (assumed for now!)

m The nodes communicate over a network (a connected graph)
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Distributed Gradient Descent (DGD)

n
Xji1 = Z Wi - X — a - Vi(xk)
r=1
m Mix and Descend [Nedi¢ et al. '09]
m The weight matrix W = {w;j}>¢ is doubly stochastic

m DGD converges linearly (on a log-scale) up to a steady-state error for
smooth and strongly convex problems

m Exact convergence with a decaying step-size but at a sublinear rate

W11
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Tterations, k —

Figure 11: (Left) An undirected graph. (Right) DGD performance.
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Recap

m GD and Distributed GD

Residual

0 500 1000 1500 2000 2500 3000
Tterations, k&

Figure 12: Performance for smooth and strongly convex problems

m How do we remove the steady-state error in DGD?
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Distributed Gradient Descent
with
Gradient Tracking
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GT-DGD: Intuition

Problem: min, )", fi(x), i.e., search for x* such that >, Vfi(x*) = 0,

m DGD does not reach x* because x* is not its fixed point
Xji1 = Dp_1 Wir - X — a - VFi(x})
x* #£ 1-x* —a- Vi(x*)
m This is because Vfi(x*) # 0 but only the sum gradient is

Fix: Replace Vf;(xi) with yj that tracks the global gradient VF

m Linear convergence in distributed optimization (SSC)

m Undirected graphs: [Xu et al. '15], [Lorenzo et al. '15]
m Directed graphs':?: [Xi-Khan '15], [Xi-Xin-Khan '16,'17], [Xin-Khan '18]

1. C. Xi and U. A. Khan, "DEXTRA: A Fast Algorithm for Optimization Over Directed Graphs,” IEEE Transactions on Automatic
Control, vol. 62, no. 10, 4980-4993, Oct. 2017. Arxiv: Oct. 2015.

2. R. Xin, S. Pu, A. Nedi¢, and U. A. Khan, “A general framework for decentralized optimization with first-order methods,”
Proceedings of the IEEE, 118(11), pp. 1869-1889, Nov. 2020.
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AB Algorithm (our work)

m Problem: ming >, fi(x)
m DGD: xj,y = >0 wy - X} — a - VFi(x})

Algorithm 1 [Xin-Khan '18]: at each node i

Data: x), € RP; a > 0; {a;,}"_;; {bir}1_1; Yo = VF(x))
for k=0,1,..., do

Xiy1 = Dory ir - X — 0 Y
Yir1 = D1 bir - Yi + Vi(Xjy ) — VEi(x})

end

m A ={a;} is row stochastic and B = {b;,} is column stochastic
m Existing work by then: Both A and B are doubly stochastic

m AB unifies many existing algorithms
m ADDOPT [Xi-Xin-Khan '16] and PUSH-DIGing [Nedi¢ et al. '17]
m FROST [Xin-Xi-Khan '16, '18]: Only requires RS matrices
tEURASIP 2022 Best Journal Paper Award for articles published over 2017-2021
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AB Algorithm (our work)

m Problem: ming >~ fi(x)
m DGD: xjy = X7, wir - X} — o+ V£i(x})

Algorithm 1 [Xin-Khan "18]: at each node i

Data: x) € RP; a > 0; {a;}"_;; {bir}1_1; Yo = VF(x))
for k=0,1,..., do

x;<+1 = 27:1 ar X —a-y + 5 (XL - xi(—l)
y;<+1 = 27:1 bir - yi + Vfi(xi-',-l) - Vf/(x;()

end

m AB converges linearly to x* with the help of Gradient Tracking
m For SSC functions and over both directed and undirected graphs

m We can further add heavy-ball or Nesterov momentum
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AB Algorithm (our work)

m Challenge: In general, neither a row stochastic matrix A nor a
column stochastic matrix B leads to a contraction in 2-norm

IW—-W>[p <1 (W1=11Tw=1T)
A= A®]2 £ 1
1B =B £ 1

m Key to the precise analysis and rates are two new norms
m Matrix norms induced by weighted vector norms

I+ [la = ||diag(v/7,)(A — A)diag(v/m,) 2 <1
I 15 = lldiag(v/7c)(B — B)diag(v/me) |2 < 1

where ] A== and Bmw. = 7,
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AB: Results (Smooth and Strongly convex)

m Linear convergence of AB over both directed and undirected graphs
[Xin-Khan "18]: For a range of step-sizes a € (0, @]

[Xin-Khan "18]: For non-identical step-sizes «;'s at the nodes

[Pu et al. "18]: Over mean-connected graphs

[Saadatniaki-Xin-Khan '18]: Over time-varying random graphs
[Various authors]: Asynchronous, delays, nonconvex analysis (but
without explicit rates)

m Condition number dependence
m GD k, AB undirected «”*, AB directed 2

m Gradient tracking with heavy-ball momentum
m [Xin-Khan '18]: Linear convergence for a range of alg. parameters
m Acceleration is not proved analytically and remains an open problem

m Gradient tracking with Nesterov momentum
m [Qu et al. '18]: Undirected graphs "'
m [Xin-Jakoveti¢-Khan '19]: Convergence and acceleration are shown
numerically over directed graphs
m Directed graphs: Convergence and acceleration both remain open
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Performance comparison

m GD, HB, DGD, AB, ABm

Residual

15
0 2000 4000 6000 8000 10000
Iterations, k

Figure 13: Performance for smooth and strongly convex problems, x = 100

m Addition of gradient tracking recovers linear convergence (proved!)

m Acceleration can be shown numerically but it is not proved (yet!)

m What happens when the gradients are imperfect?
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Distributed Stochastic Optimization

2

m Stochastic gradients with noise variance v

Residual

o 000 4000 600 80 20000 000
Tterations, k ter,

Figure 14: Full gradients (> = 0) vs. stochastic gradients

m DSGD: Residual decays linearly to an error ball [Yuan et al. '19]

a2/~c2 a2n2 )
)

1< ; «
limsup — E[||xi — x*||3 :O(—V2+ ) M
maue Sl —x 1 = O+ {5

where 7 quantifies local-vs.-global bias ~ | V£ (x*) — 3=, Vfi(x*)||

m Gradient tracking eliminates n but the variance remains
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Distributed Stochastic Optimization
Batch problems: The GT+VR framework
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Batch problems: Setup

machines  local data

min Z Z — (slope - dj + int.))?
Jj=

slope, int.
fij(%)

fi(x)

Figure 15: Linear regression (revisited)

m Each node i possesses a local batch of m; data samples

m The local cost f; is the sum over all data samples ijzl fi
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Batch Problems

m Minimize F:= )", f; over arbitrary data distributions

| =
| F| =

Node 1 Node 2 Node 3

Figure 16: Arbitrary data distribution over the network

m Computing local batch gradient ZJ- Vfjj is typically expensive

m Distributed Stochastic GD: X, ; = >, wj - X} — a - Vi, ()
m Choose 74 randomly from 1,... m;
m Challenges: Vfi;, # Vfi #VF
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GT+VR framework

m Problem: Minimize F:=3_,5 . f;

m The GT+VR framework!?: From Vf; ., to VF

m Local variance reduction: Sample then Estimate
mj
Vfir, + VR v = Vi = Vi
j=1
m Global gradient tracking: Fuse the estimates over the network

Vi+ GT =y, ~VF=> Vf
i=1

m Popular VR methods: SAG, SAGA, SVRG, SPIDER, SARAH
m Our work!: GT-SAGA, GT-SVRG, GT-SARAH?

1. R. Xin, S. Kar, and U. A. Khan, “Gradient tracking and variance reduction for decentralized optimization and machine learning,”
IEEE Signal Processing Magazine, 37(3), pp. 102-113, May 2020.

2. R. Xin, U. A. Khan, and S. Kar, “Fast decentralized nonconvex finite-sum optimization with recursive variance reduction,” SIAM
Journal on Optimization, 32(1), 2022.
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GT-SARAH

m GT-SARAH (StochAstic Recursive grAdient algoritHm)

m The blue boxes show sample and estimate

m; gradients Node i

> 97y /i)
i= 7

Sample Vfi, Sample Vfix Sample Vfi,

Sample Vf,.. Sample Vfi,

Vi)

J
m, gradients Node r
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GT-SARAH: Smooth and nonconvex

Almost sure and mean-squared results

miny Y fi(x)

i=1 j=1

m GT plus SARAH based VR
m Assume m; = m, Vi, for simplicity
m The estimate at each node converges to a stationary point both in
almost sure and mean-squared sense

Theorem (Xin-Khan-Kar '20)
At each node i, GT-SARAH's iterate xf( follows

IF’( lim [|[VF(x3)| :0) ~1 and limE [||VF(x;)||2] = 0.
k— oo k— o0
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GT-SARAH: Smooth and nonconvex

330
Rt
m Total of N = nm data points divided equally among n nodes

m How many gradient computations are required to reach
an e-accurate solution?

Theorem (Gradient computation complexity, Xin-Khan-Kar '20)

Under a certain constant step-size o, GT-SARAH, with O(m) inner loop
iterations, reaches an e-optimal stationary point of the global cost F in

1/ n n+-m)'2n’l? n = 1
Him 0 (max (N, i, O ) (e L S, A ) )

gradient computations across all nodes, where c := F(Xo) — F*.
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GT-SARAH: Smooth and nonconvex

Optimal complexity

330
Rt
m Total of N = nm data points divided equally among n nodes

m How many gradient computations are required to reach
an e-accurate solution?

= In a big-data regime n < O(m(1 — \)®) : H = O(N2¢ 1)
m Matches the centralized optimal lower bound [SPIDER: Fang et al. '18]

m Other notable features [Xin-Kar-Khan '20, Xin-Khan-Kar '22]:

m Independent of the variance and the local vs. global bias
m Network-topology independent convergence rate and performance
m Linear speedup: GT-SARAH is n times faster than the cent. SARAH
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Experiments: Nonconvex binary classification

m Performance Comparison

a%
—— DSGT
—4+— D-GET
2107t —e— GT-SARAH
o
>
©
s
E’ 1072
2
1073
0 10 20 30 40
Epoch

m Big-data regime
m 10 x 10 grid graph

Large-scale net. regime: the a9a dataset

074 —4— DSGD
‘ > GT-SARAH
102] | —e— GT-SAGA

Stationary gap

Epoch

m loT regime
m Nearest neighbor graph
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Distributed optimization: Demo

m Full gradient, distributed linear regression, n = 100 nodes

m One data point per node; collaborate to learn the slope and intercept

B https://www.eecs.tufts.edu/~khan/Demos/LR_int_digraph_KHAN_n500_1.mp4
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Conclusions

m Gradient tracking for distributed optimization

m GT eliminates the local vs. global dissimilarity bias
m Linear convergence for smooth and strongly convex problems
m Acceleration is achievable but analysis is hard!

m GT+VR: Gradient tracking for distributed batch optimization

m GT-SAGA, GT-SVRG, GT-SARAH (optimal in the big-data regime)
m Network synchrony and storage tradeoffs

m Gradient tracking for distributed streaming problems

m Shown best known rates for strongly convex and nonconvex problems
m Decaying step-sizes eliminate the variance due to the stochastic grad
m Hybrid VR techniques

Network-independent convergence behavior

Outperforms the centralized analogs in applicable regimes
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There is a lot more being done and a lot more to do!

m Some reader-friendly overview articles
m P-IEEE Special Issue, vol. 108, no. 11, Nov. 2020

U. A. Khan, Lead Editor, with Guest Eds.: Bajwa, Nedi¢, Rabbat, Sayed
m Our May 2020 SPM article

Proceedlngs IEEE RE—

Decentralized Stochastic Optimization and Machine Learning

0} 11121t10n for Data-Driven
Learning and Control
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GT-SARAH: Analysis
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GT-SARAH: Analysis

m Use the L-smoothness of F
F(y) < F(x) + (VF(x),y —x) + 5 ly — x|*, Vx,y € R,

to establish the following lemma

Lemma (Descent inequality)

If the step-size follows that 0 <a< then we have

2L’

E [F(;TH,K)] < FE*Y Z]E [HVF(*f 5 H }
(38l - if@[ S RsA )

m The object in red has two errors that we need to bound

= Gradient estimation error: E[[|[v"* — Vf(x"*)||?]
m Agreement error: E[|[x"* — 1 ® x"*||?]
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GT-SARAH: Analysis

Lemma (Gradient estimation error)

We have Vk > 1,

T Iy 302712 21 6TL> . [x0K — 1@ x0k|?
E ||[v"% — VE")?| < E [[|v"%)? E[i}
e <= =]+ a

n

Lemma (Agreement error)

If the step-size follows 0 < a < (8rL , then
XK:XT:E I — 1@ & ?) __64a® VR 1536afL2 u ZT:]E[ v
k=1 t=0 n B n (C RS M

m Agreement error is coupled with the gradient estimation error

Derive an LTI system that describes their evolution

m Analyze the LTI dynamics to obtain the agreement error lemma

m Use the two lemmas back in the descent inequality
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GT-SARAH: Analysis

Lemma (Refined descent inequality)

1
1=x222 n 2n \z1-X221 1
(3n+12T) & [ ar We have

For0 < a <@ :=min T R
el HFESD—F") /3 6T\ 256a2L% || VF(x>)
]E[HVF tk)”] ( a) +(§ )(1_0;2)3 Il g I

1

J ikt

m Taking K — oo on both sides leads to TE[|[VF(x")2] < oo
m Mean-squared and a.s. results follow

m Divide both sides by K - T and solve for K when the R.H.S < ¢
m Gradient computation complexity follows by nothing that GT-SARAH

computes n(m + 2T) gradients per iteration across all nodes
m Choose « as the maximum and T = O(m) to obtain the optimal rate
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