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Introduction

• A control system is robust if it remains stable
and achieves certain performance criteria in
the presence of possible uncertainties.

• The robust design is to find a controller, for a
given system, such that the closed-loop
system is robust.



Uncertainty Modeling
• Must maintain controllability, observability and stability 

when there is uncertainty:
– Uncertainty in model of plant
– Disturbances in the plant system 
– Sensor noise

*Chandrasekharan, P., C., Robust Control of Linear Dynamical Systems, Academic Press, 1996.
*Image: http://www.ece.cmu.edu/~koopman/des_s99/control_theory/#chandra96



Uncertainty Modelling

• Stochastic control assigns probability distributions to 
each uncertainty to develop new control law. 

• In contrast, robust control methods seek to bound the 
uncertainty rather than express it in the form of a 
distribution (i.e. model reduction). 

• Modeling is difficult
– Imperfect plant data
– Time varying plants
– Higher order dynamics
– Non-linearity
– Complexity
– Skill



Example: Two Cart System

• Here the controller is of the following form

𝐶 𝑠 =
100 𝑠 + 1 3

0.001𝑠 + 1 3

• Uncertainty:
– 𝑘 = 1.0 ± 0.2 (20%)
– 𝑚1 = 1.0 ± 0.2 (20%)
– 𝑚2 = 1.0 ± 0.2 (20%)



Two Cart System Diagram

• Cart Models: 𝐺1 𝑠 =
1

𝑚1𝑠
2 , 𝐺2 𝑠 =

1

𝑚2𝑠
2

• 𝐹(s) =
0 𝐺2

𝐺1 −𝐺1 −𝐺2
(applied force)



MATLAB System Description
s = zpk('s'); % The Laplace 's' variable

C = 100*ss((s+1)/(.001*s+1))^3; % triple lead compensator

% set uncertainty parameters

k = ureal('k',1,'percent',20);

m1 = ureal('m1',1,'percent',20);

m2 = ureal('m2',1,'percent',20);

% cart system transfer functions

G1 = 1/s^2/m1;

G2 = 1/s^2/m2;

% Spring-less inner block F(s)

F = [0;G1]*[1 -1]+[1;-1]*[0,G2];

% add spring in feedback

P = lft(F,k);

% u1 = C*(r-y1);

% Uncertain open-loop model is

L = P*C;



Closed Loop Stability

• 𝑃𝑛𝑜𝑚 =
1

(𝑠2+5.995∗10−16)(𝑠2+2)
(open loop TF)

• Using MATLAB, we close the loop, connecting P, our 
plant and C, our controller:

% close the loop

T = feedback(L,1);

% compute open loop gain -> not stable

Pnom = zpk(P.nominal);

% compute closed loop gain -> stable

Tnom = zpk(T.nominal);

maxrealpole = max(real(pole(Tnom)))

>> maxrealpole = -0.8232



Closed Loop Stability
• We can see that the system is stable in the nominal case.
• MATLAB routine robuststab() can show us how robust this stability is to 

uncertainty
[StabilityMargin,Udestab,REPORT] = robuststab(T);

REPORT

REPORT =

Uncertain system is robustly stable to modeled uncertainty.                     
-- It can tolerate up to 315% of the modeled uncertainty.                      
-- A destabilizing combination of 500% of the modeled uncertainty was 
found.   
-- This combination causes an instability at 1.4 rad/seconds.                  
-- Sensitivity with respect to the uncertain elements are:                     

'k' is 20%.  Increasing 'k' by 25% leads to a 5% decrease in the margin.   
'm1' is 61%.  Increasing 'm1' by 25% leads to a 15% decrease in the margin.
'm2' is 60%.  Increasing 'm2' by 25% leads to a 15% decrease in the margin.



Worst Case Responses

% Compute worst-case gain over specified 
uncertainty range

[PeakGain,Uwc] = wcgain(T);

PeakGain

% Compute worst-case closed-loop transfer T

Twc = usubs(T,Uwc);         

% 4 random samples of uncertain model T

Trand = usample(T,4);         

clf

subplot(211), bodemag(Trand,'b',Twc,'r',{10 
1000});  % plot Bode response

subplot(212), step(Trand,'b',Twc,'r',0.2);           
% plot step response



Uncertainty in Transfer Function
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Uncertainty in TF (high k, low m’s)
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Uncertainty in TF (low k, high m’s)

10
1

10
2

10
3

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

M
a

g
n

it
u

d
e

 (
d

B
)

Bode Diagram

Frequency  (rad/s)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Step Response

Time (seconds)

A
m

p
lit

u
d

e



Theoretical Background

Signals Norms



Theoretical Background

System Norms

• System norms are actually the input-output gains of 
the system

• For a LTI stable system theқ-norm is decided by the
peak value of the largest singular value of the
frequency response matrix over the whole frequency
axis:



Theoretical Background

Internal Stability

• An interconnected system is internally stable if the
subsystems of all input-output pairs are asymptotically stable



Robust Design Specifications

Small-gain Theorem

• Important theorem in the derivation of many
stability tests

• Provides only a sufficient condition for stability



Robust Design Specifications

Small-gain Theorem

• If G1(s) and G2(s) are stable then the closed-loop
system is internally stable if and only if

llG1G2ll∞ < 1 &  llG2G1ll∞ < 1



Robust Design Specifications

• Additive perturbation configuration, where ɲ(s) is
the perturbation which is unknown but stable

• It can be worked out that the transfer function from
the signal v to u is Tuv = −K(I + GK)−1



Robust Design Specifications

• K is a stabilising controller for the nominal plant G,
since we always assume that the perturbation set
includes zero (no perturbation)

• Hence, from the Small-Gain theorem, for stable Δ(s),
the closed-loop system is robustly stable if K(s)
stabilises the nominal plant and the following holds:



Sensitivity Matrix

• S: transfer function from measurement noise
to process output

𝑆 = 𝐼 + 𝐺𝐾 −1

• Typically we want to minimize not only the
sensitivity of the system to noise, but also
maintain nominal performance, robust
stabilization, etc. w.r.t. additive perturbation.

• This is formulated as a multiple cost function
minimization problem



Cost Functions involving Sensitivity



H∞ Design

• An optimisation approach which is effective
and efficient robust design method for LTI
control systems

• In the H∞ approach, the designer from the
outset specifies a model of system
uncertainty, such as additive perturbation
and/or output disturbance



Standard H∞ Configuration

• external inputs denoted by w (inputs and disturbances)

• z denotes the output signals to be minimised/penalised (e.g. error) 
that includes both performance and robustness measures

• y is the vector of measurements available to the controller K

• u the vector of control signals.



Standard H∞ Configuration

• The objective is to find a stabilising controller K (less than or
equal to one) to minimise the output, z, in the sense of
energy, for all w. This is equivalent to minimising the H∞-
norm of the transfer function from w to z.



The problem can be formulated as:

𝑧
𝑦 = 𝑃 𝑠

𝑤
𝑢

=
𝑃11(𝑠) 𝑃12(𝑠)
𝑃21(𝑠) 𝑃22(𝑠)

𝑤
𝑢

𝑢 = 𝐾 𝑠 𝑦

and It can be obtained directly that

This is known as the lower linear fractional 
transformation.

1

11 12 22 21[ ( ) ] : ( , )lz P P K I P K P w F P K w-= + - =



H∞ Optimization Problem

• We want to minimize this transform w.r.t. the 
H infinity norm:

𝐹𝑙 𝑃,𝐾 ∞ = sup
𝜔𝜖ℛ

 𝜎[𝐹𝑙(𝑃, 𝐾)(𝑗𝜔)]

• Here,  𝜎 represents the maximum singular
value of 𝐹𝑙 𝑃,𝐾 for a given frequency.

• Thus, the infinity norm is the supremum of
this function over all frequencies.

• Finally, the design problem is the following
min

𝐾𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑖𝑛𝑔

𝐹𝑙 𝑃, 𝐾 ∞



Mu-Synthesis Design

• Used to achieve both 
robust stability (RS) 
and robust 
performance (RP) if 
there is structured 
uncertainty

• The system is robustly 
stable if 𝑀(𝑠) is stable 

and 𝜇∆ 𝑀 𝑠 < 1.



Structured Singular Values

• 𝜇∆: Smallest “size” of the uncertainty that makes 
𝐼 − 𝑀(𝑗𝜔)∆(𝑗𝜔) singular at some frequency

• Here, ∆ is the block uncertainty, and bold ∆ is the 
set of structured uncertainties.



Computing 𝜇(𝑀)

• It can be shown that 𝜇(𝑀)is bounded by

• Later we will need to minimize 𝜇(𝑀). 
• The gap between the spectral radius and the max 

singular values could be very large, hard to 
compute

• We can transform M to narrow the range, making 
the minimization over 𝜇(𝑀) easier to compute.

• We define U and D matrices that match the 
structure of bold ∆ (block diagonal).



Computing 𝜇(𝑀)

• From the structure of U and D, we can derive 
the following transformation to tighten the 
bounds on 𝜇(𝑀):

• In many cases this reduces to 

• Minimizing w.r.t. the upper bound in this way 
is preferred because it is a convex problem, 
but the lower bound is not.



Mu-Synthesis

• We can find the system output, z, w.r.t. 
perturbations, ∆.

𝑧 = 𝑀22 + 𝑀21∆ 𝐼 − 𝑀11∆
−1𝑀12 𝑤

𝑧 = 𝐹𝑢 𝑀,∆ 𝑤
• For stability

𝐹𝑢 𝑀,∆ ∞ < 1
• We can derive the following conditions:

1. RP: 𝑀 𝜇 < 1

2. RS: 𝑀11 𝜇 < 1
3. NP: 𝑀22 ∞ < 1
4. NS: M is internally stable



D-K Iteration Method

• For the optimal RSRP design, we want to 
solve for K s.t.

inf
𝐾(𝑠)

sup
𝜔𝜖ℛ

𝜇[𝑀(𝑃, 𝐾)(𝑗𝜔)]

• A stabilizing controller is found s.t.
sup
𝜔∈ℛ

inf
𝐷∈𝑫

 𝜎 [𝐷𝑀 𝑃,𝐾 𝐷−1(𝑗𝜔)] < 1

• If D is constant, this is simply an 𝐻∞
optimization problem for K

• If K(s) is fixed, and D varies, this is a convex 
optimization problem over all frequencies 𝜔



D-K Iteration Method



Example: Two Cart System

• Design goal: attenuate effect of disturbance 𝑓2
on position of mass 𝑚2. 

• Performance goal: attenuate the disturbance 
on mass m2 by a factor of 80 below 0.1 rad/s.



Uncertainty Modeling

• Uncertainty in 𝑘1 -> same as before, use 
ureal()

• Time delay between command and 
application of actuator force, 𝑓1. The error 
from this is bounded by a high pass filter 
transfer function

𝑊𝑑𝑒𝑙𝑎𝑦 =
2.6𝑠

𝑠 + 40



Error from Time Delay
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Plant Model

𝐴 =

0 0
0 0

−
𝑘1

𝑚1

𝑘1

𝑚2

𝑘1

𝑚1
−

𝑘1 + 𝑘2

𝑚2

1 0
0 1

−
𝑏1
𝑚1

𝑏1
𝑚2

𝑏1
𝑚1

−
𝑏1 + 𝑏2

𝑚2



Uncertainty in Transfer Function
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Controller Design

• 𝑘1 is uncertain due to sensor noise, 𝑊𝑛.

• Controller will measure noisy ∆𝑥 of 𝑚2 and apply 𝑓1, 
which acts on 𝑚2 through uncertain 𝑘1.

• Actuation is penalized by a filter, 𝑊𝑢

• Disturbance is filtered by 𝑊𝑑𝑖𝑠𝑡.



Synthesized Controller Loop Gain (high 
uncertainty in k)
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Synthesized Controller Loop Gain (low 
uncertainty in k)
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Disturbance Rejection
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Pros and Cons of Robust Control

Advantages

• Allows control in the face of uncertainties

• Applicable to multivariable problems

Disadvantages

• Dimensionality reduction of model and/or 
controller often necessary
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