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Introduction

* A control system is robust if it remains stable
and achieves certain performance criteria in
the presence of possible uncertainties.

* The robust design is to find a controller, for a
given system, such that the closed-loop
system is robust.



Uncertainty Modeling

 Must maintain controllability, observability and stability
when there is uncertainty:
— Uncertainty in model of plant
— Disturbances in the plant system
— Sensor noise
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*Chandrasekharan, P., C., Robust Control of Linear Dynamical Systems, Academic Press, 1996.
*Image: http://www.ece.cmu.edu/~koopman/des_s99/control_theory/#ichandra96



Uncertainty Modelling

e Stochastic control assigns probability distributions to
each uncertainty to develop new control law.

* |n contrast, robust control methods seek to bound the
uncertainty rather than express it in the form of a
distribution (i.e. model reduction).

 Modeling is difficult
— Imperfect plant data
— Time varying plants
— Higher order dynamics
— Non-linearity
— Complexity
— Skill



Example: Two Cart System

Position
Position Measurement
Control! x1 X2 =yl
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* Here the controller is of the following form
100(s + 1)3
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* Uncertainty:
— k=1.0+0.2 (20%)
— my =1.0 + 0.2 (20%)
— m, =1.0 + 0.2 (20%)



Two Cart System Diagram
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MATLAB System Description

zpk("s®"); % The Laplace "s" variable
100*ss((s+1)/(-001*s+1))"3; % triple lead compensator

% set uncertainty parameters

k = ureal("k",1, "percent”,20);
ml = ureal("ml",1, "percent”,20);
m2 = ureal("m2",1, "percent”,20);
% cart system transfer functions
Gl = 1/s™2/ml;

G2 = 1/s™N2/m2;

% Spring-less 1nner block F(s)

F = [0;G1]*[1 -1]+[1;-1]*[0O,G2];
% add spring in feedback

P = ITt(F,k);

% ul = C*(r-yl);

% Uncertain open-1oop model 1s
L = P*C;



Closed Loop Stability

1
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nom — (s245995+10-16)(s242)

(open loop TF)

* Using MATLAB, we close the loop, connecting P, our
plant and C, our controller:

% close the
T = feedbac
% compute o
Pnom = zpk(
% compute c

loop

<K(L,1);
oen loop gain -> not stable

P_nominal);
losed loop gain -> stable

Tnom = zpk(T.nominal);

maxrealpole

= max(real(pole(Tnom)))

>> maxrealpole = -0.8232



Closed Loop Stability

* We can see that the system is stable in the nominal case.

 MATLAB routine robuststab() can show us how robust this stability is to
uncertainty

[StabilityMargin,Udestab,REPORT] = robuststab(T);
REPORT
REPORT =

Uncertain system is robustly stable to modeled uncertainty.
-- It can tolerate up to 315% of the modeled uncertainty.

-- A destabilizing combination of 500% of the modeled uncertainty was
found.

-- This combination causes an instability at 1.4 rad/seconds.

-- Sensitivity with respect to the uncertain elements are:
'k"is 20%. Increasing 'k' by 25% leads to a 5% decrease in the margin.
'm1'is 61%. Increasing 'm1' by 25% leads to a 15% decrease in the margin.
'm2'is 60%. Increasing 'm2' by 25% leads to a 15% decrease in the margin.



Worst Case Responses

% Compute worst-case gain over specified
uncertainty range

[PeakGain,Uwc] = wcgain(T);

PeakGain

% Compute worst-case closed-loop transfer T
Twc = usubs(T,Uwc);

% 4 random samples of uncertain model T
Trand = usample(T,4);

clf

subplot(211), bodemag(Trand, “"b",Twc, "r",{10
1000}); % plot Bode response

subplot(212), step(Trand, "b",Twc, "r",0.2);
% plot step response
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Theoretical Background

Signals Norms

1-norm rli = f:; lx(t)|dt for p=1

1/p _
Jfor 1 < p <o

p-norm T, = (f_lx Lr(f)\pdf)

>o-norm |||« 1= supeg |2(1))] . for p=oc



Theoretical Background

System Norms

e System norms are actually the input-output gains of
the system

* For a LTI stable system the K -norm is decided by the
peak value of the largest singular value of the
frequency response matrix over the whole frequency
axis:

|Gl = sup [|G(jw)|2

wWeER



Theoretical Background

Internal Stability

* An interconnected system is internally stable if the
subsystems of all input-output pairs are asymptotically stable

Ld
+
u !
N 55— G Y.
7 -
An interconnected system of G and K
T, =GK(I +GK)™' Twr = K(I+GK)™'

T, =G+ KG)™! T.i=-KG(I+KG)™!



Robust Design Specifications

Small-gain Theorem

* Important theorem in the derivation of many
stability tests

* Provides only a sufficient condition for stability



Robust Design Specifications

Small-gain Theorem

* If G,(s) and G,(s) are stable then the closed-loop
system is internally stable if and only if

I1G,G,ll.<1 & IIG,G,ll. <1
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A feedback configuration



Robust Design Specifications

* Additive perturbation configuration, where N(s) is
the perturbation which is unknown but stable

|t can be worked out that the transfer function from
the signal vtouis T , = =K(I + GK)!
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Robust Design Specifications

e K is a stabilising controller for the nominal plant G
since we always assume that the perturbation set
includes zero (no perturbation)

 Hence, from the Small-Gain theorem, for stable A(s),
the closed-loop system is robustly stable if K(s)
stabilises the nominal plant and the following holds:

AK(I +GK) Yo <1
or, |[K(I+GK)™ . <

and

A T T*LJ_ All oo <
K(I+GK)'A 1

1Al



Sensitivity Matrix

e S: transfer function from measurement noise
to process output

S=(+GK) 1

* Typically we want to minimize not only the
sensitivity of the system to noise, but also
maintain nominal performance, robust
stabilization, etc. w.r.t. additive perturbation.

* This is formulated as a multiple cost function
minimization problem



Cost Functions involving Sensitivity

(I +GK)™!
K(I+GK)™!

min
K stabilising

o0




H_. Design

 An optimisation approach which is effective
and efficient robust design method for LTI
control systems

* In the H_ approach, the designer from the
outset specifies a model of system
uncertainty, such as additive perturbation
and/or output disturbance



Standard H_, Configuration

w z
—_— -

P(s)

K(s) =

external inputs denoted by w (inputs and disturbances)

z denotes the output signals to be minimised/penalised (e.g. error)
that includes both performance and robustness measures

y is the vector of measurements available to the controller K
u the vector of control signals.



Standard H_, Configuration

w z

P(s)

K(s) =

 The objective is to find a stabilising controller K (less than or
equal to one) to minimise the output, z, in the sense of

energy, for all w. This is equivalent to minimising the Heo-
norm of the transfer function from w to z.



The problem can be formulated as:
Z1 _ w1 _ [P11(5) P12(5)] w
[y] = P(s) [u] B [P21(S) P, (s) [u]
u=K(s)y
and It can be obtained directly that

z=[R, R, Kl B, Blw: B P KV

This is known as the lower linearfractional
transformation.



H.. Optimization Problem

We want to minimize this transform w.r.t. the
H infinity norm:
|1F; (P, K)llc = supa[F;(P,K)(jw)]

WER
Here, o represents the maximum singular
value of F;(P, K) for a given frequency.

Thus, the infinity norm is the supremum of
this function over all frequencies.

Finally, the design problem is the following
min  ||F;(P, K) |l

Kstabilizing



Mu-Synthesis Design

e Used to achieve both
robust stability (RS)

and robust A
performance (RP) if

there is structured d

uncertainty

* The system is robustly — M
stable if M(s) is stable

and ,LLA(M(S)) < 1.



Structured Singular Values

* up: Smallest “size” of the uncertainty that makes
I — M(jw)A(jw) singular at some frequency

A (M) = zneig{E(A) . det(l — MA) =0}

pa(M(s)) == sup pa(M(jw))

* Here, Ais the block uncertainty, and bold A is the
set of structured uncertainties.



Computing u(M)

It can be shown that u(M)is bounded by
p(M) < p(M) <a(M)

Later we will need to minimize u(M).

The gap between the spectral radius and the max
singular values could be very large, hard to
compute

We can transform M to narrow the range, making
the minimization over u(M) easier to compute.

We define U and D matrices that match the
structure of bold A (block diagonal).



Computing u(M)

* From the structure of U and D, we can derive
the following transformation to tighten the

bounds on u(M):

< < inf & D!
max p(MU) < u(M) < inf G(DMD™)

* |[n many cases this reduces to

_ i = -1
u(M) = inf 5(DMD™)

 Minimizing w.r.t. the upper bound in this way
is preferred because it is a convex problem,
but the lower bound is not.



Mu-Synthesis

* We can find the system output, z, w.r.t.
perturbations, A.

z = [Myy + My A(J — My1A) ™ Myp]w
z=F,(M,A)w
e For stability
1B (M, ) <1
* We can derive the following conditions:
1. RP: (M|, <1
2. RS:[[Myqll, <1
3. NP:||Mylle <1
4. NS: Mis internally stable




D-K Iteration Method

For the optimal RSRP design, we want to
solve for K s.t.
inf supu|[M(P,K)(jw)]
K(s) weR
A stabilizing controller is found s.t.
sup inf @ [DM(P,K)D"1(jw)] < 1
weR DED
If D is constant, this is simply an H,
optimization problem for K

If K(s) is fixed, and D varies, this is a convex
optimization problem over all frequencies w



D-K Iteration Method

Step 1: Start with an initial guess for D, usually set D = I.
Step 2: Fix D and solve the H.-optimisation for K,

K = are i}rgf ||Fl(1f’, K| o

Step 3: Fix K and solve the following convex optimisation problem for D at
each frequency over a selected frequency range,

D(jw) = arg inf &|DF;(P,K)D ' (jw)]
DeD
Step 4: Curve fit D(jw) to get a stable, minimum-phase D(s); goto Step 2 and
repeat, until a prespecified convergence tolerance or (6.10) is achieved, or
a prespecified maximum iteration number is reached.



Example: Two Cart System
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Fig. 1. Mass-spring system.

* Design goal: attenuate effect of disturbance f,
on position of mass m,.

* Performance goal: attenuate the disturbance
on mass m2 by a factor of 80 below 0.1 rad/s.



Uncertainty Modeling

* Uncertainty in k; -> same as before, use
ureal()

 Time delay between command and
application of actuator force, f;. The error
from this is bounded by a high pass filter

transfer function
2.6s

Waetay = s + 40
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Plant Model
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Controller Design

— = W, -

| f Plant Wo —=
ﬂ. Waist S S—
noise

(;}"— Wh |[+—

control

Controller |-

k, is uncertain due to sensor noise, W,,.

Controller will measure noisy Ax of m, and apply f;,
which acts on m, through uncertain k5.

Actuation is penalized by a filter, W,
Disturbance is filtered by W;;.
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Synthesized Controller Loop Gain (low
uncertainty in k)

Bode Diagram
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Disturbance Rejection

Nominal Disturbance Rejection Response

0.03 [ [ [ [ [ [ [ [ [
0.02 — /’\‘ /\\‘ ~\ —
0.01— | /[ 7R SN ) N\ A~ , AN s
In [l s \ \ \ / ~~ V) VA%
N 0 [ \ / N / \ g ~ \ . \ | = / \ AVAAY. )
N = / N \ J Q\ /7 VoA / ; / = / / \ A
-0.01[—\ v \ \ / \ \ \ \ / . / W —
| / e ‘\/‘ \ ./
-0.02— \V/ Y
0,03 [ [ [ [ [ [ [ [ [
0 10 20 30 40 50 60 70 80 90 100
1 [ n [ [ [ [ [ [ [ [ |
| ‘N‘ | b “\
Il \‘ I . Ml
= | | \ N I | )
g P‘ “h‘ﬂ | | ‘H 1 \(‘ P\H r‘q“‘ H\‘ “ﬁ‘c“ "“‘\ M “‘ \
5 W it IS P T S P
8 l “w mw‘\e‘m [ AU R N
= I Hl RN REL AR S L
o J | (—
1 [ [ [ [ [ [ [ [ [
0 10 20 30 40 50 60 70 80 90 100
02l [ [ [ [ [ [ [ [ ]
’ q I\
— it i M
8 i ) ) \ /1 ‘ _
8 o ( \ w i ‘ ‘,t"‘t n‘,' | | “‘r | ‘ / A JA/\ NI
< NI M [ f PTG " My f i N "
£ A FRATRWLY V1wl o[ A Y P, AT o[
‘3 ’ v w'/ “/‘ ‘/‘N ‘ H \‘\ I “M ‘\J‘ WL[ »/“‘\ 4\/u / 'y 0 ”‘ ‘L\“FL‘V“ ‘ u"‘ ‘N‘J\\ W‘ / “f f
g Il N [P0 ‘f‘w | w Wil /Y Y
o \ \/ |
[ [ [ [ [ [ [ [
20 30 40 50 60 70 80 90 100
Time (sec)

Red: high uncertainty in k4
Blue: low uncertainty in k;



Pros and Cons of Robust Control

Advantages

e Allows control in the face of uncertainties
* Applicable to multivariable problems

Disadvantages

* Dimensionality reduction of model and/or
controller often necessary
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