VHDL, Verilog, and the Altera Environment Tutorial

Table of Contents

. Create a new Project

. Example Project 1: Full Adder in VHDL

. Code Compilation

. Pin Assignment

. Simulating the Designed Circuit

. Programming and Configuring the FPGA Device
. Example Project 2: Full Adder in Verilog

~NOoO Ok wWwN -

This tutorial is intended to familiarize you with the Altera environment and introduce the
hardware description languages VHDL and Verilog. The tutorial will step you through the
implementation and simulations of a full-adder in both languages. Using this background you
will implement a four-bit adder in both VHDL and Verilog. In the future, HDL labs can be done
in either language.

You may want to refer to Appendix A to review the standard structures of VHDL and
Verilog modules.

1. Create a new Project
On starting Altera Quartus 11, you should be faced with a screen like this:

Y o Tl
Pev—e mco— - 5]

NECT RO - S e— LR e oo o o I NI
Project Navigater w8 x
& comploton Herarchy
-
Getting Started With Quartus® Il Software %
Driescy [BHs | & tesonine
s —_2ax Start Designing Start Learning

e —

Task

roares project you the b features of Quartus i aftware

T iy Open teractiveTutoril |

| Figure 1. The main Quartus II display.

Go to "File -> New Project Wizard". A introduction Dialog will appear (Fig 2), It indicates the
capability of this wizard. You can skip this window in subsequent projects by checking the box
Don’t show me this introduction again.

BT —— ?t; B, m

DEEE & L@ ~ JBY 2 @YS T > v

Project Navigstor

& comptoton Herarchy

Dyriescy [Brs | & desonine
= —

Figure. 2 Tasks performed by the wizard.

Press Next to get the window shown in Figure 3. Choose the location of your working directory
and type in the name of your project (let’s use fulladder) as shown in Fig. 3.

LTS e T e = T == T e e O

Processng Tools Search aitera.com @

Dﬁﬂﬂﬁdﬂhﬂ-ﬂf- HY sEWS T > O B P AWD

#ax

B Conptamn ey

Directory, Name, Top-Level Entity [page 1 of 5]
What i the working drectory for 1 praject?

m_ﬂé gle N —

Figure. 3 Creation of a new project.

Press Next. Since we have not yet created the directory lab1, Quartus Il software displays the
pop up box in Flgure 4 asklng if it should create the deswed dlrectory
E— Fafr— - ——

Qunn =068t o
ject dsmgrments Processng wordow v B Search altera.com @

Dsnﬂaw\:am- Y s BYS T > D

#ax

& HaAe®

B Conptamn ey

Directory, Name, Top-Level Entity [page 1 of 5]
[what s the working drectary for ths praject?

Byrieschy [s | o besgnine

@ Quartzn
O T et Co vt ran

Cw JCw)

ma‘ gle N —

Figure. 4 Quartus II software can create a new directory for the project.

Click Yes, which leads to the windows in Figure 5.
l'mmu—lr. == wf:—-— —~ m

DSEO& LB v o JHY 2 SYO T O U OB L 0®

[& comptotontaerarchy

Add Files [page 2 of 5]

ote: you can aiways add desgn fles ta the projectfater,
e rame: =]

FieName Type Ubrary DesgnEntryfSynthessTool HOLVerson [adm

Drowdy [ERSTTH O]
Tesks @8 x

Spaciy the path names of any non-defadt vares. [User Lbrares...|

Figure 5. The wizard can include user-specified design files.

The wizard makes it easy to specify which existing files (if any) should be included in the

project. Assuming that we do not have any existing files, click Next, which leads to the window
in Figure 6

B oatclcttn e o VR o 1 F — . T T T ———— — —
e ———]

DEEG S rhd oo [@Y s @YO T > W
vax

Project Navigator

& conplaton erarchy

Family & Device Settings [page 3 of 5]

Oevice faméy
Femidy: [Cydone I

Target device

Drewdy [RS8 oemnines |
[Tesks. eax
Flow: Conplaton =) [customae,.. |

Tesk
P Comple

|acseras v

‘Compancn device

Figure 6. Choose the device family and a specific device.

We have to specify the type of device in which the designed circuit will be implemented. Choose
Cyclone™ II as the target device family. We can let Quartus Il software select a specific device
in the family, or we can choose the device explicitly. We will take the latter approach. From the
list of available devices, choose the device called EP2C35F672C6 which is the FPGA used on
Altera’s DE2 board. Press Next, which opens the window in Figure 7.

| T LR e e— .v-?‘ . B " - :
FTL I IRLY Wl o] - [=

[Project Havigater

A Complaton Herarchy

SVS TP BOH U S B AT

EDA Tool Settings [page 4 of 5]
Specy the other E0A
EDA took:
ToTpe T

project

Fomatis) Fun Tool Atomaticaly
] ctone) Run ths tool automatcaly t synhesize the current desigy

)7 R gte-dve st aumatcaly atr corpdaton

yriesey [Bfm | Sompins |
[Tasks CERS
Fow: [camplatin -

{

Tese
L

Figure 7. Other EDA tools can be specified.

The user can specify any third-party tools that should be used. A commonly used term for CAD
software for electronic circuits is EDA tools, where the acronym stands for Electronic Design
Automation. This term is used in Quartus Il messages that refer to third-party tools, which are
the tools developed and marketed by companies other than Altera. Since we will rely solely on
Quartus Il tools, we will not choose any other tools. Press Next.

A summary of the chosen settings appears in the screen shown in Figure 8. Press Finish, which
returns to the main Quartus Il window, but with labl_YOURNAME specified as the new project,
in the display title bar.

| T T — [— ., == Y e Y - O e - U REE

e Edr Vew Poect desgwents Pocmsng Tods Wroom My 0D Search ltera.c

DEFEP S & @ o~ HY VO T r W O N DB A D
Sax

[Project Havigater

A Complaton Herarchy

Figure 8. Summary of the project settings.

2. Example Project 1: Full Adder in VHDL

Select “File > New” to get the window in Figure 9, choose VHDL File, and click OK. This
opens the Text Editor window. The first step is to specify a name for the file that will be created.
Select File > Save As to open the pop-up box depicted in Figure 10. In the box labeled Save as
type choose VHDL File. In the box labeled File name enter fulladder. Put a checkmark in the
box Add file to current project. Click Save, which puts the file into the directory labl.
Maximize the Text Editor window and enter the VHDL code as shown in Figure 11. Save the file
by typing File > Save, or by typing the shortcut Ctrl-s.

DEEGP & L BB © o [flede
Project Navigstor @8x
Ensty

& cydone I EPICIFOTS
> ticcier &8

4 P Comple Desgn
[— Inerfoce
> Fitter (Place & Route) SgralTap [T Logk Analyzer Fle
P Assembler (Generate programming fies)
P TimeQuest Tming Analyss AFOL Indude Fie
> DA Netist Wt
B program Device (Open Programmer)

Q| Pr— p— 0

X x ¥ <<sexrch M
E

Figure 9. Choose to prepare a VHDL file.

Saver: [0] ~mesm
&g Nae - Date modified Type
b SAZIATAIPM Filefolder

STHrPHORT S B AV
dLhar 2|

RIS BEw | 2320

'

e EEm d []

Seveastpe: [VHOL Flea ("vhd vl E Carcel ave deis
[r—— Fror gace_delay:

cate_delay:

%’ = afier gate delayi
Tasks ax| 1 . a

=23) after gave_delay;

4 P Compie Desgn
[trr——"
> et Gace Route)
P kssembler (Generate programming fies)
> TmeGQuest Timing Anaiysis
DA ettt
B Program Devce (Open Programmer]

Figure 10. Name the file

JEY VO T > DO U &Y A
WwaLihe

FEEABARR IS R EY | 232E

Figure 11. Fulladder VHDL code.

NOTE:

-- Constant can be used to declare a constant of a particular type. In this case, Time.

-- The functional relation between the input and output signals is described by the
architecture body.

-- Only one architecture body should be bound to an entity, although many architecture
bodies can be defined.

The syntax of VHDL code is sometimes difficult for a designer to remember. To help
with this issue, the Text Editor provides a collection of VHDL templates. The templates provide
examples of various types of VHDL statements, such as an ENTITY declaration, a CASE
statement, and assignment statements. It is worthwhile to browse through the templates by
selecting Edit > Insert Template > VHDL to become familiar with this resource.

3. Code Compilation

The code in the file fulladder is processed by several Quartus II tools that analyze the
code, synthesize the circuit, and generate an implementation of it for the target chip. These tools
are controlled by the application program called the Compiler.
Run the Compiler by selecting Processing > Start Compilation, or by clicking on the toolbar

icon ™ that looks like a purple triangle. As the compilation moves through various stages, its
progress is reported in a window on the left side of the Quartus 11 display. Successful (or
unsuccessful) compilation is indicated in a pop-up box.

Acknowledge it by clicking OK, which leads to the Quartus Il display in Figure 12. In the
message window, at the bottom of the figure, various messages are displayed. In case of errors,
there will be appropriate messages given. When the compilation is finished, a compilation report

is produced. A window showing this report is opened automatically, as seen in Figure 12. The
window can be resized, maximized, or closed in the normal way, and it can be opened at any

time either by selecting Processing > Compilation Report or by clicking on the icon &
8 Quartus 164-8it - ZieeL26/1ab/Rllodder - flladder) o = - nt = - TEE G =

o e
DEEG S LM o o [l

Projecttaviator Complaton Report 5]

sty
A Cydone 1: EP2CIFE7E
el futoccer 88

Complaton * | | Qustome. . 7‘

Figure 12. Compile VHDL code.

4. Pin Assignment

The DE2 board has hardwired connections between the FPGA pins and the other
components on the board. We will use two toggle switches, labeled SW0, SWland SW2, to
provide the external inputs, a, b and cin, to our example circuit. These switches are connected to
the FPGA pins N25, N26 and P25, respectively. We will connect the output sum and cout to the
green light-emitting diodes labeled LEDGO and LEDGL1, which is hardwired to the FPGA pin
AE22 and AF22.

Pin assignments are made by using the Pin Planner. Select Assignments > Pin Planner
to reach the window in Figure 13. Choose the pin assignment as shown in Figure 13. Recompile
the circuit, so that it will be compiled with the correct pin assignments.

€ Quartus 164-81 - Zioe 1267 llder - fulladder by b 7 y v . - 3 TG s

2 ®
DEEHD S LB o | (e FEY VO TR O NN B D L0 ®
Project Navigator eax ¢ fuladder vhd R e
Ennty BALT ZE 43K 18 R E» | =328
& cydone m: pcaFoTS Tibzagy iEEE;
Nl fudadder mef & P Planner - 2/ee126/abhuladder - ullsdder [)) |

usel | Fle Edt view Processng Tooks Wedow Heb ©]

|| @ Gows 08
e |
of | ™ remed; = v

Hode Name.
| <aewoow>>

=)
®
|&

o

)

0% 00:00:00

Figure 13. The Assignment Editor window.

5. Simulating the Designed Circuit

Before implementing the designed circuit in the FPGA chip on the DE2 board, it is prudent to
simulate it to ascertain its correctness. Quartus Il software includes a simulation tool that can be
used to simulate the behavior of a designed circuit. Before the circuit can be simulated, it is
necessary to create the desired waveforms, called test vectors, to represent the input signals. It is
also necessary to specify which outputs, as well as possible internal points in the circuit, the
designer wishes to observe. The simulator applies the test vectors to a model of the implemented
circuit and determines the expected response. We will use the Quartus 11 Waveform Editor to
draw the test vectors, as follows:

Open the Waveform Editor window by selecting File > New. Click on the Other Files
tab to reach the window displayed in Figure 15. Choose Vector Waveform File and click OK.

x]

New

Device Design Files Other Files l

AHDL Inchude File

Black Syrbal File

Chain Dreszcription File
Hexadecimal [Intel-Format] File
Logiz Analyzer Interface File
kdemory [nitialization File
SignalT ap Il File

Tl Script File

Teut File

Yechar \Waveform File

k. Cancel

Figure 14. Choose to prepare a test-vector file.

The Waveform Editor window is depicted in Figure 16. Save the file under the name
fulladder.vwf. Set the desired simulation to run from 0 to 20 ns by selecting Edit > End Time
and entering 20 ns in the dialog box that pops up. Selecting View > Fit in Window displays the
entire simulation range of 0 to 20 ns in the window.

B fulladder, vwi*

Mazter Time Bar: 200 he 4| ¢| Painter: 489 nz Intarval: 1511 ng Start: Ops End: 200 he

) vaeat | PP 100rs 200 nd
G Ops 200 ns

Figure 15. The Waveform Editor window.

Next, we want to include the input and output nodes of the circuit to be simulated. Click Edit >
Insert Node or Bus to open the window in Figure 17. It is possible to type the name of a signal
(pin) into the Name box, but it is easier to click on the button labeled Node Finder to open the
window in Figure 18. The Node Finder utility has a filter used to indicate what type of nodes are
to be found. Since we are interested in input and output pins, set the filter to Pins: all. Click the
List button to find the input and output nodes as indicated on the left side of the figure. Select all
signals and click the > sign to add it to the Selected Nodes box on the right side of the figure.
Click Ok to close the Node Finder Window and then Ok in the window of Figure 17. This
leaves a fully displayed Waveform Editor window, as shown in Figure 19.

Insert Mode or Bus | |

Marme: |]

]

Type: | INPUT Cancel

i

|
W alue tupe: | 3-Level ﬂ Mode Finder...
Fadix: | Binary j

Bus width: |'I

Start index: ||:|

[Display gray code count a3 binamy count

Figure 16. The Insert Node or Bus dialogue.

Node Finder rg|
Mamed: |H j Filker: |Pins: all ﬂ Customize... | List |
Laok in: |[HERsE ﬂJ V' Include subentities Cancel
Modes Found: Selected Modes:
| MHame Azzighments | Type | Marne Aszsighments | Tupe
= a PIN_MN25 Input > 9 [fulladderla FIN_N25 Input
m=h PIN_MN2E Input B [fulladderlb FIN_M2E Input
B cin PIN_P25 Input 77 || fulladdeilein FIN_P25 Imput
£ cout PIN_AE22 Output ‘ I [fulladderlcout FIN_&E22 Output
L zLm PIN_AF22 Output L [fulladderlsum FIN_aF22 Output

£
< | > < I >

Figure 17. Selecting nodes to insert into the Waveform Editor.

& fulladder, ywf* =1[3

M aster Time Bar: 200 nz 4| +| Pointer: 1919 ne Interyal: 810 pz Start: 0 ps End: 200 nz
_) e at | PP 100 2000
: G2 0ps 20.0ns
Y = a B0

| | b B0

| | cin BEO

=d cout B

=d s B SR

Figure 18. The nodes needed for simulation.

Select signal a by first select the icon D? , then click signal a”. Then click the icon LE to bring up

Figure 20 and fill in values as shown in that figure. Do the same to signal b and cin by using
period of 1000ps and 2000ps respectively. Then save the file.

Clock X

Time range
Start tirme: |EI ||:|3 j
Endtime: |2.0 s |

B asze waveform an
{

* Tirme period:

Period; 00 -

Offset: |0.0 ns

Diuty cycle (%) |50 il

OF. | Cancel |

Figure 19. Clock waveform setting for a
A designed circuit can be simulated in two ways. The simplest way is to assume that logic
elements and interconnection wires in the FPGA are perfect, thus causing no delay in
propagation of signals through the circuit. This is called functional simulation. A more complex
alternative is to take all propagation delays into account, which leads to timing simulation.
Typically, functional simulation is used to verify the functional correctness of a circuit as it is
being designed. This takes much less time, because the simulation can be performed simply by
using the logic expressions that define the circuit.

To perform the functional simulation, select Assignments > Settings to open the Settings
window. On the left side of this window click on Simulator to display the window in Figure 21,
choose Functional as the simulation mode, and click OK. The Quartus Il simulator takes the
inputs and generates the outputs defined in the fulladder.vwf file. Before running the functional
simulation it is necessary to create the required netlist, which is done by selecting Processing >
Generate Functional Simulation Netlist. A simulation run is started by Processing > Start

Simulation, or by using the icon ®. . Atthe end of the simulation, Quartus Il software indicates

its successful completion and displays a Simulation Report illustrated in Figure 22.

Settings - fulladder,

Category:

- [~ [H

General
File
Uszer Libraries [Cumrent Project]
Device
Timing Analysis Settings
EDa Tool Settings
Compilation Process Settings
Analysis & Svnthesis Settings
Fitter Settings
Azzembler
Design Agsistant
SignalT ap Il Logic Analyzer
Logic Analyzer Interface
SignalProbe Settings
Simulator Settings

Simulation Power
PowerPlay Power &nalyzer Settings

Select simulation options.

Simulation mode: |[FMETEE

Simulation input: |fu||adder.vwf

Simulation period

% Run simulation until all vector stimuli are used

" End simulation at:

Iv Automatically add pins to simulation output wawveforms
[Check outputs |
~

r T
[v Simulation coverage reporting Report Settings...

[Owerwrite simulation input file with simolation results

-

tare Settings. .

Description:

Specifies the type of simulation to perfarm for the current Simulation focus,

]

Cancel

Figure 20. Specifying the simulation mode.

Simulation Waveforms

Simulation mode: Functional

Master Time Bar: Ops 4| +| Painter: 1.03 ne Interval: 1.03 he Start: End:

| vaea g - 100ns 200nd

0pz P
i

= B0 UUUUTUUUU U U U UL U Ui Uy iU e
= b A I e e e e e) e e e e Y o 0 I O N
= cin Bo LTt —trr1 111 1 I
[ZP| cout A I s e I s I s O Y O e N 1
@] am o UL UL U U U L T i I

Figure 21. The result of functional simulation.
Having ascertained that the designed circuit is functionally correct, we should now perform the
timing simulation to see how it will behave when it is actually implemented in the chosen FPGA
device. Select Assignments > Settings > Simulator to get to the window in Figure 21, choose
Timing as the simulation mode, and click OK. Run the simulator, which should produce the
waveforms in Figure 23.

Simulation Waveforms

Simulation mode: Timing

M aster Time Bar: Ops 1| +| Painter: Irteryal: Start: End:
o | valea Nps 100ns 20.0nd
Ops ? pz

> A R g appinigapnginigipnyapipinigipipinigupngepipinuyipipinigipipipiginuginiy
= b VI I e e A e) e) e O I
= cn B o o 0t
S| cu | 80 i N e R R B

od sum B0 ’_l_l_l_l_l_,_l_,_l_l_l_,_LFlgure

Figure 22. The result of timing simulation.

6. Programming and Configuring the FPGA Device

The programming and configuration task is performed as follows. Flip the RUN/PROG switch
(on DE2 Board) into the RUN position. Select Tools > Programmer to reach the window in
Figure 24. Here it is necessary to specify the programming hardware and the mode that should be
used. If not already chosen by default, select JTAG in the Mode box. Also, if the USB-Blaster is
not chosen by default, press the Hardware Setup... button and select the USB-Blaster in the
window that pops up, as shown in Figure 25.

U fulladder. cdf*

éa Hardware Setup... UISE-Blaster [USE-0] Mode: |JTAG | Progess: 0%

™ Enable realtime ISP to allow background programming [for M&X | devices]

W Start File Device Checksum Uszercode Eroongf{;::i Werify Ef::k E=amine Segﬁnty Eraze EI{?B«TAP
fulladder. saf EP2C35FET2 002FEDES FFFFFFFF

ﬁ'ﬂ Auto Detect

¥ Delete

& add File..

T Change File...

Figure 23. The Programmer window.

X

Hardware Setup

Hardware Settings IJT,-'E-,E Settings]

Select a programming hardware setup to use when programming devices. Thiz programming
hardware setup applies anly to the current programmer window,

Currently zelected hardware:

Available hardware items:

Hardware | Server | Fart | Add Hardware. .. |
LUSE-Elazter Local UsSe-0 |

Cloze

Figure 24. The updated Programmer window.

Observe that the configuration file fulladder.sof is listed in the window in Figure 24. If the file is
not already listed, then click Add File and select it. This is a binary file produced by the
Compiler’s Assembler module, which contains the data needed to configure the FPGA device.
The extension .sof stands for SRAM Object File. Note also that the device selected is
EP2C35F672, which is the FPGA device used on the DE2 board. Click on the
Program/Configure check box, as shown in Figure 24. Now, press Start in the window in Figure
24. An LED on the board will light up when the configuration data has been downloaded
successfully. If you see an error reported by Quartus Il software indicating that programming
failed, then check to ensure that the board is properly powered on.

7. Example Project 2: Full Adder in Verilog

Follow the step 1 to create a new project but with a different name (ex: fulladder2). Click
File>New to bring up the dialog and select Verilog HDL File and Click OK. Enter the code as
shown in Figure 27. In Verilog, a module’s inputs and outputs are listed at least twice — once in
the 10 list following the module name, and again inside the module where they are assigned a
direction.

Verilog module outputs need to be registered. That is to say, the result of a logical
expression cannot be sent directly to an output pin, but must first be buffered by a register. This
is accomplished by declaring a register with the same name as the signal.

Since “sum” and “cout” are output pins, add registers as shown in Figure 14. Refer to Table 1
for the Verilog syntax of common logical operators.

module fulladder (a,b,cin,sum,cout) ;
input a;
input b;
input cin;
output sum;
output cout;

reg sum;
reg cout;

always @{(a or b or cin)

begin
sum <= a ** b ** cin;
cout <= [(a && b) || (a && cin) || (b && cin):;
end
endmodule

Figure 25. Verilog Code

Operator | Verilog Syntax
AND &&
OR |
XOR AN
NOT !

Table 1. Basic Verilog Operator

Note that the expressions for “sum” and “cout” are placed in an always block. An always block

is executed any time one of the signals in the sensitivity list (“a” or b or cin” in this case)

changes. This tells the synthesizer to update the “sum’ and “cout” registers only when an input

changes.

The procedure for synthesizing and simulating the fulladder module is the same as in the VHDL

section.

