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Announcements



  

Reading Assignment

● Chapter 6 of Sutton and Barto



  

Research Article Topics

● Transfer learning
● Learning with human demonstrations and/or 

advice
● Approximating q-functions with neural networks



  

Reading Assignment

● Chapter 6 of Sutton and Barto
● Matthew E. Taylor, Peter Stone, and Yaxin Liu. 

Transfer Learning via Inter-Task Mappings for 
Temporal Difference Learning. Journal of 
Machine Learning Research, 8(1):2125-2167, 2007.

● Responses should discuss both readings
● You get extra credit for answering others’ questions!

 



  

Programming Assignment #2

● Homework 2 is out 



  

Class Project Discussion

● What makes a good project?
● What makes a good team?



  

Reading Responses

“What are some real word applications of DP?” 
- Boriana

“Since there are at least four ways Monte Carlo 
methods are advantageous over DP 
mentioned, are there any problems in which 
using DP is more practical?” 

- Catherine



  

Reading Responses

“How can we define the stopping conditions for 
value iteration or the Monte-Carlo method (how 
many iterations is enough)?”
– Tung



  

Reading Responses

“Are DP methods dependent on initial states?” 
– Eric



  

Reading Responses

“In the Asynchronous Dynamic Programming 
method, according to what to choose which 
states should be updated more frequently?”
– Pandong



  

Any other questions about DP?



Dynamic Programming
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Policy Improvement

● Main idea: if for a particular state s, we can do 
better than following the current policy by taking 
a different action, then the current policy is not 
optimal and changing it to follow the different 
action at state s improves it



Policy Iteration

● evaluate → improve → evaluate → improve → 
…..



Value Iteration

● Main idea: 
– Do one sweep of policy evaluation under the 

current greedy policy

– Repeat until values stop changing (relative to some 
small Δ)
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Monte Carlo Methods







Code Demo



Reading Responses

“- What is the advantage and disadvantages of 
model-free method? What is the advantage and 
disadvantages of model-based method?”
– Tung



Reading Responses

“In theory, both DP and Monte Carlo will find 
optimal policy, but since our implementation of 
the method won't iterate infinitely, will there be 
chances that the result is only local optimal 
value”
– Erli



Reading Responses

“Are there situations when on-policy methods 
are preferred over off-policy for reasons other 
than ease of implementation?”
– Eric







Finding Project Partner(s) Breakout



Monte Carlo Tree Search Video



THE END
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