COMP 138: Reinforcement Learning

observation

Instructor: Jivko Sinapov
Webpage: https://www.eecs.tufts.edu/~jsinapov/teaching/comp150_RL_Fall2020/

$B E$ a reinforcement learner

- You, as a class, will act as the learning agent

$B E$ a reinforcement learner

- You, as a class, will act as the learning agent
- Actions: wave, clap, or nod

BE a reinforcement learner

- You, as a class, will act as the learning agent
- Actions: wave, clap, or nod
- Observations: color, reward

BE a reinforcement learner

- You, as a class, will act as the learning agent
- Actions: wave, clap, or nod
- Observations: color, reward
- Goal: find an optimal policy

BE a reinforcement learner

- You, as a class, will act as the learning agent
- Actions: wave, clap, or stand
- Observations: color, reward
- Goal: find an optimal policy
- What is a policy? What makes a policy optimal?

How did you do it?

- What is your policy, and how is it represented?
- What does the world look like?

What actually happened...

What actually happened...

Now, let's formalize this

(board or writing projector)

About this course

- Reinforcement Learning theory \& practice
- Theory at the start and practice towards end
- Syllabus = the course web page:
https://www.eecs.tufts.edu/~jsinapov/teaching/comp150_RL/

Where does RL fall within the field of Artificial Intelligence?

Where does RL fall within the field of Artificial Intelligence?

- $\mathrm{Al} \rightarrow \mathrm{ML} \rightarrow \mathrm{RL}$

Where does RL fall within the field of Artificial Intelligence?

- $\mathrm{Al} \rightarrow \mathrm{ML} \rightarrow \mathrm{RL}$
- Type of Machine Learning:
- Supervised: learn from labeled examples
- Unsupervised: learn from unlabeled examples
- Reinforcement: learn through interaction

Reduced Formalism

Reduced Formalism

(board or writing projector)

Take-home Message

- Agent's perspective: only the policy is under control
- State representation and reward function are given
- Focus on policy algorithms
- Appeal: program agents by just specifying goals
- Practice: need to pick state representation and reward function

Example Applications

Robot Motor Skill
 Coordination with EM-based Reinforcement Learning

Petar Kormushev, Sylvain Calinon, and Darwin G. Caldwell

Italian Institute of Technology

Example Applications

Reading Assignment

- Chapter 1 and 2 of Sutton and Barto
- Reading response on Canvas due 9/11 before class starts

Programming Assignments

- Students are required to complete 4 minor programming assignments of their choosing
- Default options: programing exercises from Sutton and Barto (let's look at some examples)

Discussion Moderation

- Each student will lead a reading discussion once during the semester
- Students can team up in a pair
- Sign up sheet will be posted to Canvas tonight
- Extra credit for anyone who volunteers for slots in the next week
- Presentation materials / notes or description of what will be discussed should be emailed to me 48 hours before the class

Next time...

COMP 150: Reinforcement Learning

observation

Domains and Applications

SCORE: 104

Curriculum Learning

Example QuickChess game variants

The Curriculum Learning Problem

Task Creation

Sequencing

[Narverkar et al 2016]

Textbook

The authors have made the book available: http://incompleteideas.net/book/bookdraft2017nov5.pdf

Course Organization

- Taught as a seminar: students take turns presenting the readings
- Will cover both theory and practice
- Final projects - you will complete a project in which you ask (and then answer) a relevant RL research question

