COMP 138: Reinforcement Learning

Instructor: Jivko Sinapov Webpage: https://www.eecs.tufts.edu/~jsinapov/teaching/comp150_RL_Fall2020/

• You, as a class, will act as the learning agent

- You, as a class, will act as the learning agent
- Actions: wave, clap, or nod

- You, as a class, will act as the learning agent
- Actions: wave, clap, or nod
- Observations: color, reward

- You, as a class, will act as the learning agent
- Actions: wave, clap, or nod
- Observations: color, reward
- Goal: find an optimal *policy*

- You, as a class, will act as the learning agent
- Actions: wave, clap, or stand
- Observations: color, reward
- Goal: find an optimal *policy*
 - What is a policy? What makes a policy optimal?

How did you do it?

- What is your policy, and how is it represented?
- What does the world look like?

What actually happened...

What actually happened...

Now, let's formalize this

(board or writing projector)

About this course

- Reinforcement Learning theory & practice
- Theory at the start and practice towards end
- Syllabus = the course web page:

https://www.eecs.tufts.edu/~jsinapov/teaching/comp150_RL/

Where does RL fall within the field of Artificial Intelligence?

Where does RL fall within the field of Artificial Intelligence?

• AI \rightarrow ML \rightarrow RL

Where does RL fall within the field of Artificial Intelligence?

- AI \rightarrow ML \rightarrow RL
- Type of Machine Learning:
 - Supervised: learn from labeled examples
 - Unsupervised: learn from unlabeled examples
 - **Reinforcement**: learn through interaction

Reduced Formalism

Reduced Formalism

(board or writing projector)

Take-home Message

- Agent's perspective: only the **policy** is under control
- State representation and reward function are given
- Focus on policy algorithms
- Appeal: program agents by just specifying goals
- Practice: need to pick state representation and reward function

Example Applications

Robot Motor Skill Coordination with EM-based Reinforcement Learning

Petar Kormushev, Sylvain Calinon, and Darwin G. Caldwell

Italian Institute of Technology

Example Applications

Reading Assignment

- Chapter 1 and 2 of Sutton and Barto
- Reading response on Canvas due 9/11 before class starts

Programming Assignments

- Students are required to complete 4 minor programming assignments of their choosing
- Default options: programing exercises from Sutton and Barto (let's look at some examples)

Discussion Moderation

- Each student will lead a reading discussion once during the semester
- Students can team up in a pair
- Sign up sheet will be posted to Canvas tonight
- Extra credit for anyone who volunteers for slots in the next week
- Presentation materials / notes or description of what will be discussed should be emailed to me 48 hours before the class

Next time...

COMP 150: Reinforcement Learning

observation

Domains and Applications

Curriculum Learning

Example QuickChess game variants

The Curriculum Learning Problem

Textbook

The authors have made the book available: http://incompleteideas.net/book/bookdraft2017nov5.pdf

Course Organization

- Taught as a seminar: students take turns presenting the readings
- Will cover both theory and practice
- Final projects you will complete a project in which you ask (and then answer) a relevant RL research question