Deep Asynchronous Reinforcement Knowledge

(DARK)

for
Embodied Intelligent Agent

Gyan Tatiya, Sambit Pradhan

1 Abstract

Advanced Embodied Artificial Intelligent Agents with high degree of freedom
and complex articulation such as anthropomorphic humanoid robots present
an exciting training opportunity using Deep Reinforcement Learning paradigm.
Deep Reinforcement Learning methods facilitate creation of complex action pol-
icy for such advanced physiology structures that may result in superior learning,
reward generation and post learning performance. However, training of such
complex policy can take a long time usually amounting to years of experience.
We propose transferring knowledge from a learned agent to an untrained agent
to improve the performance in early training time.

2 Introduction

In the current project, Deep Asynchronous Reinforcement Knowledge (DARK)
for Embodied Intelligent Agent, we train two Humanoid agents to perform
two specific locomotion tasks a) Humanoid-v2 - Walking from initial stationary
standing position, b) HumanoidStandup-v2 - Standing upright from initial lay-
ing on the ground position. Furthermore, the agent was transformed into a a)
Underweight and b) Overweight agent. We train the two morphed agents, that
are derivatives of the standard Humanoid-V2, but with altered morphology, and
observe their behaviour (shown in Figure 1). Additionally, we perform transfer
learning between the two agents with domain adaptation where learned model
of one agent is exploited to improve generalization in another setting and per-
formance in the other agents. The core reinforcement learning algorithm used
is Proximal Policy Optimization (PPO), which is a policy gradient method that
learns online while the agent is interacting with the environment. To achieve
the objective of this project, we performed the following tasks:

e DARK: Design and develop a Deep Reinforcement Knowledge Neural
Network that can train complex highly articulated simulated Humanoid

Figure 1: Humanoid (Standard), Humanoid (Underweight), and Humanoid
(Overweight)

agents locomotion related tasks, namely, standing upright and walking.

¢ TRANSFER LEARNING: We augment the learning of one agent by
transferring the knowledge gained by one agent to the another. We per-
form transfer learning to improve learning in a new task through the trans-
fer of knowledge from a related task that has already been learned.

e SCALE INVARIANT FEATURE SPACE REINFORCEMENT
LEARNING We train morphologically variant agents with the same
number of articulation and physiology but of different dimensions - the
same task and transfer knowledge in-between the agents. Thus performing
Scale Invariant Feature Space Reinforcement Learning.

3 Background and Related Work

In robotics and reinforcement learning, prior works have considered building
direct isomorphisms between state spaces. However, most of these methods
require specific domain knowledge to determine how to form the mapping, or
operate on simple, low-dimensional environments. Some aspects of the skill
may not be transferable at all, in which case they must be learned from scratch,
but we would like to maximize the information transferred between the agents.
Some of the research and publication that we followed are mentioned herein:

Bipedal Walking Robot using Deep Deterministic Policy Gradient [1]. In
this paper, the authors present an architecture to design and simulate a planar
bipedal walking robot (BWR) using a realistic robotics simulator, Gazebo. The
robot demonstrates successful walking behaviour by learning through several of
its trial and errors, without any prior knowledge of itself or the world dynamics.
The autonomous walking of the BWR is achieved using reinforcement learning
algorithm called Deep Deterministic Policy Gradient (DDPG). DDPG is one of
the algorithms for learning controls in continuous action spaces.

Learning Invariant Feature Spaces to Transfer Skills with Reinforcement
Learning [2]. In this paper, the authors formulate this multi-agent transfer

learning problem in a setting where two agents are learning multiple skills.
Using the skills that have been already acquired by both agents, each agent can
construct a mapping from their states into an invariant feature space. FEach
agent can then transfer a new skill from the other agent by projecting the
executions of that skill into the invariant space, and tracking the corresponding
features through its own actions.

Evaluating Transfer Learning Methods for Robot Control Policies [3]. This
paper has two important components that it compares and contrasts reinforce-
ment and supervised learning systems and evaluates three transfer learning tech-
niques in a simple two dimensional environment. The project finds that within
the 2D environment a simple reinforcement model performs a better than a more
complex supervised one and that Progressive networks are the most powerful of
the three transfer learning methods.

4 Problem Formulation and Technical Approach

4.1 Environment

We used OpenAl Gym [4], which is advanced Reinforcement Learning Envi-
ronment. OpenAl Gym requires MuJoCo [5] in the backend, which is physics
engine for simulation. For implementing neural network we used TensorFlow
[6], which is a deep learning framework.

4.2 Agent

We used two environments namely ‘Humanoid-v2’ and ‘HumanoidStandup-v2’.
Humanoid-v2 is a three dimensional bipedal agent. The goal here is to make the
agent walk forward. HumanoidStandup-v2 is also a three dimensional bipedal
agent that is supposed to stand-up. For both the agents, the action space is
described by a vector of 17 real numbers representing abdomen, hips, right and
left arms, legs, knees etc. and observation space is described by a vector of 376
real numbers denoting position, orientation, rotation, velocity, force etc. The of
the agents is computed by:

Reward = Linear Velocity Costs — Quad Control Cost —
Quad Impact Cost + Alive Bonus

More details about the reward can be found on GitHub repository of OpenAl
Gym [4].

4.3 Learning Methodology

For training the agents, we used PPO, discussed below, and for knowledge
transfer to an agent, we initialized the network weights of a trained agent before
its training starts.

4.3.1 Proximal Policy Optimization (PPO)

For training the agents we used Proximal Policy Optimization (PPO) [7], a re-
inforcement learning algorithm designed in OpenAl in 2017. PPO is the default
reinforcement learning algorithm at OpenAl because it performs comparable or
better than state-of-the-art approaches in on continuous robotic control tasks.

4.3.2 General Policy Gradient Loss

A general Policy Optimization method start by defining the policy gradient loss
as:

LPY(0) = B, [log mo(at|s:)A¢]

It is expectation over the log of policy actions times estimate of advantage
function. 7y is the policy. It’s a neutral network that takes the observed states
from the environment as input and suggests actions to take as an output. Ad-
vantage function A;, estimates what is the relative values of the selected actions
is in the current state. A; is computed using two terms: Discounted sum of
rewards and baseline estimate/value function:

A; = Discounted rewards — Baseline estimate

Discounted rewards is the weighted sum of all the rewards the agent got
in the current episode. Discounted rewards are calculated after the episode
sequence was collected from the environment. So, all the rewards are known
and there is no guessing involve in computing the discounted return. Baseline
estimate gives an estimate of the discounted sum of the rewards. Basically, it
is trying to guess what the final return is going to be in this episode. It is
computed using neural net, so it will be an approximate value. If the advantage
action is positive, that means the actions that the agent took resulted in better
than average return. So, the probability of those actions is increased for the
future when the same state is encountered. Similarly, if the advantage action is
negative, the probability of those actions is reduced.

4.3.3 Trust Region Policy Optimization Loss

PPO is a based on another algorithm called TRPO [8]. This is the TRPO
objective function:
LCPI(p) = | MA — Bl (0) A
(0) t[ﬂ'eold(at|5t) t] e[r(0) Ad]

It is similar to general policy gradient loss, but instead of log of policy
actions, it has probability ratio (r;(6)). Probability ratio is the ratio between
the updated policy outputs and the outputs of the previous old policy. 7.(6)
values will be larger than 1, if the action is more like now than the old version
of policy. 7,(0) values will be between 0 and 1, if the action is less likely now
than old policy.

TRPO adds a KL constraint to optimization objective. KL make sure that
new updated policy does not move too far away from the old policy. This may
lead to undesirable training behavior. PPO adds this extra constraints directly
into this objective function.

4.3.4 Proximal Policy Optimization Loss
The the main objective function of PPO is defined as:

LOLIP () = By [min(ry(0) Ay, clip(ry(0),1 — €,1 4 €) Ay)]

It is the expectation over the minimum of two terms. The first term is r¢(6)
times the advantage estimate. This is the default objective for normal policy
gradient which pushes the policy towards actions that get a high positive advan-
tage over the baseline. The second term is similar to the first term except that
it contains a truncated version of r(6) ratio by applying a clipping operation
between 1 - €, 1 4+ €. Where € is 0.2. Clipping operation removes the incentive
for moving r.(0) outside of the interval [1 - ¢, 1 + €].

In the PPO algorithm, the current policy interacts with the environment
generating episode sequence for which the advantage function is calculated using
the baseline estimate. Then this experience is used to run gradient descent on
policy network using the clipped PPO objective. For the experiments, we have
adapted the PPO implementation from Stable Baselines [9], which is a fork of
OpenAl Baselines.

5 Experiments and Results

We are measuring three criterias: We document the learning curve of each agent
that graphically shows the reward obtained (Y-axis) for each time step (X-axis),
we compute the number of actions the agents takes in an episode for Humanoid-
v2, and we observe the physical behaviour in the simulation environment.

5.1 Experiment 1: Conception Reinforcement Training of
Humanoid-V2 Agents

In this experiment the two agents were taught their respective tasks from
the conception (beginning). a) Humanoid-v2 - Walking from initial station-
ary standing position. b) HumanoidStandup-v2 - Standing upright from initial
laying on the ground position.

5.1.1 Results of Experiment 1

a) The learning curve for Humanoid-v2 is shown in Figure 3 at Top left (a)
with blue color. The curve starts to converge after 2 million time steps. After
training, the agent was able to take maximum of 191 actions before episode ends.
An untrained agent was able to take only 50 steps. In addition, we observed

Learning Curve for Humanoid-v2 Learning Curve for HumanoidStandup-v2
80000

350 7 70000

60000 1

Rewards
Rewards

50000 q

100 —— From Scratch 40000 —— From Scratch
Knowledge Transfer from HumanoidStandup-v2 Knowledge Transfer from Humanoid-v2

[200000 400000 600000 800000 1000000 200000 400000 600000 800000 1000000
Number of Timesteps Number of Timesteps

Figure 2: Knowledge Transfer from HumanoidStandup-v2 to Humanoid-v2 (left)
and Knowledge Transfer from Humanoid-v2 to HumanoidStandup-v2 (right)

that as compared to the untrained agent, the trained agent learned to move its
hands to keep the body balanced while walking.

b) The learning curve for HumanoidStandup-v2 is shown in Figure 4 at Top
left (d) with blue color. The curve keeps oscillating through out 10 million time
steps. The trained agent learned to keep the hands in a specific position while
trying to getup, whereas as an untrained agent keeps shaking both hands as
well as legs.

5.2 Experiment 2: Inter Task Knowledge Transfer

In this experiments, we first trained the agents to achieve the specified task of

their respective environments. Then we transferred their knowledge to the agent

with different task. More specifically, we trained Humanoid-v2 and HumanoidStandup-
v2 from scratch, and transferred HumanoidStandup-v2’s knowledge to Humanoid-

v2, and Humanoid-v2’s knowledge to HumanoidStandup-v2.

5.2.1 Results of Experiment 2

The learning curve for both the agents is shown in Figure 2. For both the tasks,
knowledge transfer resulted in poorer performance as compared to the agents
trained from scratch in terms of rewards over training time steps. Basically, it
means that learning how to walk does not significantly help in learning how to
stand-up, and similarly, learning how to stand-up does not help in learning how
to walk.

5.3 Experiment 3: Scale Invariant Knowledge Transfer

In this experiments, we first trained the agents of a specific morphology and then
transferred its knowledge to other agents with altered morphology within same
task domain. a) We trained Humanoid-v2 (Standard) from scratch and trans-
ferred its knowledge to Humanoid-v2 (Underweight). b) We trained Humanoid-
v2 (Standard) from scratch and transferred its knowledge to Humanoid-v2

(Overweight). ¢) We trained Humanoid-v2 (Underweight) from scratch and
transferred its knowledge to Humanoid-v2 (Standard). d) We trained HumanoidStandup-
v2 (Standard) from scratch and transferred its knowledge to HumanoidStandup-
v2 (Underweight). e) We trained HumanoidStandup-v2 (Standard) from scratch
and transferred its knowledge to HumanoidStandup-v2 (Overweight). f) We
trained HumanoidStandup-v2 (Underweight) from scratch and transferred its
knowledge to HumanoidStandup-v2 (Standard).

We did not transferred knowledge of Humanoid-v2 (Overweight) and HumanoidStandup-
v2 (Overweight) to any other agents because of its poor performance.

5.3.1 Results of Experiment 3

The learning curve for (a), (b) and (¢) experiments are shown in Figure 3.
For all the curves, the rewards converge after 2 million time steps. The trained
agent for (a) was able to take maximum of 148 actions before episode ends, (b)’s
agent takes 18 actions and (c)’s agent takes 175 actions steps. Their respective
untrained agents was able to take 64, 49 and 50 actions. Thus, the except (b),
the agents learns to survive in the environment for longer than untrained agents.
In addition, agents that uses knowledge of an agent with different morphology
was able to get more rewards initially during training, except (b). This shows
that knowledge transfer provides by agent of different morphology with better
acting policy. The reason for (b) not performing well could be due to agents
heavy weight, it was not able to make its body walk and fall immediately.

When trained from scratch, Humanoid-v2 (Underweight) shakes its body
more than Humanoid-v2 (Standard) probably because of its lighter weight its
actions tends to move its body more. In experiment (a), when Humanoid-v2
(Underweight) learns from Humanoid-v2 (Standard), we observed that the agent
was walking much more stably. Similarly, in experiment (c), when Humanoid-
v2 (Standard) learns from Humanoid-v2 (Underweight), we observed that the
agent was shaking more while walking. This shows that knowledge transfer
affects action policy of the target agent based on the source agent.

The learning curve for (d), (e) and (f) experiments are shown in Figure 4.
The curves does not converge even after 10 million time steps. Agents that
uses knowledge of an agent with different morphology was able to get more
rewards initially during training. However, except (e), the performance is poor
after knowledge transfer as compared to the agent trained from scratch. One
possible reason could be that because we initially used an optimal policy of an
agent with another morphology, it might get stuck in a local minima and not
able to come out of it during training. These results shows that knowledge
transfer may not necessarily be beneficial for every tasks.

In term of observation, we observe same behavior we observed for (a) and (c)
in (d) and (f), respectively. In (d), when HumanoidStandup-v2 (Underweight)
learns from HumanoidStandup-v2 (Standard), we observed that the agent was
is much more stable. Similarly, in experiment (f), when HumanoidStandup-v2
(Standard) learns from HumanoidStandup-v2 (Underweight), we observed that
the agent was moving its body more.

Learning Curve for Humanoid-v2 (Underweight) Learning Curve for Humanoid-v2 (Overweight)

70 1
500 1 —801
—a0
400 4
" , —100
2 2
g g 1104
& 3001 &
-120 4
200 1 -130 4
—— From Scratch 1404 —— From Scratch
100 —— Knowledge Transfer from Humanoid-v2 (Standard) —— Knowledge Transfer from Humanoid-v2 (Standard)
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 04 0.6 08 10
Number of Timesteps 1e7 Number of Timesteps 1e7

Learning Curve for Humanoid-v2 (Standard)

700

600

500

Rewards
8
3

—— From Scratch
~ Knowledge Transfer from Humanoid-v2 (Underweight)

0.0 0.2 04 06 08 10
Number of Timesteps 1e7

Figure 3: Top left (a): Knowledge Transfer from Humanoid-v2 (Standard)
to Humanoid-v2 (Underweight), Top right (b): Knowledge Transfer from
Humanoid-v2 (Standard) to Humanoid-v2 (Overweight), Bottom (c¢): Knowl-
edge Transfer from Humanoid-v2 (Underweight) to Humanoid-v2 (Standard).

Learning Curve for HumanoidStandup-v2 (Underweight) Learning Curve for HumanoidStandup-v2 (Overweight)

160000
180000 1
140000
160000 1
120000
4 140000 - O]
100000
& 120000 { &
80000
100000 1
s0000{ —— From Scratch 60000 { — From Scratch
= Knowledge Transfer from HumanoidStandup-v2 (Standard) — Knowledge Transfer from HumanoidStandup-v2 (Standard)
| |
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
Number of Timesteps le7 Number of Timesteps 1e7

Learning Curve for HumanoidStandup-v2 (Standard)

140000
120000 4
E 100000
s
4
;4
80000
00009 — From Scratch
~—— Knowledge Transfer fram HumaneidStandup-v2 (Underweight)
1
0.0 0.2 0.4 0.6 0.8 10

Number of Timesteps 1e7

Figure 4: Top left (d): Knowledge Transfer from HumanoidStandup-v2 (Stan-
dard) to HumanoidStandup-v2 (Underweight), Top right (e): Knowledge Trans-
fer from HumanoidStandup-v2 (Standard) to HumanoidStandup-v2 (Over-
weight), Bottom (f): Knowledge Transfer from HumanoidStandup-v2 (Under-
weight) to HumanoidStandup-v2 (Standard).

6 Conclusion and Future Work

In this work, we trained two agents, Humanoid-v2 and HumanoidStandup-v2, to
solve a continuous control task. Results shows that the trained agent learns to
get higher rewards and survive for longer than untrained agent. We showed that
transferring knowledge across agents of different morphologies not only improve
the performance initially during the training, but also adapt action policy of
the source agent in the target agent.

In future, we are interested in trying out different deep reinforcement learn-
ing algorithms to solve achieve the goal of the environment. Because MuJoCo
requires license, we were not able to experiment with more training methods
and hyper-parameters as we activated a student license on a single computer.
In addition, we would also like to chance the environment around the agent and
perform transfer knowledge. For example, we can add rough terrain and train
the agent to walk by using the knowledge on an agent who can walk in a plain
terrain.

References

[1] Arun Kumar, Navneet Paul, and S. N. Omkar. Bipedal walking robot using
deep deterministic policy gradient. CoRR, abs/1807.05924, 2018.

[2] Abhishek Gupta, Coline Devin, Yuxuan Liu, Pieter Abbeel, and Sergey
Levine. Learning invariant feature spaces to transfer skills with reinforce-
ment learning. CoRR, abs/1703.02949, 2017.

[3] Rad Ploshtakov, Edward Johns, and Stefan Leutenegger. Evaluating transfer
learning methods for robot control policies. 2017.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[5] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine
for model-based control. In Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on, pages 5026-5033. IEEE, 2012.

[6] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael
Isard, et al. Tensorflow: a system for large-scale machine learning. In OSDI,
volume 16, pages 265-283, 2016.

[7] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXw:1707.06347, 2017.

[8] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In International Conference on
Machine Learning, pages 1889-1897, 2015.

10

[9] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Rene Traore, Prafulla
Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert,
Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable base-
lines. https://github.com/hill-a/stable-baselines, 2018.

11

