Better Gaming: Policy Control with Reward
Approximation

Dan Pechi, Jeremy Shih, Rui Sun

1 Abstract

Reinforcement learning (RL) algorithms have proved incredibly effective in learn-
ing to play video games. However, applying inverse reinforcement learning (IRL)
algorithms in these domains has only recently been applied to improve gaming
performance. We tested standard IRL algorithms in two gaming environments:
a Puddle-Game environment and a Toy-Car environment. In the Puddle-Game,
we tested the ability of an IRL algorithm to accurately capture a fixed goal.
In Toy-Car, we tested a more complex scenario in which the end goal can be
changed by the demonstrator. We found in the Puddle-Game that the reward
approximation generated by the IRL agent is proportional to the actual reward
function of the Puddle-Game, leading to an optimal policy. The IRL agent
is also successful in the more complex obstacle environment, learning to avoid
walls entirely.

2 Introduction

Many video games have an underlying reward system that guides a player’s
policy. Whether the player is a human or an intelligent agent, the actions
executed are optimal only when this reward system is taken into consideration.
While most experimental setups involve an agent exploring and exploiting the
gaming environment to learn this reward system, we aim to limit the agent’s
reward approximation by only observing expert behavior in the game.

Inverse reinforcement learning (IRL) is essentially a reward-estimation prob-
lem. Given a Markov Decision Process (MDP) without a reward function and
a set of actions, IRL algorithms build an approximation of the reward function
that makes the set of expert actions optimal in the given MDP. IRL is heavily
related to Apprenticeship Learning (AL) in which an expert is assumed to be
acting to maximize a reward function. In AL, an agent then approximates a
policy based off of the expert’s actions. If the agent’s goal is to approximate
the reward function, the problem becomes an IRL problem [2].

A reward function is assumed to be parameterized by a vector of weights 6,
applied to a feature vector for each state-action pair defined by the MDP. If each

state-action pair is defined as ¢(s, a), then a reward function can be defined as
follows:
RO (Sa CL) = 0T¢(3a CL)

Thus, in an AL problem, the expert’s reward function weights can be defined
as 0g. In AL, the agent, without knowledge of 0, will try to learn how to
behave in a way that maximizes the discounted sum of future rewards from
Ry, . In IRL, the agent will try to approximate Ry, with its own weights, 04.
Several IRL and AL algorithms have been presented and differ not only in their
underlying mathematical representation, but their objective functions as well.
These include matching the policy of the expert [5], trying to outperform the
expert [8] and other approaches.

In this report, we conduct two experiments to evaluate the performance of
two IRL algorithms on two gaming environments: Maximum Likelihood Inverse
Reinforcement Learning (MLIRL) [2] on Puddle-Game and a traditional IRL
algorithm proposed by P. Abbeel and A. Ng [I] on Toy-Car.

Puddle Game

The Puddle-Game environment represents a 5 x 5 gridworld with puddle states,
a start state, and a goal state. The objective of the agent is to go from the start
state to the end state without stepping in the puddle states. The demonstrator
must behave accordingly, leading the IRL agent to assign negative rewards to
the puddle states and positive rewards to the goal state and other, non-puddle
states.

The demonstrator in Puddle-Game can record multiple episodes before the
IRL agent is trained. After training with MLIRL, the state is colored according
to its estimated reward. We evaluate the results based on the following criteria:

e Reward(puddle states) < 0
e Reward(goal state) > Reward(path states)

e The rewards of puddle states reflect the frequency of the demonstrator’s
map traversals

Toy-Car Game

In the Toy-Car Game, the demonstrator is given an environment with three
types of walls (yellow, red, brown), and one background (black). The objective
of the game is dependent on the goal of the demonstrator. The setup of the
game is as follows:

e Agent: A green circle equipped with three sensors: left, right, and center.
e States: Each state of the agent has 8 features, consisting of three types.

— Distance sensor reading (left, middle, right)

— No. of sensors seeing black/yellow/brown/red color

— Boolean to indicate a crash/bump into an obstacle

e Rewards: A weighted linear combination of the feature values observed in
a frame. The reward 7 in the t** frame is obtained by the weight vector
w with the vector of feature values in t** frame, that is

rt:wT*(bt

e Actions: Frame progression moves the agent forward a step; the agent can
choose to go left, right, or do nothing in which case the agent continues
on its current, straight trajectory.

In this setting, we try to teach the agent to aim for five different goals: agents
that prefer different wall colors, and agents that prefer crashing or not crash-
ing. As mentioned in the section above, each state of the agent contains 8
features. It would thus be reasonable to assume that agents with different pref-
erences will also have different preferences for these features. Specifically, the
color-loving agents should have higher weights on the number of sensors seeing
the corresponding colors. The crash-loving and crash-avoidant agents should
have the highest and lowest weights for the crash feature, respectively. Our ex-
periment results show the validity of using IRL algorithms for learning a fixed
reward function but a less satisfactory performance when the IRL agent needs
to adjust its estimation when the reward function is not fixed.

3 Related Work

Inverse reinforcement learning (IRL) was first proposed by Ng et al. [6]. Tt
assumed demonstrations to be optimal, and that the reward function is linear
with a set of features. Researchers have expanded on this seminal work with
Bayesian IRL and Maximum Entropy IRL. Bayesian methods aim to resolve
the ambiguity of the reward function by inferring a posterior distribution over
rewards instead of a single function [7]. Maximum Entropy IRL looks for a
reward function that matches the expected feature counts, leading to a higher-
entropy stochastic policy [14]. More recently, progress in IRL has arisen due
to the integration of deep learning with these algorithms. Deep IRL can infer
an non-linear reward function, but requires a finite state space with known
dynamics[T3].

Because of its promise as a means of transfer learning from experts, IRL
methods have been actively applied to a wide range of video games. Tastan
et al. used IRL to learn policies in first person shooter games [9]. This work
tries to distinguish the differences between the models generated by bots and
human players. It uses IRL to capture the internal model of expert human
players to evaluate the benefits of different actions. Wang et al. uses IRL in
playing zero-sum multi-agent games [12]. It considers the situation in which the
expert demonstrations are known to be sub-optimal, and proposes an objective

function that directly pits experts against Nash Equilibrium strategies. Tucker
et al. also applied IRL to improve video game performance. They proposed
a method that integrates convolutional neural networks to an adversarial IRL
(AIRL) as its generator and discriminator.

The popular Atari game environment has also been used as a test bed for
learning from demonstration. Although they do not use IRL, Hester et al. use
deep Q-learning to learn from demonstrations [I0]. This method uses demon-
strations to bootstrap RL learning against a known reward function, instead of
directly learning the rewards from demonstrations. Further progress has been
made with active preference learning to Atari games, in which users are asked
to select the best of two policies generated from a larger set of policies [T1].

4 Technical Approach

MLIRL Agent

MLIRL will be the backbone of the IRL agent. Like Bayesian IRL, it adopts
a probability model that uses 64 to create a value function, and then assumes
the expert randomizes at the level of individual action choices. It also seeks a
maximum likelihood model.

The process by which a hypothesized 64 induces a probability distribution
over action choices and thereby assigns a likelihood to the trajectories in D. First,
0 4 provides the rewards from which discounted expected values are derived:

QGA (Sv a’) = 0£¢(57 a’) + Z T(Sa a, 5/) ® Q9A (5/7 a/)

The “max” in the standard Bellman equation is replaced with an operator that
blends values via Boltzmann exploration [4]. This approach makes the likelihood
(infinitely) differentiable.

One of the challenges of IRL is that given an expert policy, there are an
infinite number of reward functions for which that policy is optimal in the
given MDP. Like several other IRL approaches, MLIRL addresses this issue by
searching for a solution that not only explains why the observed behavior is
optimal, but also explains why the other possible behaviors are sub-optimal. In
particular, by assigning high probability to the observed behavior, it implicitly
assigns low probability to unobserved behavior.

Projection Method

The Projection Method is a simpler version of the IRL algorithm proposed
by P. Abbeel and A. Ng in 2004 ([I]). It is the basis of many popular IRL
algorithms more recently proposed. The central component of the algorithm is
the integration of feature expectations, an expected discounted accumulated
feature value vector u(m):

w(m) = B[Sy é(si|m)] € R,

Algorithm 1 Maximum Likelihood IRL

: procedure CHOOSE RANDOM SET OF REWARD WEIGHTS 64
fort = 1 to M do
Compute Qg, , o,

1
2
3:
4: L= 3 wi Y (s ayee log(mo, (s,a)).
5: 0t+1<_9t + oy L

6

Output: Return 04 = 0,

In which « is the discount factor and ¢(s;) denotes the feature vector at state t.
Given the demonstration trajectories, the empirical estimate ug is defined as

The goal of the algorithm is to find a policy 7 such that ||u(7) — ug|, < e. The
program then is reduced to finding a policy 7 that is as close to ug as possible.

Algorithm 2 Projection IRL Algorithm

1: procedure RANDOMLY PICK A POLICY (%)

2 Compute (®) = y(7(®)) and set i = 1

3 while ¢ = 1 to M do

1 tW = maxy.), <1 Minjeqo. -1y w” (pE — pY)

5: w® ArgMAaX ||y |, <1 Mije (0. (i—1)} wT (pp — p))
6 if t® < ¢ then Terminate

7 Compute 7" using rewards R = (w®)T¢

8 Compute) = p(n®)

9 1=1+1

5 Experiments and Results

Puddle Game

In order to test the ability for an MLIRL agent to infer the optimal reward
function, we first let the human player traverse the map and collect 10 trajecto-
ries in the gridworld Puddle-Game. After training with 100 training episodes,
reward function and the corresponding policy will be shown on the map, as
shown in Figure 1.

In figure (b), we set the starting cell to have a negative reward so that the
RL agent will not stuck in the starting cell. It is clear that the MLIRL agent
assigns negative rewards for all puddle cells and a positive reward for the goal

(a) Puddle-Game map setup (b) Estimated reward function and policy

Figure 1: Puddle-Game map setup and the estimated rewards and policy in-
ferred by the MLIRL agent. In figure (a), the red cell is the starting point and
the pink cell at the bottom-right is the goal cell. Blue cells represent puddle
cells. Green and yellow cells represent wall cells.

location. The policy inferred by the RL agent also reflects a clear tendency to
go from the bottom-left to the bottom-right, avoiding all puddle and wall cells.
It is fair to say that the reward function generated by the MLIRL agent from
demonstrations is very close to the true reward function underlying the puddle
game.

One thing worth noticing is that in the middle of the training process we
found that the MLIRL algorithm is highly dependent on the frequency by which
the human player traverses a particular cell. The result in figure (b) was ob-
tained with trajectories of the human player actually going back-and-forth in
the path cells to reinforce the positive reward of the path cells and the goal
location. If all training trajectories only have the human player going straight
from the start to the goal location, the results would be less ideal. Even when
the trajectories are all optimal path from start to goal, the MLIRL agent still
will not be able to infer a reward function that would generate an optimal policy.

Toy-Car Game

A significant downside to IRL algorithm’s is the potential for expensive or
time-consuming expert demonstrations. Moreover, these “experts” may not
even be readily available in your respective domain. As we saw in our Puddle-
Game setup, we had to frame the expert behavior to influence the IRL agent to
learn the correct rewards. However, in a more complex environment, this may
not be possible and a true expert may be needed. Thus, for the Toy-Car game
that utilizes the Projection Method that takes in a feature expectation and
finds a policy, we will experiment with editing a preexisting feature expectation

Figure 2: Environment setup of the Toy-Car game.

generated by demonstration to alter the learned policy. These features are
defined below:

1. Distance sensor 1 reading

2. Distance sensor 2 reading

@

Distance sensor 3 reading

e

No. of sensors seeing black color

5. No. of sensors seeing yellow color

&

No. of sensors seeing brown color

=

No. of sensors seeing red color

8. Boolean to indicate a crash/bump into an obstacle. (1:crash, 0O:alive)

X(

More specifically, we will take feature expectations of an agent that is sup-
posed to learn to continuously hit the obstacles (defined as the bumping agent)
and then invert the sign of the weight on the feature that dictates collision (and
define a new agent called nobumping agent). Therefore, our hypothesis is that
flipping the sign on the feature that dictates collision should lead to an agent
that does not collide with any obstacles. The Toy-Car game is represented in the
environment setup of Figure 2 where an agent moves around various obstacles.
This is implemented from source code derived from a blog post by Jangir[3].

Below in Table 1 are the results of the feature expectations and learned
features for both agents. One thing to take into account is that the algorithm
for the nobumping agent has not fully converged. According to Jangir[3], the

algorithm converges within 10-15 iterations. However, the nobumping agent
has ran for 18 iterations and still has not converged. Keeping this in mind, we
will still analyze the learned results. For a video showing the example of the
nobumping agent see here.

It is evident that although the agent has learned a negative weight for col-
lision, the agent itself still exhibits colliding behavior. This does not follow
our hypothesis and thus we could conclude that changing an individual feature
weight does not completely dictate the behavior of the agent. Thus, interactions
between the weights of the features may explain more of the behavior than just
a single feature and bypassing the expert demonstration effort is not a trivial
task.

Table 1: Feature Expectation and Learned Features of Different Behaviors

Behavior Feature Expectations Learned Features
7.5313 —0.5892
8.2716 —0.3672
8.0021 —0.4660
. 0.0026 —0.0299
Bumping Agent 24.300 —0.1528
95.962 —0.0368
15.814 —0.5239
1553.8 0.0256
7.5313 —0.3482
8.2716 —0.6381
8.0021 —0.4575
. 0.0026 —0.2044
Nobumping Agent 24.300 —0.3515
95.962 —0.0625
15.814 —0.2859
~1553.8 —0.1052

6 Conclusion

In the Puddle-Game, the IRL agent’s ability to converge to the optimal policy
demonstrated the effectiveness of IRL algorithms in simpler environments, how-
ever the inability to induce demonstrated behaviors in the case of the Toy-Car
environment demonstrates IRL algorithms’ shortcomings when environments
become more complex. This suggests that IRL agents struggle in their approx-
imation due to this increased complexity.

It should also be noted that to induce an optimal policy in the Puddle-
Game, a great deal of exploration had to be demonstrated to the agent that
avoided puddles. These trajectories are not part of an optimal trajectory, but

https://drive.google.com/file/d/1XhSfHiNyBu7V_4E1m9PTU7SfGgbFgsrj/view

without this instruction, puddles outside of the trajectory would never have
been learned. Instituting this exploration in the Toy-Car environment would
have proved far more difficult, even as it relates to avoiding walls given the
increased complexity of the environment.

Regardless, altering feature expectations proved to be ineffective as a means
of bypassing this exploration. The failure in assigning negative and positive
weights on non-preferable and preferable features respectively proves overly
simplistic. This suggests a more complex interaction of these features in de-
termining optimal behavior.

7 Future Work

The relationship between these aforementioned feature expectations and the
policies they induce should be further explored in future work. Furthermore,
alternative features may also prove beneficial in improving agent performance.
For example, current features in the Toy-Car game are all about the sensor
information, further experiments can explore how adding extra environmental
information would change the performance of the IRL agent.

The IRL algorithm used in the Toy-Car game is the standard version pro-
posed by Ng et al. in 2000. Future work would involve testing modified versions
and other computationally efficient IRL algorithms in the same environment so
that the learning advantages of different algorithms can be compared on the
same baseline. Aside from the algorithms, more experiments can be carried out
in more complex gaming environments, like multi-agent games and games with
high-dimensional reward functions.

References

[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse re-
inforcement learning. Proceedings of the 21 st International Conference on
Machine Learning, 2004.

[2] Monica Babes-Vroman, Vukosi Marivate, Kaushik Subramanian, and
Michael Littman. Apprenticeship learning about multiple intentions.
ICML, 2011.

[3] Rishabh Jangir. Apprenticeship learning using inverse reinforcement learn-
ing, 2016.

[4] George H. John. When the best move isn’t optimal: Q-learning with ex-
ploration. Proceedings of the Twelfth National Conference on Artificial
Intelligence, 1994.

[5] Gergely Neu and Csaba Szepesvari. Apprenticeship learning using inverse
reinforcement learning and gradient methods. Proceedings of the Confer-
ence of Uncertainty in Artificial Intelligence, 2007.

[6]

Andrew Y. Ng and Stuart J. Russell. Apprenticeship learning via inverse
reinforcement learning. Proceedings of the Seventeenth International Con-
ference on Machine Learning, 2000.

Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement
learning. Proceedings of the 20th international joint conference on Artificial
intelligence, 2007.

Umar Syed, Michael Bowling, and Robert E. Schapire. Apprenticeship
learning using linear programming. Proceedings of the Conference of Un-
certainty in Artificial Intelligence, 2008.

Bulent Tastan and Gita Sukthankar. Learning policies for first person
shooter games using inverse reinforcement learning. Proceedings of the
Seventh AAAT Conference on Artificial Intelligence and Interactive Digital
Entertainment, 2011.

Hester et al. Todd. Deep g-learning from demonstrations. Association for
the Advancement of Artificial Intelligence, 2018.

Hester et al. Todd. Deep reinforcement learning from human preferences.
Association for the Advancement of Artificial Intelligence, 2018.

Xingyu Wang and Klabjan Diego. Competitive multi-agent inverse rein-
forcement learning with sub-optimal demonstrations. International Con-
ference on Machine Learning, 2018.

Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum entropy
deep inverse reinforcement learning. arXiv preprint arXiv:1507.04888, 2015.

Brian D. Ziebart, Andrew Maas, Andrew Bagnell, and Dey Anind K. Max-
imum entropy inverse reinforcement learning. Association for the Advance-
ment of Artificial Intelligence, 2008.

10

	Abstract
	Introduction
	Related Work
	Technical Approach
	Experiments and Results
	Conclusion
	Future Work

