
Tufts University

Department of Computer Computer
Science

COMP150-04: Reinforcement Learning Final
Project

Investigation Of The Effects Of
Character-centric Cropping On

Pacman DQN Performance

Authors:
Holt Spalding
Oliver Newland

Supervisor:
Dr. Jivko Sinapov

December 20, 2018



Abstract

In this paper we present our findings for an exploratory experiment
over the performance of two deep Q-learning network reinforcement
learning agents playing ATARI Ms. Pacman. The agents are distinct
in that one has access to the entire game state (as represented by the
pixels on screen), while the other only a cropped view of the screen,
centered around Ms. Pacman. We hoped to explore whether the
smaller feature space of the cropped-view agent would be able to train
faster without a significant loss in in-game performance. Despite the
paper’s initial ambitions, we were ironically severely limited by the
computational resources available to us. However, our results still
provide a good starting point for fully understanding the relationship
between agent performance and feature space reduction.

1 Introduction

Over the past few years there has been remarkable progress in the study
of reinforcement learning agents in high-dimensional sensory environments.
With the advent of so-called ”deep” reinforcement learning, RL agents can
now use non-linear function approximators such as neural networks in order
to deconstruct complex patterns within abstract environments. Deep RL
algorithms have been especially impactful in the field of computer vision,
one such algorithm being deep Q-learning networks (or DQNs). DQNs were
first pioneered by engineers at Deepmind, a Google subsidiary, in 2013, and
since then they’ve come to be used extensively in development of game-
playing RL agents. A benefit of DQNs is that DQN agents need only a
visual representation of their game environment in order to learn optimal play
strategies, no information about the internal state of the game is necessary.
This is all thanks to convolutional neural networks (CNN) built into the
DQN algorithm which are capable of breaking down images into their most
relevant features. Mastering the use of purely visual stimuli in the training
of deep RL agents has countless real world applications and it could hold the
key to development of fully-autonomous robotic agents.

While there’s been quite a lot of research into deep RL agents for com-
puter vision over the last few years, few seem to have studied the effects of
incomplete visual information on agent performance. Many researchers will
often perform a basic crop and greyscaling of their visual stimuli in order to

1



expedite the training process, but few have seemed to formally study the ef-
fects of these and other feature compression techniques on agent performance.
What if we could get away with much more extreme image compression with-
out any visible effect on agent performance? Furthermore, what if we were
cast into a situation in which not all of the visual information we wanted was
available at once? It stands to reason that working with incomplete informa-
tion in this way is highly applicable to many tasks, and it is a worthy cause
to try understand how certain information loss can affect agent performance.

As effective as deep Q-learning networks may be in computer vision RL
tasks, they are still limited by the massive amounts of computational power
and time required to train them. Since the training time of a DQN is largely
proportional to input image size, this paper seeks to investigate the effect of
extreme cropping around a variable point of interest on agent performance.
Our game of choice is openAI gym’s MsPacman-v0 [? ]. Using the same
DQN implementation found in Mnih’s (et. al.) iconic paper “Playing Atari
with Deep Reinforcement Learning” [3], we implement a spotlight feature
reduction in which a significant part of the image is cropped out with only
a 40 by 40 pixel grid around Ms. Pacman being visible to the DQN. Like
shining a spotlight on a dark stage, the DQN only receives information local
to the game-playing agent. We compare performance of agents trained on this
modified feature space with those trained on a 160 by 160 pixel grid which
captures the entire game environment in order to determine if a reduction
in the feature space results in huge speed ups of training time without a
significant loss in agent performance.

This paper sought to demonstrate that a cropping the view field of the
game would cause the agent to perform comparably well while drastically
reducing the computation time. Our initial findings support this claim, how-
ever they are limited by the length of computation we were able to afford our
agents. As it turns out, we were unprepared for how long a DQN agent takes
to run on a high dimensional feature space, which caused major roadblocks
in the development and debugging of our experiment. However, our results
do show that the cropped/spotlight DQN is equally effective over the period
it was allowed to train (200 episodes), and runs much faster (4 hours vs. 40
minutes). Our work leads us in the right direction, and while it does not
disprove our hypothesis, it is hard to say with certainty that it supports it
either. This project was mostly reinforces our initial claim that DQN’s are
limited by the amount of time and computation required to train them.

2



2 Background and Related Work

As mentioned, our work is primarily an extension of the landmark 2013
paper “Playing Atari with Deep Reinforcement Learning” by Volodymyr
Mnih and company that first introduced the deep Q-learning network (DQN)
learning agent [3]. They found that developing a policy by adjusting the
weights of a CNN was more effective than any other learning agent before
it when it came to playing ATARI games. In some cases, the agent became
more competent than human experts. This paper launched an explosion of
CNN use in reinforcement learning as it opens the door to running effective
learning agents on high dimensional visual data without having to carefully
select features for each task. The DQN we use in our experiments is inspired
by this original DQN, however there are some noteworthy differences.

Firstly, the original paper never played Ms. Pacman, and instead stuck
to a collection of 7, equally complex games (except pong, which is certainly
less complex). We choose to run this experiment on Ms. Pacman because it
lends itself well to the idea of spotlighting, in that Ms. Pacman herself moves
around the board and only interacts with objects in her immediate vicinity.
Because the original paper does not provide a benchmark for Ms. Pacman,
we implemented the same greyscale preprocessing the Mnih and co. did, to
give ourselves a baseline with which to compare our experiments.

Second, their DQN was smaller than ours. They only used two layers of
convolution, while ours has three. Ours also defaults to the original 160x160
playing field, while theirs excludes the 1 pixel border around the edge of the
screen, and downsamples the resolution by a factor of 2. These differences
are largely in part due to the improved neural network architecture available
to us through TensorFlow [1]. Our exact implementation is detailed in the
next section.

Other work in feature reduction for DQNs has mostly focused on frame
skipping and image resolution reduction. “Dynamic Frame skip Deep Q
Network” By Aravind S. Lakshminarayanan and company took this to an
extreme by creating an agent that dynamically learns how many frames to
observe before selecting an action, to great success [2]. They also extended
the original DQN Atari paper by basing their DQN off of the original, a
model which we followed as well. However, there is no significant research
we could find in reducing the field of view to be central around the playing
character’s location. Therefore, we believe this to be an important avenue in
research to investigate, which we have done in this paper.

3



3 Problem Formulation and Technical Approach

3.1 OpenAI’s MsPacman Python Environment

The OpenAI MsPacman environment offers a simple interface for RL
researchers to emulate the classic MsPacman ATARI game in order to train
RL agents. The MsPacman environment represents the game state by a 210
x 160 three-channel RGB image which it exposes to the developer. It also
provides information on the number of lives MsPacman has remaining at any
given frame, and the amount of in-game reward MsPacman has acrewed over
the course of a game. At given frame, MsPacman is given the opportunity
to perform one of 9 possible actions which include moving left, moving right,
moving up, moving down, moving on a diagonal, or remaining where she was
in the previous frame. Each action is repeatedly performed for a duration of
k frames, where k is uniformly sampled from 2,3,4{2, 3, 4}2,3,4.

3.2 Q-Learning

Before explaining how a DQN can use images to teach a MsPacman agent
the optimal play strategy, its important that we first describe the learning
task in more formal terms. In keeping with classic RL paradigms, we can de-
fine our problem in terms of a Markov Decision Process. A Markov Decision
Process (MDP) is just one of many models of how an agent interacts with its
environment over discrete time steps, and it can defined in terms of three ba-
sic elements: a set of observations, a set of actions, and a set of rewards. Is is
the goal of our learning agent to develop an understanding of environmental
dynamics in order to determine the optimal action that ought be taken at
given time in order to maximize some cumulative reward. In the context of
this experiment, our learning agent is obviously embodied by MsPacman, the
frames produced by the emulator represent the agent’s observations of the
state of the environment, the action space is the set of 9 actions MsPacman
can take at any given frame as described above, and the rewards simply cor-
respond to the in-game rewards MsPacman collects through her interaction
with the environment. To reiterate, as our learning agent is optimized using
a DQN, it has no access to the internal state of the game, only the raw pixels
produced by the emulator. Over the course of the learning process the agent
slowly develops a play strategy (also known as a policy) by approximating a
so-called Q function. A Q function essentially places a value on each possible

4



action a at any given state of the environment by estimating the expected
cumulative reward to be achieved once the action is performed (an action
leading to the consumption of a power pill for example would have a high
expected reward while an action leading to the death of MsPacman would
have zero or negative reward). We define the cumulative reward associated
with time t to be Rt =

∑T
t′=t γ

t′−trt representing the sum of discounted (dis-
counted by a constant factor γ) rewards beginning at time t until the time
of the game’s termination T . An agent which has faithfully approximated
the optimal action-value function, denoted Q∗, knows exactly what action
to take at any given state of the environment in order to receive the largest
reward. In mathematical terms, we say Q∗ = maxπ E[Rt|st = s, at = a, π]
where π represents a policy that maps states or sequences of state-action
pairs to a distribution over actions.

3.3 DQN

A Q-network is a neural network whose weights are represented by θ
which serves as a nonlinear function approximator to approximate Q∗. A Q-
network is trained by adjusting θ in order minimize a series of loss functions
Li(θi) which change at each iteration of back-propagation i. Formally,

Li(θi) = Es,a∼ρ(·)[(yi −Q(s, a; θi))
2]

where yi = Es′∼ε[r+γmaxa′Q(s′, a′; θi−1)|s, a] is the target for iteration i and
ρ(s, a) is a probability distribution over sequences s and an action a which
is referred to as a behavior distribution. We say that DQN is an off-policy
learning algorithm since it updates the Q-value of the state-action pair it
has chosen under its behavior policy by comparing it with the Q-value of
the next state s’ and action a’ it would have chosen under a greedy policy.
In other words, it estimates the return (total discounted future reward) for
state-action pairs assuming a greedy policy were followed despite the fact that
it’s not following a greedy policy. This serves to provide adequate approx-
imations of the Q-value of state-action pairs without hindering exploration
under a behavior policy.

5



Figure 1: Schematic illustration of DQN architecture taken from Google
images. Source unknown.

The above image illustrates the basic architecture which underlies a DQN.
As you can see, first a vector of raw pixel representing a frame from the
game is fed into a feed-forward convolutional neural network. This CNN
serves to extract abstract but nonetheless important features from the image,
providing a more nuanced picture of the state of the game. After feeding
through a series of convolution and pooling layers, the resulting tensor is then
fed into a series of fully connected layers which connect to our final output
layer, which in this case contains 9 units, the values of each representing
the Q-values of each of the 9 actions given the input state and the current
network weights. The Q-value of our current state-action pair under our
behavior policy as well as the Q-value of our state-action pair under a greedy
policy can be calculated with a simple feed-forward pass through the network.
Network weights can then by adjusted to reduce the discrepency’s between
our target and behavior policies by means of backpropagation which uses
gradient descent for optimization. The subject of adjusting network weights
lies outside the scope of this paper and need not be explained any further.

6



Figure 2: Mnih et. al, 2013

To get a slightly better sense of the DQN algorithm, look to the pseu-
docode above from the 2013 Deepmind paper. This algorithm describes two
aspects of the algorithm yet to be explained. The first is the process of ac-
tion selection, which is done by means of an epsilon-greedy policy. Epsilon is
slowly annealed over the course of the training process, in order to allow ex-
ploration early on in the learning process and more focussed action selection
later in the learning process. The other concept yet to be described is ”expe-
rience replay.” The DQN algorithm employed by the engineers at Deepmind
does not learn online, but it actually learns by means of randomly sampling
small sequences of state-action pairs recorded from the past. This is done in
order to prevent the preference of any particular action.

4 Experiment

For this experiment we compared two different agents, one trained on a
160 x 160 pixel, greyscale image of the Ms. Pacman learning environment,
and another trained on a 40 x 40 pixel greyscale image of the environment
centered around Ms. Pacman. Both agents were run for a 10,000 time steps
before training began in order to gather experience which could be used
during experience replay. Both agents also had their frame skip set to 4, a
discount factor 0.99, a replay memory buffer with a maximum size of 60,000

7



frames, and a replay memory mini batch size of 32 frames, as is done in the
DeepMind paper. Due to computational limitations, both agents could only
be run for 200 episodes each, each episode providing MsPacman with 3 lives.
The average score of all 3 rounds of every episode were then recorded and
averaged in order to assess performance.

5 Results

Experiment 1 (Figure 3) trained on 200 episodes in about 4 hours. This
is significantly less time than Mnih and company allowed for their agent in
their original paper (on a more powerful computer no less), but it is about
the extent of what our computers could manage. We see a steady increase
in the peaks of performance, but our troughs are fairly consistently low,
and our average scores are fairly low in general (however they are averaged
over 3 lifes played on the same board). At the very end of training, for the
last 25 episodes or so, we see performance improve, however not to a degree
that we can be certain beyond doubt it is statistically significant. Still, the
improvement exists.

8



Figure 3: The score recorded for each episodes is the average of three lives
played. Experiment 1 featured the full field of play.

Experiment 2 (Figure 4) trained on 200 episodes as well, taking about
40 minutes. The additional speed is due to the significantly smaller feature
space. Experiment 2 only runs about 6 times as fast as Experiment 1, de-
spite running on an image 16 times smaller. Ultimately, we see no definite
improvement in performance from Experiment 1, however we see no real
drop in performance either. The scores take a similar pattern with increas-
ingly high peaks and consistently low troughs. However, where Experiment 1
picks up at the end, Experiment 2 does not. But overall, they are remarkably
similar.

9



Figure 4: The score recorded for each episodes is the average of three lives
played. Experiment 2 featured the cropped field of play.

When the running averages (over the last 10 scores) of the experiments
are viewed together (Figure 5), that similarity becomes very clear. The
averages stay in the band of values between 100 and 200, until the very end
where Experiment 1 improves. This suggests at best, the two learning agents
perform the same, and at worst, uncropped begins to improve more quickly
per episode, but not by time.

10



Figure 5: The score reported here is the average of the scores from the last
10 episodes.

6 Conclusion

By and large, this project showed how valuable it would be to reduce the
training time of DQN agents. Even knowing that training time would be a
huge obstacle, we were still limited in the number and length of experiments
we could run, and that severely hindered our results. However, there is still
a lot of valuable information we were able to gather. First, a reduction
in feature space from 160 * 160 = 25600 to 40 * 40 = 1600, a reduction
by a factor of 16, only resulted in a training speed increase by a factor
of 6, so returns are not proportional here. Still, over the same number of
episodes trained, both the standard and spotlight agents performed at about
the same level, however the standard agent eventually began to pull away.
In hindsight, there were several improvements that we could have made to
achieve more meaningful results (discussed in the next section), but as of
now we cannot rule out the possible efficacy of cropping the feature space for
a better performance to training time tradeoff.

11



7 Future Work

Studying DQN’s requires very specific experiment design and a wealth of
computational power and time. We can improve in all of those areas. The
goal of improving our future work would be to move beyond not rejecting
a hypothesis to being able to describe the exact details of cropping across
different crop sizes and domains, in the hopes that problems in the future
can be identified as potentially benefiting from feature space cropping.

As far as experimental design goes, we initially set out to accomplish a
much more robust study. Instead of two experiments, it would be ideal to
experiment over every degree of cropping to find an optimal level of crop.
Doing so would likely take weeks, and that is without having to debug half
way through hour long test runs. We also wanted to run other baseline
experiments to compare our cropping results to the performance of other
feature space reductions such as binary color mapping, downsampling, and
frame skipping.

In fact, there is likely a relationship between frame skipping and the
effectiveness of a crop. If a string of the same move, provided all at once
because of frame skipping, takes Ms. Pacman out of the current field of
view, then surely it becomes much harder to train the agent. We did not
explore this relationship in our project, but it is certainly an area of interest
for the future.

Ultimately, even with warning, we underestimated how much time a DQN
takes to run and debug. This project has given both of us a much greater
appreciation for planning around long training sessions, as well as for GPU
enabled Tensorflow, which neither of us were able to use (it is currently Linux
only). We look to carry this wisdom forward into our work in the future.

References

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irv-
ing, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Man-
junath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-

12



houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Ten-
sorFlow: Large-scale machine learning on heterogeneous systems, 2015.
Software available from tensorflow.org.

[2] Aravind S. Lakshminarayanan, Sahil Sharma, and Balaraman Ravindran.
Dynamic frame skip deep Q network. CoRR, abs/1605.05365, 2016.

[3] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with
deep reinforcement learning. CoRR, abs/1312.5602, 2013.

13


