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Abstract

We present a learning-based approach to optimize the gait of a hexa-
pod robot for forward progression and stability. Using a central pattern
generator (CPG) model for parameterized locomotion, we propose the use
of reinforcement learning to learn and adapt parameters online to maxi-
mize the distance traversed by the robot in a stable fashion. We present
a curriculum of different terrains of increasing complexity as a way of
speeding up the learning of the robot and obtaining higher reward over
non-learning and learning-from-scratch approaches. Our experimental re-
sults show that it is possible for the hexapod to learn to walk over the
planks in the most stable way possible by keeping the step height of its
gait as low as possible. Setting up a curriculum for the agent to success-
fully learn to walk over taller obstacles proved to be a challenging and
time consuming task, and requires additional work.

1 Introduction

Legged animals use sensory feedback to inhibit or extenuate certain gait charac-
teristics online, allowing them to subconsciously navigate extreme terrain with
ease [2, 8]. Inspired by nature, legged robots can similarly traverse complex
environments inaccessible to other systems, such as wheeled robots. However,
two major challenges are presented: 1) the coordination of the many degrees-of-
freedom (DOF) often present on legged systems to produce locomotion, and 2)
determining suitable higher-level gait parameters for a given environment. In
the context of robotics, central pattern generators [3] (CPG) aid in solving the
first problem. Often modelled as a set of coupled oscillators [7], CPGs allow for
the generation of parameterized gaits and provide smooth transitions when gait
parameters are changed. The limit cycle of the CPG determines the step shape,
and other numerical parameters control specific aspects (e.g., step length, step
height, step speed).

When the path of the robot and surrounding environment is known a priori,
it is sometimes possible to set static parameter values (e.g., set a step height
larger than the highest obstacle) or encode simple rules [9]. First, such methods
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are not suitable for general robot deployment, if the environment is not well-
known. Second, such methods are purely reactive; a robot may locomote to a
position in which it cannot appropriately react. Finally, these methods encode
a significant amount of domain knowledge – which may or may not be optimal.

We are interested in ensuring stable, forward locomotion of a legged system
on a variety of terrains – from flat ground to a flight of stairs. We employ
a learning-based approach to adapt gait parameters online based on sensory
feedback. By adapting gait characteristics such as step height and center of
mass position based on this feedback, we will enable a legged system to more
naturally navigate obstacles and ensure stable forward locomotion. We aim
to apply a curriculum learning approach to facilitate learning – increasing the
complexity of the locomotive challenge as learning progresses. For the purpose
of this project, setting up an effective learning curriculum to improve learning
performance to be prohibitively time consuming; this requires additional work.
We devised different obstacles courses with ramps of varying slopes, planks,
and debris. However, after trying multiple obstacle courses, we have developed
a good intuition of which types of learning curricula to pursue in the future.
Specifically, we think slow variations that increase the complexity of the terrain
can be used as a curriculum to teach the agent to generalize the task of going
over obstacles of varying heights.

2 Background and Related Work

In this section, we present background information on curriculum learning before
detailing previous works on learning-based, full-robot control.

2.1 Transfer and Curriculum Learning

In reinforcement learning (RL) problems, we aim to reduce the amount of re-
sources used in the learning process while maximizing the reward that the agent
obtains. For complex tasks, transfer learning can be used to reduce the resource
requirements for a learning agent. The idea behind transfer learning [11] is that
what has been learned from experience for one task can be reused to learn
another, but different, task. Transfer learning has been successful in reducing
learning time and increasing reward achieved for complex tasks [12] compared
to learning from scratch.

We are concerned with Curriculum Learning, a flavor of transfer learning
where an agent learns from examples presented to it in a particular order, usu-
ally in order of increasing complexity. It has been shown that curriculum learn-
ing provides significant improvements in machine learning problems in terms of
better generalization, faster convergence speed, and at finding better local min-
ima [1]. In reinforcement learning, curriculum learning can be used to develop
sub-tasks as components of a multi-step curriculum with the goal of obtaining
better performance in a complex task [5].
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2.2 Full-robot Control via RL

The problem of using reinforcement learning to achieve full-body control of a
robot has been explored in the past, using a variety of learning techniques. In
[4], Kohl and Stone achieved full-robot control of a quadrupedal robot using
policy gradient reinforcement learning. Their agent learned to search for gait
parameters for locomotion on level, planar terrain that maximize the walking
speed of the robot. Their approach significantly outperforms a variety of existing
hand-coded and learned solutions. Reinforcement learning has also been used to
achieve forward locomotion by learning motion patterns for different segments
of a caterpillar robot [13].

Peng et al. [6] used Deep Reinforcement Learning to achieve full-robot con-
trol for terrain-adaptive locomotion. They used a mixture of actor-critic ex-
perts to achieve locomotion in multiple planar bio-inspired characters and ter-
rain classes: gaps, steps, walls, and slopes. Specifically, their approach directly
learns a policy for assigning joint angles and forces to simulated actors.

Sartoretti et al. [10] use an aynchronous advantage actor-critic (A3C) algo-
rithm to learn a decentralized control approach for the locomotion of a mod-
ular, articulated snake. Specifically, using torque feedback, they manage to
learn decentralized control policies that adapt shape parameters for different
windows (segments of the snake). Their learned controller greatly outperforms
a shape-based compliant control approach for forward progression in confined
environments.

3 Problem Formulation and Technical Approach

We first define the learning problem precisely before presenting our learning
approach.

3.1 Learning Problem

In this project, we learn a policy for adapting specific high-level gait parameters
online based on the position and orientation of the robot’s body for the stable,
forward locomotion of a legged robot on unstructured terrain. Note: all of this
data could be obtained from an external motion capture system targeting the
robot’s body. In the context of this project, we update desired step-height and
center-of-mass position (along one dimension – in the direction of locomotion).
We hold fixed two of the other gait parameters, step-length and step-speed, since
for our specific attempted curriculum, adaptation of these parameters to ensure
stability and forward progression is redundant with adapting the step-height
and center-of-mass position.

3.2 Learning Approach

In this subsection, we detail our learning approach. Specifically, we specify our
state and action representations, reward structure, and the learning algorithm.
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3.2.1 Actions

As discussed in our statement of the learning problem, in this project, we seek
to adapt the robot’s step-height and center-of-mass position (single axis – in
direction of locomotion) online. Although the robot’s gait parameters – includ-
ing step-height and center-of-mass position – are continuous variables, we only
consider them to a finite resolution (e.g., step-height to the nearest 0.1cm). On
a real robotic system, smaller difference in gait parameters will be absorbed by
hardware tolerances. Therefore, we will avoid learning changes smaller than a
specified finite increment.

Considering only finite increments to gait parameters greatly reduces the
action space, which allows for easier learning. Thus, in this project, we consider
updates to step-height and center-of-mass position as discrete positive, negative,
or zero increments. As a result, we have nine possible actions: two possible gait
parameters to adapt with three possible discrete increments to apply.

3.2.2 State Representation

Since we consider actions as discrete increments on gait parameters, we must
include the true value of these gait parameters in the state. Doing so allows
the agent to associate certain actions with current gait-parameter values (e.g.,
if the center-of-mass is pushed very far forward, the agent will see this in the
state and learn not to shift the center of mass further forward). These features
are internal to the system.

Additionally, we include features external to our system in the state represen-
tation. Since we care about both the robot’s stability and forward progression,
we include features that describe the robot’s body orientation and position in
the world. More specifically, we include Euler angles for the body’s roll and
pitch as well as the position of the body along an axis aligned with the direction
of locomotion. The body-roll angle and body-pitch angle allow the robot to
know how to shift its center-of-mass for stability. The body position will allow
the robot to ensure that it continues to progress forward.

3.2.3 Reward Structure

We use several reward mechanisms to encourage forward progression and suc-
cessful navigation of obstacles. The agent receives a positive reward of one each
time it passes a progression checkpoint for the first time; these checkpoints are
placed at 1cm intervals from the origin. Using checkpoints instead of the deriva-
tive of the position prevents the agent from obtaining reward by shifting the
center-of-mass (from which the position of the robot is measured) of its body
back and forth when it gets stuck behind an object. In order to promote get-
ting over all the obstacles in the course, we assign a large positive reward for
finishing an episode successfully. On the other hand, the agent received a large
negative reward followed by episode termination if it has not moved forward
enough after a certain number of steps. This negative reinforcement not only

4



reduces training time, since episodes are terminated, but also encourages the
agent to navigate the obstacles in the most efficient way possible.

In practice, it is important to limit the robot’s step-height when possible.
Large steps are accompanied with increased instability. Therefore, the robot
should increase it’s step height beyond a nominal value only when necessary to
navigate an obstacle. To encode this in our reward structure, we modeled the
source of reward as an asymmetric spring force, with the nominal step height
at the spring’s equilibrium position. If the step-height parameter remains at or
below the nominal value, the agent receives a reward of 0. However, if the step-
height parameter is increased by the agent above the nominal step-height value,
the agent receives a negative, linearly proportional reward with respect to the
height above the nominal step-height value. Therefore, the negative reward acts
as a restoring force to bring the step-height parameter to or under the nominal
value, ensuring stability.

3.2.4 Learning Algorithm

Since we have a continuous state representation and discrete actions, we apply
a deep Q-learning agent to our problem. However, in the context of our prob-
lem, it is important to capture temporal relationships in the state. Relating
to forward progression, our agent must be able to recognize a lack of change
in body position, which would indicate that the robot is stuck on an obstacle.
Relating to stability, it is important that the agent be able to distinguish sharp
changes in body orientation (those caused by a step up or down) from a constant
body orientation (associated with an incline). To capture the temporal changes
in state features, we use a Deep Recurrent Q-Network to learn a state-action
mapping described above.

4 Experiments and Results

In order to test the validity of our learning approach, we trained an agent to
adapt the trainable gait parameters of a hexapod robot. We ran experiments
in simulation using a curriculum of different obstacle courses of increasing com-
plexity. in order to compare the speed of convergence to an optimal policy to
that of non-learning and non-curriculum learning approaches.

4.1 Evaluation

To evaluate the performance of our gait-parameter control policy learned via a
curriculum, we performed a simulated experiment with static gait parameters
(no learning involved). We consider this project successful since the learned
policy outperforms static parameter choices. We determine performance based
on the effectiveness of the policy, which is measured based on cumulative reward.
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4.2 Experimental Validation

4.2.1 Environment

For this project, we perform experiments in a Gazebo simulation environment.
Learning in a simulation environment allows for faster learning, and avoids
wear and tear of the hardware. The legged system that we use for experimental
validation is an 18-DOF hexapod robot. Each of the robot’s 18 DOFs has
encoders for position and torque measurements as well as a 3-axis gyroscope
and 3-axis accelerometer for orientation in the world.

We use ROS (Robot Operating System) as the communication infrastructure
for the system. The learning agent communicates the learned gait parameters
to a mid-level controller, which in turn translates the gait parameters to joint
angles for the robot. These angles are then published to the Gazebo simulation,
which directly uses them to simulate the movement of the robot. The new pose
of the robot (body position and orientation in the world frame) is then obtained
from the Gazebo simulation and passed as feedback back to the learning agent.

4.2.2 Learning Implementation

We are using a Deep Recurrent Q-Network to approximate a time-dependent
state-action mapping. Our network has two fully connected layers connected to
the input state vector. The input layer is connected to a 64-unit, fully-connected
layer. This layer is in part connected to a 128-unit fully-connected layer. The
output of this layer is the input to a 128-unit LSTM cell, which we use to keep
track of changes in the pose of the robot over time. Finally, the output of the
LSTM cell is connected to a 9-unit output layer without an activation function,
which outputs the Q-values of each action given the input state vector. We
found that using two hidden layers before the LSTM cell rather than using
a single hidden layer approximated the state in a way that resulted in more
efficient learning.

At the starting stage of our project, we were providing the network one
example at a time, and optimizing our network using stochastic gradient descent.
We soon found issues with this approach, so we experimented with training our
network with mini-batches for more accurate gradient approximations. we began
using four mini-batches per episode, but ultimately transitioned to one batch
per episode. Using one batch per episode increased training speed and improved
the quality of the training (in terms of loss).

The choice of our hyperparameters was empirical. We use a learning rate
of 0.016, and a discount factor of 0.88. We decrease the exploration rate of
the agent from 1 to 0.1 in 256000 steps. Additionally, we consider updates to
the robot at 50Hz and allow for increments of 0.1cm to the step-height and
center-of-mass position at each timestep.
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4.2.3 Curriculum

In an attempt to facilitate learning, we planned to employ a learning curricu-
lum. In order to develop a curriculum for the agent, we generated different
scenarios in Gazebo with increasingly levels of complexity in terms of height
of the obstacles in the environment. We believed that slowly increasing the
difficulty of locomotive challenges would guide the agent to learn how to adapt
gait parameters one-by-one for both stability and forward motion. With regard
to the effectiveness of the learned policy, we expected that for a fixed number
of episodes, the policy learned by the curriculum approach would outperform a
policy that we attempted to learn directly.

Originally, we intended to develop a curriculum using ramps of varying steep-
ness along with simulated debris, meant to parallel unstructured terrain for the
real robot (Fig. 1). This environment resulted in interactions unlike those expe-
rienced during trials with the real robot, so we narrowed our focus to having the
agent learn to go over obstacles of various heights by developing a curriculum
with level terrain and obstacles of varying height. In this curriculum, smaller
obstacles were presented before taller obstacles. This way, the agent first learns
to go over obstacles without raising its step height to the maximum, and then
it learns to raise its height only as necessary to get over the obstacle. With
this intent, we developed levels with courses made of three horizontal planks of
different heights.

Figure 1: Series of plank obstacles.
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All of the levels in the curriculum are structured in the same way. There
are three planks that the robot has to go over to reach the finish line (Fig. 2).
We slowly increase the height of the planks at each level of the curriculum. We
expect that by doing this, the agent learns to adjust its step height and center-
of-mass position to get to the finish line in the most stable way possible. The
main challenge the agent faces at each level of the curriculum is to learn to go
over taller obstacles while still remaining as stable as possible.

Figure 2: Series of plank obstacles. Finish line shown as two planks in the
distance.

4.3 Experiments

Step Height Reward Steps

Learned (Dynamic) 439.7 2884
5 cm (Static) 450 2625

5.1 cm (Static) 184.4 2656
5.5 cm (Static) -747 2394

Table 1: Comparison between reward and steps to complete episode for learned
vs static parameters for step-height.

We began by training the agent to navigate the first level of our curriculum.
This level featured a course of three 5cm-tall planks, spaced 1m apart. The
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figure below shows the best results achieved on this level of the curriculum,
after fine-tuning the reward structure and learning parameters.

(a) Reward vs Episode. Reward con-
verges to a value close to 400. A stable
policy has been achieved.

(b) Iterations per Episode vs Episode. If
the robot is stuck for too long, the episode
terminates; with more training episodes,
the robot’s progression improved.

(c) Number of invalid inverse kinematics
(IK) moves vs Episode. A move is consid-
ered invalid if the foot position requested
is outside the robot’s workspace – no joint
configuration exists.

(d) Loss vs Episode. Loss steadily de-
creases as episodes progress.

Figure 3: Results for Curriculum Level 1.

Once the agent had arrived at a stable, effective policy for the first level of
the curriculum, we introduced it to the second level. This level featured a course
of three 7cm-tall planks, spaced 1m apart. We reset the episode to this new level
manually, by loading a saved model of the weights of the network obtained by
training in the previous level. We select the model at an episode soon after the
reward has already converged. When we load the model obtained in the previous
level, we needed to tweak the reward structure and exploration rate of the agent.
The proportions of the rewards obtained in level 1 was not the same as that
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in level 2, which induced undesired behavior such as the agent getting more
reward for getting stuck than for completing an episode. Therefore, we needed
to adjust the reward scales in order to ensure the right behaviors were rewarded
and punished. Additionally, whenever we changed the level to a more complex
one, we increased the exploration rate back to 1 and decreased it linearly to
0.1. However, the rate of decrease of epsilon was twice as fast as the one for
level 1, to keep the knowledge obtained from level 1. The figure below shows
the best results achieved on this level of the curriculum, after fine-tuning the
reward structure and learning parameters.

(a) Reward vs Episode. Reward seems to
converge to a value close to 0, but then
oscillates. A stable policy has not been
achieved.

(b) Iterations per Episode vs Episode.
For episodes with iterations less than
2500, the robot got stuck.

(c) Number of invalid inverse kinematics
(IK) moves vs Episode. A move is consid-
ered invalid if the foot position requested
is outside the robot’s workspace – no joint
configuration exists.

(d) Loss vs Episode. Loss increases as
episodes progress.

Figure 4: Results for Curriculum Level 2.
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5 Discussion

Fig. 3 highlights the performance attained after training the learning agent on
the first level of our curriculum; overall, these results are successful. Since we
choose a nominal step-height of 5cm, these planks are not tall enough to com-
pletely block the robot in most cases, but do regularly slow it down. The intent
of this step was to teach the agent to raise its step height only when necessary,
rather than maximizing its step-height so that it can step onto and over any ob-
stacle, since doing this induces instability. Sub-Fig. 3b, which shows the episode
length over time, demonstrates that as the agent’s policy improved it became
stuck on the planks less; we know this, because getting stuck results in episode
termination. Sub-Fig. 3a, which shows the reward over time, demonstrates that
the agent ultimately learned to increase its step-height over the nominal value
only when necessary. Early on, the agent can cross all obstacles by prematurely
setting a high step-height, but this results in a large reward penalty for lack
of stability. Finally, Sub-Fig. 3c, which shows the number of invalid actions –
those which attempted to command a leg outside of the robot’s workspace –
we’re quickly rejected. These actions cause significant instability, and hinder
forward progression.

After pretraining the agent on the first level of the curriculum, we introduced
the second level of the curriculum – a new challenge with higher obstacles.
Fig. 4 highlights the performance attained after training the learning agent on
the second level of the curriculum. As shown, the agent is unable to adapt to
the new challenge presented and performance decreases rapidly from what was
learned during the first level of the curriculum. Originally, after completing
each level, we increased the height of the planks by 2 cm. After attempting
to train multiple agents using this curriculum, we realized that this curriculum
was too hard for the agent to complete. We changed the height-increase of the
planks to be 0.5 cm, but we found that this task was still to hard for the agent
to learn. We believe there could be a number of causes, but failed to completely
isolate the issue. When starting a new challenge with a pretrained agent, it is
important to initially increase exploration in order to allow the agent to adapt
to the new challenge. However, if too much exploration is permitted, then it is
possible that the agent’s learned policy (from earlier stages of the curriculum)
could be destroyed. It is possible that we did not find the right balance between
policy adaptation and preservation when transitioning to the new level of the
curriculum.
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6 Conclusion

6.1 Limitations

We faced significant challenges working on this project, mainly regarding setup
overhead and training speed of our agent. Much of the first few weeks were
spent on setup. First, we configured the simulation environment for the robot
in Gazebo and built the different courses for our curriculum. Additionally, it was
necessary to prepare a mid-level CPG-based control mechanism to parameterize
the robot’s gait, and incorporate this controller in a custom gym environment
for interfacing with our learning agent. In figuring out a reasonable curriculum
for the scope of this project, we designed different levels with ramps of various
steepness angles, debris of different sizes and shapes, and finally, long planks of
different dimensions.

After setting up the simulation environment for the robot and designing the
learning agent, we faced issues with training the robot. We were unable to
speed up the Gazebo simulaton by any amount. We are unsure whether this
issue was generated by an inaccurate robot model or simply by the nature of the
problem. After heavy optimization of our task at hand, we still ended up having
episodes that took anywhere between 1 and 2 minutes to finish. In total, each
run of our learning agent took approximately four hours, which meant that there
was not much room for experimenting around with different values for all the
hyperparameters, different network structures, different state representations,
or different reward structures. Therefore, running multiple learning agents to
average their performance was prohibitively expensive. The high training time
for our agent meant that designing a more complex curriculum was not possible
given the short amount of time to complete this project.

6.2 Future Work

Future work should involve continued development of a suitable learning cur-
riculum. Beyond this, future experiments could implement the final simulated
approach using the robot’s on-board IMUs. Additionally, future experiments
could augment on-board IMU sensing (e.g., with lidar) with additional feed-
back on the environment’s structure, necessary for anticipatory control. Doing
so would allow the robot to both react to its environment, and also anticipate
future parameter changes (e.g., an increase in step height to navigate a large
obstacle). Anticipatory control is necessary to ensure that the robot avoids
locomoting into a position/situation where it is unable to react.

7 Permissions

We have permission from Professor Howie Choset to use the “Snake Monster”
Gazebo simulation environment for this project, and have proposed robot ex-
periments if the simulated results appear promising.
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