
Improving Sentences with Online Policy Gradient

Methods

Bhushan Suwala, Andrew Savagea

COMP 150 Reinforcement Learning, Fall 2018

aDepartment of Computer Science, Tufts University

Abstract

The task of sentence completion has been an active area of research, with
Seq2Seq recurrent neural network models the most popular solution. The
accuracy of such models depend on the the accuracy of the corpus the model
is trained on, and actively correcting a huge corpus is an expensive task.
Removing the biases learnt by a model after it has been trained is also ex-
pensive. To this goal, we investigate how reinforcement learning can be used
to improve an LSTM model’s performance by teaching the model to avoid
the mistakes it learned in the corpus, as well as guiding the model to follow
developer defined rules.

1. Introduction

Sentence completion is a well explored problem with many practical ap-
plications. Many of the technologies that exist in our everyday life use tech-
niques to assist in sentence creation: messenger applications often have sug-
gestions for the next word to use, Gmail has both automatic response sug-
gestions and auto-complete for email writing, and Google Search has plenty
of suggestions for queries when you begin typing.

Datasets to train models on are readily available, but once the models are
trained the model is confined to what it learned from the corpus and retrain-
ing it to produce sentences or different styles of sentences requires expensive
retraining of the model. One of the major attractions of reinforcement learn-
ing is training an agent without having explicit datasets to train on because
the agent learns its parameters based on the reward function determined
by the developer. We use this strength of reinforcement learning to retrain

a Long Short-Term Memory model trained on the WikiText-2 (which has
2,088,628 train tokens) to reduce typing errors.

As an RL formulation, we use the LSTM model as our learning agent.
The states are the words generated so far in the sentence, and the set of
actions is the next word to take. We have scores that account for the validity
of the words in a sentence, the length of a sentence and the repetition of
words in a sentence. We use these individual scores as reward functions on
individual experiments, as well as a weighted combination of these scores on
the last experiment. We observed that networks can be taught developer
defined rules in very little time with optimal stopping.

2. Related Work

Sentence completion has been an area of active research. Google’s Smart
Compose[1] makes use of the popular Seq2Seq model[2] to learn long term
dependencies for its sentence completion in Gmail. The model is made up of
multi-layered LSTMs that performs well to remember values over arbitrary
time intervals. LSTMs have been popular for natural language processing
tasks because of their ability to learn on well on long term dependency tasks
ever since their introduction by Hochreiter and Schmidhuber (1997). [3]

The use of RL to RNNs is a fairly recent domain. The use of reward
functions to modify the language structure of outputs produced by an RNN
was used by Li et al.[4] for avoiding repetitive loops in dialogue generation
with the use of a reward function that is a combination of metrics for ease of
answering, information flow and semantic coherence to encourage dialogue
flow. Ranzato et al. use the BLEU score, a metric for machine translation,
as a reward at test time to improve on language translation tasks. [5]

The work that inspired much of the work with the RNN model in this
project was from Jaques et al., where they improve the melodies produced
by an LSTM by training a DQN on a reward function that is a combination
of a set of music rules and the output of the original LSTM to avoid strict
rigidity caused by the rules. [6]

3. Technical Approach

We opt for a policy gradient method because of its advantages and its
convenience: we already have a model that produces maximum likelihood
estimates for each action in our vocabulary, and we can sample on these

2

estimates for exploration. It also allows us to inject a trained model as
a prior for our policy parameterization. We use the REINFORCE Monte
Carlo algorithm [7] to do our policy updates. The update is defined as

θt+1 = θ + αγtGt
∇tπ(At|St, θt)

π(At|St, θt)

where γ is the discount factor, t is the number of steps in the episode, π is
the policy, α is the learning rate, Gt is the reward at time t and θt is the
state at time t. Since this is a Monte Carlo algorithm, this suffers from high
variance at the episode level. To tackle this, we update our parameters in
batches of episodes. We also use a simple reinforce with baseline technique
of subtracting the rewards with their mean for added stability.

We use an LSTM model as an agent, and use 200 dimension word vectors
as states. This agent has the weights of an LSTM trained on over 2 million
tokens of the WikiText-2 dataset over 40 epochs as a prior. The partially
complete sentences are added to form the states. The set of actions was the
next possible word in the sentence. An episode was defined as a series of
actions until the end of an episode was reached. The weights were optimized
with an Adam optimizer.

There were multiple reward functions implemented. The first one rshort
encourages short sentences by awarding a reward at a terminal state, defined
by the states {., !, ?}. The second one rlong encourages longer sentences with
a positive reward at a non-terminal state and a zero reward at a terminal
state. The third reward rvalidity function uses the PyEnchant[8] library to
check if an action is a valid word, and assigns a positive reward to it and
a negative reward otherwise. The fourth reward function rrepetition aims to
reduce repetition in a sentence, which we found is a common mode of failure
for our models. That function awards a penalty if an action has been repeated
already in the sentence so far. The final reward function is a weighted average
of all of the aforementioned reward functions:

rtotal = λ1rshort + λ2rlong + λ3rvalidity + λ4rrepetition

where λ1, λ2, λ3 and λ4 are regularization parameters. Separate experiments
were conducted on each of these five reward functions.

“Improving” sentences can be a very vague goal. While we do have def-
initions of what improvement means in the initial more defined individual
experiments, like shorter sentence length when the reward is for short sen-
tences, for the final experiment with the weighted reward function we do not

3

know of any metric that could define a “good” sentence. Especially in the
case of machine produced sentences, the output sentence is often garbled like
”Another break of matter create 1995” and it is difficult to compare it with
another garbled sentence like ”Another day bed is yolk sister”. As such, we
have relied on empirical human observation to define the progress of a model
for that experiment.

4. Experiments and Results

4.1. Initial ideas and explorations

Initially we attempted to implement a character-level RNN with a partial
sentence as the state and a character as an action. Initially we struggled with
the exploding gradient problem characteristic to recurrent neural networks.
We later discarded this approach because we realized using characters as
actions would be limiting on our reward function anyway because there are
few action-level rewards we could use other than determining the length of a
sentence. Most other rewards would only have to be awarded at the end of
the episode. We therefore switched to using words as our actions.

We also trained a policy network with two hidden layers to learn the
sentences with no prior policy. The set of states was the partial sentence
so far represented as the sum of its individual 200 dimension word vectors.
The set of actions was the next word to produce. This experiment was to
see the performance of reinforcement learning as an alternative to supervised
learning, using word vectors of the next word in the training set as the reward
on this occasion. The dataset used for this was the Amazon Appliances
Question Answer dataset. [9]

4.2. Using rewards to motivate the length of the sentences

We initially started with simple reward functions to reward when a sen-
tence was short and when a sentence was long (rshort and rlong in Section 3).
Figures 1a. and 1b. show the plots showing the length of sentences as the
training progressed.

There is a definite trend of the models following their reward functions.
However, the rigidity of these rewards mean that to optimize for length the
sentences produced lose all structure; for example, by the last episode of for
the short sentence reward experiment, the ‘sentence’ being produced was the
just the full stop ‘.’.

4

(a) Average sentence length decreasing
with a positive reward for non-terminal
states.

(b) Average sentence length increasing
with a positive reward for non-terminal
states.

Figure 1: The change in average length of sentences with sentence length shorten-
ing/increasing reward functions.

The short sentence model was trained for 30 iterations while the long
sentence model was trained for 20 iterations. For both of them, each iteration
was of 5 episodes with a learning rate of 0.01 and a discount rate of 0.01.

4.3. Removing out of dictionary words from the model

We next attempted to penalize out-of-dictionary words by giving them a
negative reward. We define our dictionary by the words considered valid by
the PyEnchant library. The Word-RNN model produced the following text
during the first episode of training:

<eos> Kedok Sullivan County , of the Rocky Natal , which would prove by
<unk> Australia , make women viewed by the <unk> in a first Gundersen
on Tuesday <unk> , and the area of human paramilitary <unk> immunity
whenever it became Fallen ’s Animal <unk> <unk> ’s long , being ruined
into the afternoon , though the aversion to achieve a very ” mad and an
accompanying in Blood <unk> @-@ induced by <unk> ’s end .

We can see that the output has some semblance of what a sentence looks
like and the model has learnt some grammar, but this output is littered with
words from the corpus that don’t exist like ‘<eos>’, ‘<unk>’ and ‘@-@’.

5

We applied a validity reward function that awards a reward of 0.1 for
valid words and a reward of -0.1 for invalid words.

Figure 2: There is clear increase in the validity score over time.

After about iteration 30, the model produces mostly only valid sentences
and has succeeded to remove out of dictionary words from it vocabulary. The
text it generated at this stage was:

6

day . The New Jersey . The New York . The New York . The New
Jersey . The first . The New Jersey . The New Jersey . The area . The
New Jersey . The New Jersey . The first and that year . The New Jersey to
the first in the first in the first part of the first . The New Jersey . The New
Jersey . The company . The New Jersey .

While the model has learnt to produce only valid words, it has unsur-
prisingly lost its ability to make more interesting sentences. And while it
initially may seem impressive that the model learned to almost completely
remove out of dictionary vocabulary in just 30 iterations (which for this ex-
periment was 150 episodes), it is to be noted that only the words that had a
high probability of occurring in the initial random episodes were discouraged
before the model resorted to repeating what it now knows are valid words.

This model was trained (at the point of optimal stopping) for 30 iterations
of 5 episodes each, with a learning rate of 0.01 and a discount rate of 0.01.

4.4. Penalizing repetition in sentences, and using a weighted reward function

The last experiment showed a clear propensity of the model to ‘game’ the
system by repeating valid words again and again. Motivated by this obser-
vation, we defined a reward function that punishes repetition in a sentence.
Specifically, the reward function to avoid repetition we use is:

rrepetition =
|unique words in current sentence|
|words in current sentence|

Using just this reward function made the model output longer and longer
sentences in the hope of generating more unique words. Finally this moti-
vated the use of the weighted reward function described in Section 3 and
reproduced here:

rtotal = λ1rshort + λ2rlong + λ3rvalidity + λ4rrepetition

With empirical tuning, we set the λ1 = 0.1, λ2 = 0, λ3 = 0.4 and λ4 = 0.5
and trained the model for 8 iterations to obtain the following results:

In his book with the most and in the higher than his parody of the most of the
small and have love by a long over pay of his most areas in this high school .

7

The first made up to be a British letters with about 100 840 from March
results at least two women and expected .

Compared to the output generated in the very first episode without any
reward observation, these sentences show a significant improvement in remov-
ing out-of-dictionary words and avoiding repetition loops while still retaining
the word dependencies from the original model. We noticed that the optimal
stopping point for our experiment was at 8 iterations, after which the quality
of the sentences seemed to get qualitatively worse. Still, it is impressive to
note that it took only 8 iterations (40 episodes) for the model to reduce poor
vocabulary.

This model was trained for 8 iterations of 5 episodes each, with a learning
rate of 0.01 and a discount rate of 0.01.

Table 1: Appendix of generated sentences mentioned in this paper

Sentence Reward Iterations

‘.’
Short Sen-
tences

30

<eos> Kedok Sullivan County , of the Rocky Natal
, which would prove by <unk> Australia , make
women viewed by the <unk> ...

None,
Prior from
LSTM
model

0

day . The New Jersey . The New York . The New
York . The New Jersey . The first . The New
Jersey . The New Jersey . The area . The New
Jersey . The New Jersey . The first and that year
...

Validity 30

In his book with the most and in the higher than his
parody of the most of the small and have love by a
long over pay of his most areas in this high school .

The first made up to be a British letters with
about 100 840 from March results at least two
women and expected .

Weighted
Reward

8

Note: An iteration was set as 5 episodes for all of these experiments.

8

4.5. Rewarding positive sentiments

We also aimed to reward sentences that could be categorized as positive
with a positive reward with an aim to have ‘happier’ sentences. We chose an
existing implementation from Python’s nltk package called Sentiment Inten-
sity Analyzer that provided a score ⊂ [−1, 1] on sentences. We gave rewards
only at the end of episodes, but the model failed to realize more positive
sentiments clearly. This experiment resulted in failure, but we think that
this would work with better tweaking of the hyperparameters.

5. Conclusion

The use of creative reward functions can be used with policy gradient
methods to tune a model to obey developer-defined traits. The use of strict
rules alone quickly distorts the learning of the model, as the model can learn
to try to optimize for the rewards and lose its creativity. We therefore think
that having a low learning rate is preferable to obtain an optimal stopping
point.

Designing these reward functions may seem inconvenient and training
with them is delicate to avoid the over simplification of the model. However,
a model learns implicit biases from its training set and correcting these biases
is not easy without expensive retraining of the entire model. Our results show
that models can be re-tuned in little time compared to the amount it would
take to retrain the entire model with an unbiased dataset. We offer such
reward based learning as a promising path to remove biases from a model.

6. Future Work

The use of a Deep Q Network on top of an RNN similar to what Chen
et al[10] have explored could be useful to explore a more robust learning of
the policy. Furthermore, inherent problems in sentence completion and text
generation in general like producing thought sequences that span multiple
sentences have not yet been solved. The attractive qualities of RL that can
make the agent learn dependencies far off in the past could be an avenue of
research exploration. More specific to this project, strictly rule based rewards
can make the agent get ‘stiff’ in its attempts to optimize for rewards. To this
goal, combining the reward with the output of another model like Jacques et
al.[6] explored could result in a more human-like text generation.

9

7. Acknowledgements

We sincerely express our gratitude to Professor Jivko Sinapov in his as-
sistance through this project. We also are grateful for the makers of PyTorch
and its wonderful open source community for being very beginner-friendly.

8. References

[1] Smart compose: Using neural networks to help write emails,
https://ai.googleblog.com/2018/05/smart-compose-using-neural-
networks-to.html/, 2018.

[2] Q. V. L. Ilya Sutskever, Oriol Vinyals, Sequence to sequence learning
with neural networks, arXiv:1409.3215 (2014).

[3] J. S. Sepp Hochreiter, Long short term memory, Neural Computation
(1997).

[4] A. R. M. G. J. G. D. J. Jiwei Li, Will Monroe, Deep reinforcement
learning for dialogue generation, arXiv:1606.01541 (2016).

[5] M. A. W. Z. MarcAurelio Ranzato, Sumit Chopra, Sequence level train-
ing with recurrent neural networks, International Conference on Ma-
chine Learning (2015).

[6] R. E. T. D. E. Natasha Jaques, Shixiang Gu, Tuning recurrent neural
networks for dialogue generation, arXiv:1606.01541 (2016).

[7] R. J. Williams, Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning, Machine Learning (1992).

[8] PyEnchant library, https://pypi.org/project/pyenchant/, 2018. Ac-
cessed: 2018-12-17.

[9] Amazon appliances question answer dataset,
http://jmcauley.ucsd.edu/data/amazon/, 2018. Accessed: 2018-12-
17.

[10] D. L. Clare Chen, Vincent Ying, Deep q-learning with recurrent neural
networks, http://cs229.stanford.edu/proj2016/report/ChenYingLaird-
DeepQLearningWithRecurrentNeuralNetwords-report.pdf (2016).

10

