
The Difficulty of Learning Ticket to Ride

Daniel Dinjian & Cuong Nguyen

1 Abstract

Ticket to Ride is a very popular, award-winning board-game where you try to
score the most points while building a railway spanning cities in America. For a
computer to learn to play this game is very difficult due to the vast state-action
space. This project will explain why featurizing your state, and implementing
curriculum learning can help agents learn as state-action spaces grow too large
for traditional learning methods to be effective.

2 Introduction

For our project, we will be teaching an agent how to play the popular board
game “Ticket To Ride” (TTR). The main goal of TTR is to score more points
building your railway than your opponents. Points are awarded immediately
for buying routes for your railway, and at the end of the game for having the
longest contiguous railway and having a railway that connects specified cities.

This game’s scoring system makes it a very interesting problem because it
places importance both on maximizing immediate rewards in building routes,
and on planning for the end game by prioritizing future end-game rewards.
Before talking further, I’ll define the relevant rules.

2.1 Relevant Rules of playing TTR

2.1.1 Game Setup

The TTR board is essentially an undirected graph where nodes are cities and
edges are routes connecting two cities. Routes have varying lengths and colors
which correspond to the cost of purchasing them. There are two supplemental
decks: a deck of colored rail-cards used as resources for purchasing routes, and
a deck of unique goal-cards specifying two cities and a reward for connecting
them via your railway. If you fail to connect the cities specified on one of
your goal-cards, you lose that many points as punishment instead of getting the
reward.

Each player starts with 45 train pieces, 4 rail-cards, and three goal cards
of which at least two must be kept. When building routes, not only must you
pay the appropriate number of colored rail-cards, you must also place that many

1



train-pieces on the board. Whenever anybody runs out of train pieces, gameplay
ends and final scoring is done.

The game supports 2-5 players, so agents trying to complete their individual
goals may have overlapping routes. As a result, to succeed, each agent will have
to optimize their planning to complete their goals while preventing antagonizing
agents from sabotaging their route.

Agents’ conflicts of interest are:

• Each route can only be bought by one player.

• Players can only place a certain number of train pieces before the game
ends.

• Rail-cards are discarded after use, the rail-deck isn’t reshuffled until it
empties.

What these conflicts mean for the agent is that paying attention to your op-
ponent’s behavior is important to success because you’re competing over limited
resources.

2.1.2 Game Play

The game moves in a round-robin manner where each agent takes a turn in a
predetermined order. During each agent’s turn, it has the option to do 1 of the
following 3 actions:

• Collecting Rail-Cards: To prepare for the building costs of buying
routes, an agent may use its turn to draw two rail-cards. Rail-cards are
either drawn randomly from the deck, or from a pool of 5 face-up cards.

• Building Routes: To buy any route, an agent must use (and discard)
the required rail-cards from their hand. Then they place their train pieces
on the route both to demonstrate ownership and to keep track of how
many train pieces they have left.

• Drawing New Goal-Cards: An agent may draw 3 additional goal-cards
and is required to keep at least one of them. This is a high-risk high-reward
action because new goal-cards could be easily accomplished or could be
incompatible with your previous strategy.

2.1.3 Scoring

As mentioned, the objective of the game is to collect as many victory points as
possible. Score is calculated as follows:

1. Building Routes: Whenever an agent builds a route, they are awarded
points immediately. The amount of points is based on the number of
tracks required to connect those two cities. See Table 1.

2



2. Meeting Objectives: Goal-cards specify objectives for agents to build
railways that connect two cities. Each goal-card has some predetermined
score (5 to 23) based on the approximate difficulty/lengthiness of con-
necting those cities. At the end of the game, if the agent has met that
objective, they gain the corresponding number of points. If the agent has
not met that objective, they lose that many points instead.

3. Longest Road Reward: At the end of the game, the player with the
longest contiguous railway is awarded 10 points. The longest contiguous
railway refers to a sequence of routes that doesn’t backtrack or jump from
city to city.

Route Length Points

1 +1
2 +2
3 +4
4 +7
5 +10
6 +15

Table 1: The immediate points gained when an agent builds any route based
on route length

2.2 Hypothesis

Ticket to Ride is a very complex game for a computer. It’s relatively easy for
people to learn because we can plan in advance and calculate the value of each
move, albeit subjectively. However, if a computer were to try and use traditional
reinforcement learning methods to play this game, it would require a state for
each combination of goal-cards, hands, boards, etc. which is clearly infeasible.
Not only would it be unreasonable to attempt to store the value of each state or
action, even if that was done, the time it would take to train the model would
be even more ludicrous. Simply stated, it’s computationally intractable.

Therefore, learning Ticket to Ride requires the artificial development of new
features based off of the environment that are imbued with relevant information.
Feature engineering is an incredibly powerful method of using preordained field-
knowledge to tell models what environmental factors will be important to them
accomplishing their goals. In environments with small environments that can
be fully explored the use of feature engineering may be limited, but in problems
such as TTR where the state-space is too vast to explore, feature engineering
will be the single most important factor in creating a model that can learn.

In addition to having good feature engineering, another method of helping
agents explore vast environments is through curriculum learning. In curriculum
learning, rather than placing the agent immediately into their environment, they
learn to perform portions of their task well in mini simulations. By learning in

3



these controlled environments, the agent will get exposure to the important
tasks it has to accomplish in the full environment rather than taking a much
longer time to discover them on its own.

Although ultimately we were unable to construct an agent that successfully
learns to play Ticket to Ride, we are confident that the theoretical model we’ll
describe would be able to learn Ticket to Ride given enough time. We’ll also
analyze why we were unsuccessful and how future work could avoid some of the
technical problems our model ran into.

3 Background and Related Work

In Chapter 9 of Sutton & Barto’s Reinforcement Learning: An Introduction [2],
the concept of feature engineering is first discussed. The way Sutton & Barto
introduce feature engineering is motivated by linear methods. Theoretically if
we have all the information pertaining to an environment, some combination of
that information will be sufficient for determining how to act in any situation.
However, we don’t necessarily know what shape that combination will be or
what type of function will best learn it. On the one hand a neural network can
approximate any function, but on the other hand if we construct our feature
space to be linear then a simple linear method will work fine. Sutton and Barto
explain the benefits of having, or constructing, a feature space that lends itself
to linear methods. It’s conceptually straight-forward, the features we consider
are easily modified, and it effectively outlines what aspects of the environment
are important for the model to consider giving the model a big head-start.

Given the complexities of the TTR tasks, it’s quite likely that our agents
would gravitate towards prioritizing short-term value of building routes over
long-term priorities like meeting objectives and building contiguous paths. Learn-
ing through exploration would most likely take an extremely long time to fully
explore the environment even after the state-space has been featurized. In re-
sponse, we will introduce a curriculum of sub tasks to aid novice agents in their
learning of the game objective. Our approach will be similar to the approaches
shown by Narvekar et al.[1].

4 Problem Formulation and Technical Approach

Our technical approach to teaching an agent to play TTR was first to create an
environment where we could simulate gameplay. We then featurized that envi-
ronment and fed it to our agents to play games and learn as follows. However,
our agent never really learned due to both technical and design issues. In the
following formulation, a proper design for learning TTR will be described as
well as an argument for correctness.

4



4.1 Environment Setup

The first step before learning to play TTR is to have a simulation of the game
implemented. This simulation should track the true environment (player hands,
scores, train pieces, goals, board, etc). And should be displayable by a GUI for
purposes of observing your model.

Next create a portal for your agents to play the game. Generate an episode
and pass in agents. At this point, agents should simply be passed the environ-
ment at their turn, have access to their possible actions, and choose randomly.
Before we move on to having the agents learn, ensure that you can simulate
episodes, or games, start to finish between your models.

4.2 Featurizing the Environment

In order for our agents to learn anything, we have to featurize the environment
into a format in line with Sutton and Barto’s linear method recommendation [2].
The environmental factors that we want to highlight in our constructed features
have to be the ones that we use to determine which actions will maximize our
net reward.

• Available Build Routes: Each route is first-come first-serve. Agents
need to prioritize building routes based on what routes are still available
and how important they are to accomplishing agent’s goals.

• Drawable Rail-Cards: Within the deck of track cards, there are 6 rail-
road track types that exists in limited numbers. Within a turn, an agent
can either draw from the top of the face down deck, or pick up from the 5
face up replenish-able community pile, or do both. The strategic trade-offs
between drawing from the deck or community pile lays within the realm
of secrecy and draw probabilities.

• Owned Rail-Cards: At any time step, an agent must optimize its use
of in-hand resources given the current state. Given the specified build
expenses to certain routes and competition for claiming routes, it may be
more advantageous to use an in-hand resource sooner rather than later,
or vice-versa.

• Remaining Train Pieces: When either you or your opponent runs out
of train pieces the game is over. Furthermore, if you waste too many train
pieces then you may not be able to finish meeting your objectives.

• Approximate Distance to Meeting Objectives: Based on the ex-
pected number of routes, rail-cards and train pieces left after you’ve met
your objectives, your best option may be to draw new goal-cards.

• Antagonist Agents’ Previous Actions: Observing the history of com-
peting agents such as what cards they’ve collected or where they’ve been
building can inform the protagonist agent’s update of action-state values.

5



By passing this information to our agent, it will be able to learn how these
factors correspond to determining the agent’s optimal action. Note that an
agent’s action-space is equivalent to the options mentioned in Game Play 2.1.2.

4.3 Determining Reward

Although we now have features that will help our agent to evaluate what the
state of the environment is, there’s one more step required for learning. The
reward.

In playing TTR, our agent’s main goal will naturally be to win, sowe need a
reward function that rewards agents for winning. Agents win by having the most
points at the end of the game, so we make the obvious connection of rewarding
our agents equivalent with how they score points. See Scoring, 2.1.3.

However, this reward method actually rewards agents even if they don’t win,
which we do not want. Therefore, at the end of the game we introduce one more
reward for agents. The winning agent keeps their reward equal to the number
of points they score, but the losing agents all get a penalty equal to the winning
score. Therefore the net punishment of an episode is scaled according to how
poorly the agent performed.

4.4 Curriculum Learning

Now that we have all the components our agents require to learn, we should
be able to let them play a few thousand games and see what they’ve learned.
Agents will play, they’ll win or they’ll lose and their value functions will update
to help them prioritize the right moves based on the featurized representation
of the environment. Having gotten to this point you would even be able play
against your agents and see how they perform. But chances are, even after
learning for a long time they wouldn’t play very well.

The reason that agents would be learning slowly is because they’re exploring
naively. They would only be playing against other agents, exploring the envi-
ronment randomly and using the strategies that have worked for them. Even
after playing thousands of games it’s still quite possible that they wouldn’t
have developed nuanced strategies simply due to lack of exposure to certain
circumstances that only come up between experienced players.

Exposure to these important circumstances is why curriculum learning is so
important. You can train an agent to be good at a specific subcomponent of its
job so that when it encounters that aspect of its job in a real environment it will
remember how to act. As the curriculum progresses, the agent is introduced
to more and more of its overall goal until finally its ready to explore its true
environment.

Our curricula will primarily consist of learning three sub-goals.

1. Playing the game individually, drawing cards and building train tracks to
maximize score.

6



• Agent will be alone taking turn after turn, trying to maximize average
points per turn.

• Agents will learn to make educated decisions about when and where
to build trains.

• Agents will learn when and where to draw cards from.

• Agents will learn how to build a railway that connects their goal
cities.

• Agents will learn how to connect routes across multiple cities to score
longest road.

2. Accounting for additional opponents

• Agents will compete in this sub game with just a single goal-card

• Agents will learn to consider their opponent’s potential moves when
drawing resource cards or building tracks.

• Agents may learn or be encouraged to sabotage each other.

• Losing agents will have their end game rewards stripped away and
penalized by point differentials

3. Optimistic Initializations

• Agent may be placed in situation where game has almost ended and
agent has a variable number of turns left to complete assigned tasks.

• Agent may be playing alone, assigned to meet goal-card objectives, or
against other agents assigned with making strategic end-game choices
to win.

• Agent will receive reward or penalty based on the completion of their
assigned tasks.

• Environment may end prematurely to ensure urgency in agent’s strate-
gic approach.

After completing the curriculum, the agent is considered ”educated” and
we expect educated agents to make wise decisions in the real environment.
Knowing when to draw cards, where to build routes, and to complete their
goal-card objectives better than naively trained agents.

Going through this curriculum helps agents to develop a proper roadmap for
playing their way through real games. Having this roadmap allows agents to
use their exploration finding nuance and perfecting their overall strategy rather
than spending all their time piecing together strategies that may or may not be
effective.

7



5 Expected Outcomes

There are a few different types of agents posited in our technical approach,
unfortunately, we do not have actual results for any of them. However, we will
explain why they should have worked and how they would have been expected
to perform so that future implementors can learn from our work.

5.1 Unfeaturized Model

If we were to attempt to pass agents all the information in our environment
and just hope for the best, that would not work. There are approximately
100 routes on the board, many many combinations of possible board settings.
Having to retrain that for the countless possible hand settings, and then also
for the different possible goal cards in an agent’s hands.. Hopefully it’s clear
to everyone that this is an unreasonable waste of time and who knows if this
model could be trained in a human lifetime.

5.2 Featurized Model

Featurizing this model’s inputs is exactly what would make learning possible.
By featurizing the inputs we create a generalized state representation that frees
our model from having to relearn value functions in every combination of similar
circumstances. We could construct a learning curve for this model and we would
expect it to very slowly learn how to play.

The major issue with pure learning on featurized state-representation is that
we’d expect to get stuck in many local optimal policies that are far from as good
as the global optimal policy. This would happen because the agent would be
exploring naively, it would try out various actions and quickly start making a
strategy based on the random actions it had tried.

It would be like creating a path through a forest. At first you cut your
way through the forest randomly, but after you’ve created a path, future trips
through the forest will use the same path only deviating slightly where the path
is clearly poor. Even if the entire trail being made is suboptimal, once it exists
it becomes much harder to rediscover a whole new path. And similarly the
naively exploring agent, once it has created an approximate strategy, will have
a very hard time finding entirely new strategies and will instead try to perfect
its strategy even though that strategy can only be improved so far.

5.3 Curriculum Learning

Even though featurized models are able to learn, they’re very prone to getting
stuck in suboptimal local policies due to their naive exploration of the environ-
ment. Curriculum learning slowly introduces the model to a preordained best
strategy by having it learn first in controlled environments.

This process helps the model figure out approximately how to traverse the
environment so that the strategy it perfects is as good as possible. As such,

8



we expect educated agents that have gone through the curriculum to play TTR
much better than naive agents. Not only will they finish the curriculum playing
better than naive agents, they’ll also learn faster and converge to a higher level
of playing with a more nuanced strategy than naive agents.

6 Conclusion and Future Work

Unfortunately, the technical work done for this project failed to yield the ex-
pected results. This was due to a combination of poor design and poor im-
plementation early in the process. Therefore in this report I’ve attempted to
describe a stable pipeline with a good, modular design that will allow readers
to easily implement this project in the future.

The main goal of this project was to demonstrate how to approach problems
where the environment is too vast to be directly learned by a model. Hopefully
the two major approaches are clear. It’s integral to featurize your environment,
especially constructing features that lend themselves to linear methods so that
the agent will be easily able to determine optimal actions. However, while this
allows the agent to learn to operate in the environment, there’s no guarantee
that it will learn an optimal policy. To address this, designers can take alternate
methods of giving their models exposure to optimal strategies for succeeding in
their environment, either through curriculum learning or alternate approaches
such as transfer learning or learning policies from human teachers.

Naturally future work includes fully implementing this project and demon-
strating the accuracy of the claims made here. But beyond that, future work
could also include comparing various featurizers, closer observation of the adver-
sarial nature of competing agents, cooperative learning where agents share their
experiences, or other similar perturbations of the experiment as its described
here. Hopefully having read this paper you are ready to implement your own
agent to learn Ticket to Ride, and have also learned about how to create agents
for learning in vast environments.

References

[1] Sanmit Narvekar, Jivko Sinapov, Matteo Leonetti, and Peter Stone. Source
task creation for curriculum learning. In Proceedings of the 2016 Inter-
national Conference on Autonomous Agents & Multiagent Systems, pages
566–574. International Foundation for Autonomous Agents and Multiagent
Systems, 2016.

[2] Richard S Sutton and Andrew G Barto. Introduction to reinforcement learn-
ing, volume 135. MIT press Cambridge, 1998.

9


