
Flying Controlled Trajectories using Linear
Approximation Reinforcement Learning

Evana Gizzi1 and David Zabner1

Tufts University, Medford MA 02155, USA

1 Introduction

The reinforcement learning literature focuses on building radically simple code
controlling impressively complex systems. Throughout the semester, we have
developed light weight systems in a pedagogical settings, but have not had the
opportunity to implement these systems in a real life application. This was some-
thing that we wanted to explore with our class project, to see how the complexity
issue takes form with real like applications. Thus, in this project, we explored
the ability of a basic reinforcement learning (RL) agent to get an aircraft to fly
in a stable configuration, as defined in our text (see section 2.4). Specifically,
we aim to see how easy it is to use RL methods to get the aircraft to fly flat.
Furthermore, we want to see how feature engineering effects the performance of
the agent.

A variety of work has already been done showing that it is possible, through a
variety of different RL methods, to safely pilot a plane through take-off, landing,
cruise and navigational aspects [4] [3] [1] [2]. However, no-one we have found
has given the RL agent control over all aspects of flight including trajectory
management based on environmental information including data about other
aircraft in the airfield. This is where our work will be novel and, hopefully, show
results indicating that RL can be used to increase flight safety. It is also worth
noting that our work will be novel in the sense that the majority of past work we
found on RL and flight used apprenticeship learning and “expert instructors”.
Our lack of access to “experts” will present an interesting, important, and novel
challenge in the RL-Flight literature. As such, we have the following project
aims:

1. Can we control an aircraft with high level commands?
2. Can we use high level commands to fly the aircraft in a stable configuration?
3. Can we use feature engineering to increase our agents ability to successfully

accomplish aim 1 and aim 2?

We decided to begin approaching this problem with the simplest algorithm
that might solve it and therefore used Linear-Approximation and Q learning as
the basis of our approach. This too, surprisingly, appears novel in the field of
aviation RL. All of the previous work we found in the field used Neural Networks
for their Q-approximation.

2 Evana Gizzi and David Zabner

2 Problem Formulation

In the following, we describe our application domain and the tools available to
us for this research effort.

2.1 Domain

In this research, we explore the general (commercial, private and military) avia-
tion domain. Specifically, we use a scenario in which it is the goal of an intelligent
system (built from our RL agent) to fly the aircraft in a simple stable configura-
tion. Our work is broken up into two stages, where the first stage aims to show
that we were able to control the aircraft using high level commands, and the
second stage aims to show that we were able to use the control established in
stage 1 to successfully fly the aircraft in a stable configuration using RL meth-
ods. In classic control systems stable flight is accomplished through the use of a
carefully tuned PID, a system that uses Position, an Integral and a Derivative to
dampen controls to reach a goal state. Writing and tuning PID control systems
is, historically, where a large amount of the time is spent when designing vehicle
control systems. Much work has been done in replacing

2.2 Scenario

For all of trials, the RL agent flew a Cirrus Vision SF50 aircraft, which is a light
weight, 7 seat aircraft. The learning happened at the Palo Alto Airfield KPAO.

2.3 Tools

We will used the X-plane simulation environment, which has been used by many
researchers in the past [2] [4] [3] [1] (version 11). The reason why we chose this
environment is because it is a simulation that has been very widely used, and
is very widely know. On the website for XPlane, it is noted that the environ-
ment is realistic and robust enough to be considered viable for flight hours to
count toward pilot licenses (which certain contingencies). Although we chose
this environment, we built our system in a way that is agnostic of the simulation
environment, having consideration for future work. In our future work section,
we describe an extension to a system which runs on a rapid proto-typing simu-
lation environment located at NASA Langley Research Center in Hampton VA
(VISTAS simulator).

2.4 Theoretical Problem Formulation

In order to implement our system, it was important that we develop a domain
specific formulation of the RL problem, that maps to the fundamental RL struc-
tures presented in the Sutton and Barto textbook. As such, we present the
following formulations:

https://www.x-plane.com/

Title Suppressed Due to Excessive Length 3

State Space: We define our state space S as a set of states S1, S2, . . . Sn ∈ S as a
collection of values corresponding to the following: {X,Y, Z, vX, vY, vZ, airspeed,
theta, phi, psi, P,Q,R, groundSpeed}, all of which are described in the chart be-
low.

field field description
X latitude
Y longitude
Z altitude

vX velocity vector along x-axis
vY velocity vector along y-axis
vZ velocity vector along z-axis

airspeed true airspeed of the aircraft
theta pitch
phi roll
psi heading (or yaw)
P the roll rotation rates (relative to the flight)
Q the pitch rotation rates (relative to the flight)
R the yaw rotation rates (relative to the flight)

groundSpeed speed of aircraft relative to the ground

Action Space: We defined our action space as a set of actions in 4 dimensions
based on the actual controls available to a pilot. Specifically, each action is some
combination of two stick inputs {Latitude, Longitude}, a throttle input as a
percentage of max throttle and a rudder input.

Reward Function: The agent will receive a small negative reward for each
time-step and a large negative reward for “bad-orientations” and for going over
a g-limit and a large positive reward for matching, to within some delta, the
goal orientation and speed which will also end the episode. We don’t know a
lot about what a bad orientation really is so we will just assume that our plane
should never exceed a 60◦ angle in pitch or roll.

Goals: The overall goal of the agent is to gain full high level control of the
aircraft. Our goal for this initial work was to get the plane to fly flat. This
goal has led us to craft stability criteria, which uses the values coming in from
the cockpit data stream to check to see if the aircraft is flying flat. As such,
we examine 14 data fields of input from the simulator, crafting the following
stability criteria (which only employs 2 of the fields).

4 Evana Gizzi and David Zabner

condition reward description
|pitch| < 4 ∧ |roll| < 4 4 positive reward if the aircraft pitches less than

4 degrees and rolls less than 4 degrees
|pitch| < 8 ∧ |roll| < 8 2 positive reward if the aircraft pitches less than

8 degrees and rolls less than 8 degrees
|pitch| < 10 ∧ |roll| < 10 1 positive reward if the aircraft pitches less than

10 degrees and rolls less than 10 degrees
|pitch| > 10 -1 negative reward if the aircraft pitches more

than 10 degrees off the target pitch of 0 de-
grees

|roll| > 10 -1 negative reward if the aircraft rolls more than
10 degrees off the target roll of 0 degrees

|pitch| > 15 -1 negative reward if the aircraft pitches more
than 15 degrees off the target pitch of 0 de-
grees

|roll| > 15 -1 negative reward if the aircraft rolls more than
15 degrees off the target roll of 0 degrees

|pitch| > 30 -1 negative reward if the aircraft pitches more
than 30 degrees off the target pitch of 0 de-
grees

|roll| > 30 -1 negative reward if the aircraft rolls more than
30 degrees off the target roll of 0 degrees

|pitch| > 40 -2 negative reward if the aircraft pitches more
than 40 degrees off the target pitch of 0 de-
grees

|roll| > 40 -2 negative reward if the aircraft rolls more than
40 degrees off the target roll of 0 degrees

2.5 Learning Method & Feature Engineering

We implemented a simple Linear Approximation Q-Learning agent with Eli-
gibility Traces as described in “Reinforcement Learning: An Introduction” [5].
Additionally, all raw state information was normalized to be in the range of ±1.
Finally, in some tests we used extra “engineered” features arrived at by multi-
plying together state and action information (i.e. roll X latitudinal stick) in an
attempt to allow for better control.

3 Research Questions

The main research question that we want to tackle is understanding how RL
problems take form in real life applications, separate from the pedagogical ap-
plications that are often presented in text books and as a part of classwork.
Specifically within our domain, we chose to evaluate this question through an

Title Suppressed Due to Excessive Length 5

exploratory task which involves flying an aircraft in a flight simulation environ-
ment. Thus, we describe our research motivation in the context of our 3 project
aims/research questions.

1. Can we control an aircraft with high level commands?

The first goal is to show that using reinforcement learning, we can develop an
agent capable of carrying out specific high level commands in relation to chang-
ing the orientation and speed of the aircraft. These commands will consist of
combinations of changes in the pitch, roll, and yaw of the aircraft as well as the
airspeed. These commands will then serve as a basis for the next to sub-goals.
All of the actions taken by this agent will keep the plane in a safe (mostly up-
right) orientation, hopefully, be g-limited for ”customer comfort” although the
g-limiting is very much a secondary goal. The input to this agent will consist
of information about the orientation of the planes control surfaces, the current
pitch, roll, yaw, airspeed, and a g-force vector along with the distance from the
goal pitch, yaw, roll, and airspeed. The agents action space will be either to
figure out if we can give the planes ”directional/joystick” controls or if we need
to independently control the throttle and each of the control surfaces.

2. Can we use high level commands to fly the aircraft in a stable
configuration?

The second goal is to use the controls established in part 1 to fly the aircraft
on a fly trajectory. The only values that we will be concerning ourselves with in
engineering toward this goal is the pitch and roll of the aircraft. The heading will
not be restricted to a certain direction. Likewise, we will not consider aircraft
altitude or airspeed in this goal. It is our hope that in future work, we may fix
altitude and observe how output would change with this added restriction.

3. How can simple feature engineering improve our agents ability to
accomplish our previous goals?

The goal here is to gain an understanding of both the complexity and types of
features required to get a simple, linear approximation agent, to exert correct
control in a complex space. Related to this we will be asking whether multiple
similarly engineered features will help overall performance or not.

4 Results and Discussion

We evaluate the performance of our system overall, along with performance
bench marking on a more granular level. We first explored the ideal alpha to
maximize the learning for our agent. The results indicated that the ideal value
was 0.01 as can be seen below in figure 1. Similar work was done to choose ideal
values for epsilon and lambda.

6 Evana Gizzi and David Zabner

Fig. 1. This graph shows average reward curves over an episode at 5 different alphas.
We found that 0.01 was best for training this agent.

Fig. 2. The effect of additional “engineered” features on performance spanning multiple
episodes

Title Suppressed Due to Excessive Length 7

Fig. 3. The effect of custom features on per step return within episodes

The second question we explored was the effectiveness of our “engineered fea-
tures”. These features were created by combining information about the current
pitch and roll with the relevant latitudinal and longitudinal actions to correct
them to 0. In short, we found that they had very little effect if any at all as can
be seen in figures 2 and 3. Fascinatingly, in point of fact, we were totally unable
to find a feature set that was able to consistently generate positive rewards.
Overall, what we found was that at best, the agent would learn to receive a rel-
atively small negative reward by flying at a slight tilt, in circles, forever without
crashing. Naturally, this was considerably better than crashing but ultimately
rather unsatisfying.

5 Conclusion and Future Work

It is clear from our results so far that much more work can be done to study the
effectiveness of this type of RL in the complex flight space. While it is definitely
possible that linear approximation is insufficiently powerful to provide exciting
results, it seems to us that this should not be the case. Therefore, our imme-
diate future work should consist of continuing to explore different methods of
engineering features and improving our linear q-learner.
In future work, we hope to investigate how the agent performs with additional
consideration of other aircraft in the airfield, and how this effects overall safety
of the airfield traffic. In order to do so, we will integrate data from an intelligent

8 Evana Gizzi and David Zabner

traffic data management system to see how the input effects the intelligent agent
with its overall success of flying a stable configuration, and if it optimizes overall
safety while doing so. The Traffic Data Manager (TDM) system was developed
under the advise of our coauthor, Vincent Houston, at NASA Langley Research
Center, as a supervised learning system which is able to determine whether air-
craft’s in an airfield are relevant enough to a flyer to be considered dangerous
to a real-time trajectory. The data used to train the learning algorithm was
human labelled from subject matter experts, namely, commercial aviation pi-
lots. TDM has been benchmarked for its performance against labelled datasets
through comparison and validation studies, but has yet to be observed in an live,
online learning setting. Thus, it has never been observed in a human-in-the-loop
setting, let alone a fully autonomous environment. It is our goal to observe how
TDM enhances autonomous performance, and also to observe how the safety
measure of our RL system is effected by the integration of this data.

References

1. Haitham Baomar and Peter J. Bentley. An intelligent autopilot system that learns
piloting skills from human pilots by imitation. In 2016 International Conference on
Unmanned Aircraft Systems (ICUAS), 2016. This paper covers the building of a
fully autonomous autopilot system. It used a very short learning period combined
with a very small amount of apprenticeship learning to get very impressive results.

2. Haitham Baomar and Peter J. Bentley. Autonomous navigation and landing of
large jets using artificial neural networks and learning by imitation, 2017. This
paper covers the building of a fully autonomous autopilot system for landing large
aircraft. It used a very short learning period combined with a very small amount of
apprenticeship learning to get very impressive results.

3. Oren Hazi. Final approach an automated landing system for the x-plane flight
simulator. This unpublished paper explores the problem of landing a plane in the
X-Plane flight simulator with RL and Imitation Learning.

4. Eduardo F. Morales and Claude Sammut. Learning to fly by combining reinforce-
ment learning with behavioural cloning. In Proceedings of the Twenty-first Inter-
national Conference on Machine Learning, ICML ’04, pages 76–, New York, NY,
USA, 2004. ACM. This paper uses “Relational Representations” of the state action
space for approximating the state action space in flying an airplane.

5. Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, 2017.

	Flying Controlled Trajectories using Linear Approximation Reinforcement Learning

