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1 Project Overview

Embodied Artificial Intelligent Agents are the next hyper-revolution in machine
evolution, that may very well hold the key to the future of humanity. With
unprecedented demand for advanced intelligent complex automation, mobile
robotics, autonomous intelligent vehicles and applied artificial intelligence ap-
plications, Machine Learning and especially Reinforcement Learning is the new
adventurous frontier in the AI gold rush. Why is Reinforcement Learning of
such critical importance? Because it mimics and mirrors the natural learning
process of all animate entities’ by interacting and exploring their environments,
receiving feedback, learning and accumulating knowledge over a period of time.

No where is the aforementioned aphorism more befitting than in the realm
of Deep Reinforcement Learning (DRL) Neural Networks. DRLs’ are target /
goal-oriented algorithms, which self-learn to attain a complex objective (goal) or
maximize particular dimension over several experience cycles.[1]: As our Final
Project for Reinforcement Learning coursework we aspire to design, develop and
implement a Deep Reinforcement Learning Neural Network which we call as
DARK – Deep Asynchronous Reinforcement Knowledge – and augment DARK
to simulate the training and behaviour of a realistic robotic arm model and
require this embodied intelligent agent to solve realistic real-world approximate
tasks. We have three precise aims for the project.

• DARK: Design and develop a Deep Reinforcement Knowledge Neural
Network that can accomplish complex realistic real-world tasks such as
object localization, object manipulation and object mobilization.

• SIMULATION: Design a simulation of high precision sparse reward
DARK embodied agent for a high DOF robotic arm to accomplish the
aforementioned real-world tasks.

• KNOWLEDGE TRANSFER: Time permitting, we want to cross train
the embodied agent for different real-world tasks utilizing learned model
knowledge transfer.
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To achieve the above mentioned goals we implement a simulation of a high-
DOF robotic arm to learn one or multiple of the following real-world tasks that
include pushing, sliding and pick place with a Fetch robotic arm:

Target Object Localization (TOL): Move the robotic arm’s end-
effector to the desired goal position i.e. the object.
Target Object Shove (TOS): Move a object by pushing it until it
reaches a desired goal position
Target Object Pick and Place (TOP): Pick up a object from the
platform using its gripper and move it to a desired goal position.

All tasks have sparse binary rewards and follow a Deep Reinforcement Learn-
ing (DRL) framework. In all the tasks, the goal is 3-dimensional and describes
the desired position of the object or the end-effector. Actions are 4-dimensional:
3 dimensions specify the desired gripper movement in Cartesian coordinates and
the last dimension controls opening and closing of the gripper. We have selected
the combination of four core components in order to implement the project:

Open AI Gym: Advanced Reinforcement Learning Environment.
Mujoco Simulator: Physics engine for simulation.
Reach Robotic Arm: Model of the Reach 7 DOF robotic arm.
TensorFlow: Deep learning framework.

2 Background and Related Work

Learning Synergies between Pushing and Grasping with Self-supervised Deep
Reinforcement Learning [1]. This is the seminal paper that presents the impor-
tance of complex synergies between non-prehensile (e.g. pushing) and prehensile
(e.g. grasping) actions: pushing can help rearrange cluttered objects to make
space for arms and fingers; likewise, grasping can help displace objects to make
pushing movements more precise and collision-free. This paper was our primary
source for inspiration.

Multi-Goal Reinforcement Learning: Challenging Robotics Environments
and Request for Research [2] The technically paper illustrates in detail the
technical specifications of the Open AI environment and provides reference ex-
ample of how to start with basic projects on which other advanced projects can
be build upon.

3D Simulation for Robot Arm Control with Deep Q-Learning[3] The paper
presents an approach which uses 3D simulations to train a 7-DOF robotic arm
in a control task without any prior knowledge. The controller accepts images
of the environment as its only input, and outputs motor actions for the task of
locating and grasping a cube, over a range of initial configurations.

Robotic Arm Control and Task Training through Deep Reinforcement Learning[4]
The paper presents an important detailed and extensive comparison of the Trust
Region Policy Optimization and Deep Q-Network with Normalized Advantage
Functions with respect to other state of the art algorithms, namely Deep De-
terministic Policy Gradient and Vanilla Policy Gradient.
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Towards Vision-Based Deep Reinforcement Learning for Robotic Motion
Control [5] The Computer Vision (Machine) based paper proposes a method
for deep reinforcement learning and develop a system for learning target reach-
ing with a three-joint robot manipulator using external visual observation. A
Deep Q Network (DQN) was demonstrated to perform target reaching after
training in simulation.

Deep Reinforcement Learning for Robotic Manipulation-The state of the
art[6] The primary focus of this work is to enumerate the various approaches and
algorithms that center around application of reinforcement learning in robotic
ma- nipulation tasks.

Evaluating Transfer Learning Methods for Robot Control Policies[7] This
paper has two important components it compares and contrasts reinforcement
and supervised learning systems and evaluates three transfer learning techniques
in a simple two dimensional environment. The project finds that within the
2D environment a simple reinforcement model performs a better than a more
complex supervised one and that Progressive networks are the most powerful of
the three transfer learning methods.

3 Problem Formulation and Technical Approach

The agent interacts with a simulated environment E in a sequence of actions,
observations and rewards. At any given time step, the agent chooses an ac-
tion at to perform in the environment from the set of valid actions, A =
{a1, a2 a3 ... , aK}. The action is executed in the simulated environment
E and the internal state of the environment changes and a reward is returned.
The agent receives a set of observations and a reward rt form the simulated
environment E.

The main goal of the agent is to interact with the simulated environment
E by choosing actions in a way that maximizes future rewards. The return is
denoted by

Rt =

T∑
i=t

γ(i−t)ri

where T is the time-step at which the interaction terminates and γ is a discount
factor for future rewards. The optimal action-value function Q∗(s, a) is defined
to maximum expected return achieved by following any policy after experiencing
a sequence s and executing some action a,

Q∗(s, a) = maxπE[Rt|st = s, at = a, π]

where π is a policy mapping sequences to actions.
The optimal action-value function maximizes the expected value r+γQ∗(s′, a′),

using the optimal value Q∗(s′, a′) of the sequence s′ at the next time-step for
all possible actions a′.

Q∗(s, a) = Es′∼E [r + γmax
a

Q∗(s′, a′)|s, a]
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To estimate the action-value function, we will use non-linear function ap-
proximator, deep Q-network with weights θ. Deep Q-network is trained by
optimizing the loss function Li(θi) that changes at each iteration i. Some com-
monly use loss functions are root mean square error and cross entropy. We will
conduct experiments to figure out the best possible loss functions that optimizes
the deep Q-network. We will optimize the loss functions by gradient descent as
mentioned in [8].

4 Evaluation and Expected Outcomes

We will use two metrics to evaluate the performance of the agent. The first
metric is the total reward collected by the agent in an episode averaged over
a number of episodes computed during training. We expect to see consistent
increase in the reward while training period. The second metric is the estimated
Q value by the policy’s action-value function, which informs that how much
discounted reward the agent can achieve by following its policy for a given state
during training period. Similar to the first metric, we expect the Q value to
grow consistently while training period.
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