
Better Gaming: Policy Control with Reward

Approximation

Dan Pechi, Jeremy Shih, Rui Sun

1 Project Overview

In this project, we will teach an agent to not only generate the optimal policy
of a game, but also learn the rewards itself in the first place.

Almost all kinds of games have a reward system of some sort. Whether the
player is a human or an intelligent agent, the actions executed are optimal only
when the reward system is taken into considerations. While most game solver
projects provide the full gaming environment to the agent, we aim to enable the
agent to learn the rewards itself by observing demonstrations by human players.
Our preliminary goals are as follows:

• Aim 1: Construct a problem architecture of a GridWorld with puddles.
This includes the model of the MDP process and the reward system of the
of the GridWorld.

• Aim 2: Construct a inverse reinforcement learning (IRL) agent that ap-
proximates rewards through observing demonstrations. This will be done
through Maximum Likelihood Inverse Reinforcement Learning

• Aim 3: Construct a reinforcement learning (RL) agent that solves the
game with the rewards learned.

• Aim 4: Compare and contrast the ground-truth reward system and the
approximated reward system.

Further experimentation include:

• Aim 5: Construct a IRL agent and apply it to Ms. PacMan to approximate
a reward function. Then, apply a RL agent to Ms. PacMan using the
approximate reward function.

• Aim 6: Construct a RL agent to Ms. PacMan that learns from the ground-
truth reward function.

• Aim 7: Compare the scores of using the approximate reward function to
the ground-truth reward function.

Thus, we will aim to provide empirical evidence for efficacy of an inverse re-
inforcement learning agent through a simple GridWorld setting as a benchmark
and then a more complex setting of Ms.PacMan.

1



2 Background and Related Work

Inverse reinforcement learning (IRL) is essentially a reward-estimation problem.
Given a Markov Decision Process (MDP) without a reward function and a set
of actions, find the reward function that make the set of actions optimal in
the given MDP. A relevant topic is Apprenticeship Learning (AL) in which an
expert is assumed to be acting to maximize a reward function and have an agent
learn a policy based off of the experts actions. If the agent’s goal is to learn the
reward function, the problem becomes an IRL problem[1].

A reward function is assumed to parameterized by a vector of weights θ,
applied to a feature vector for each state-action pair given by the MDP. If each
state-action pair is defined as φ(s, a), then a reward function can be defined as
below:

Rθ(s, a) = θTφ(s, a)

Thus, in an AL problem, the expert’s reward weights can be defined as θE .
In AL, the agent, without knowledge of θE will try to learn how to behave in
a way that maximizes the discounted sum of future rewards from RθE . In IRL,
the agent will try to approximate RθE with its own weights, θA.

Several IRL/AL algorithms have been presented and differ not only in their
algorithm but also in the objective function they optimize. These include match-
ing the policy of the expert[3], trying to outperform the expert[4] and more.
Following, we will define a problem space and will use Maximum Likelihood
Inverse Reinforcement Learning (MLIRL) [1] to solve them.

3 Problem Formulation and Technical Approach

In this section, we will briefly explain the mechanism of the Maximum likeli-
hood Inverse Reinforcement Learning (MLIRL), and lay out the settings of the
puddle mini-game and the PacMan gaming environments.

MLIRL Agent

MLIRL will be the backbone of the IRL agent. Like Bayesian IRL, it adopts
a probability model that uses θA to create a value function and then assumes
the expert randomizes at the level of individual action choices. It also seeks a
maximum likelihood model.

The process by which a hypothesized θA induces a probability distribution
over action choices and thereby assigns a likelihood to the trajectories in D. First,
θA provides the rewards from which discounted expected values are derived:

QθA(s, a) = θTAφ(s, a) + γ
∑
s′

T (s, a, s′)
⊗

QθA(s′, a′)

The “max” in the standard Bellman equation is replaced with an operator that
blends values via Boltzmann exploration [2]. This approach makes the likelihood
(infinitely) differentiable.

2



One of the challenges of IRL is that, given an expert policy, there are an
infinite number of reward functions for which that policy is optimal in the
given MDP. Like several other IRL approaches, MLIRL addresses this issue
by searching for a solution that not only explains why the observed behavior is
optimal, but also by explaining why the other possible behaviors are suboptimal.
In particular, by striving to assign high probability to the observed behavior, it
implicitly assigns low probability to unobserved behavior.

Algorithm 1 Maximum Likelihood IRL

2

1: procedure Choose random set of reward weights θ1
2: for t = 1 to M do
3: Compute Qθt,πθt
4: L =

∑
i wi

∑
(s,a)∈ξ log(πθt(s, a)).

5: θt+1←θt + αt 5 L

6: Output: Return θA = θM

Environments

Puddle Mini-game
As a benchmark, besides the start state and an goal state, other states in

the puddle mini-game environment would either have a positive reward or a
negative reward. The specific underlying settings are as follows:

• State space: A 5x5 gridworld containing puddle and clean grids

• Action space: {left, right, up, down, hold}

• Reward function: {end state:+20, start state:+15, paths:+15, obstacles:-
10}

PacMan Game
We would use the Ms.PacMan environment and implementation available

from the course. However, because of the complexity of the game, we cannot
have a pre-defined reward space for the Ms.PacMan environment. We would
leave the ”ground-truth” reward function blank and let the IRL agent approx-
imate the best reward function through Apprenticeship learning. The problem
settings for the Ms.PacMan are as follows:

• State space: All locations that Ms.PacMan can occupy on the game board

• Action space: {left, right, up, down, hold}

• Reward function: An approximation function that maps each state-action
pair in the game to a real number

3



4 Evaluation and Expected Outcomes

Upon deriving the IRL agent’s reward function, this approximate reward func-
tion will be compared to that of the ground truth reward function of the RL
agent whose actions were observed by the IRL agent. In this sense, the agent
will be evaluated on how closely they approximated the reward function. In the
case of the GridWorld example, this will take the form of the mean squared error
between the GridWorld and the approximations of the two agents to the val-
ues assigned to the GridWorld environment. These errors will be tested across
multiple experiments.

In the non-tabular case of Ms. PacMan, this is not feasible. Thus, a differ-
ent metric for the IRL algorithm’s performance will be used. The approximate
reward function developed by the agent will still be compared to that of the RL
agent whose actions were observed by the IRL agent. In this case however, an-
other RL agent will be instantiated that has the approximate reward function of
the IRL agent as its reward function. To ensure that this reward function is not
updated, any gamma values will be set to 0 so that there is no error correction
by the agent. This way the efficacy of the reward function approximated by
the IRL algorithm alone can be compared to the reward function of the ground
truth RL agent, the gamma value of which will also be set to 0 come testing
time. This testing time will be based off of some convergence observed in the
reward function approximated by the IRL agent. These two agents, one with
the approximate reward function devised by the IRL agent, and the other with
the reward function of the agent the IRL agent was observing will be pitted
against each other in a Ms. PacMan game. The agents’ scores at the end of the
game will then be compared across multiple experiments.

In both of these experiments, it is expected that the RL agent will fare
better than the IRL agent. Because the IRL agent is basing its decisions off of
the behavior of the RL agent, the IRL agent has less information than the RL
agent. At best, the IRL agent can replicate the RL agent’s reward function, and
at worst, it can derive a reward function that is sub-optimal to that derived by
its RL counterpart. It is expected that the reward function can be replicated
in the easier case of GridWorld, but it will likely be much harder to replicate
the reward function in Ms. PacMan. There remains the possibility than in
attempting to approximate the RL agent’s sub-optimal reward function that
the approximation unintentionally proves more robust to the environment of
Ms. PacMan, but this is unlikely.

References

[1] Monica Babes-Vroman, Vukosi Marivate, Kaushik Subramanian, and
Michael Littman. Apprenticeship learning about multiple intentions. ICML,
2011.

[2] George H. John. When the best move isn’t optimal: Q-learning with explo-

4



ration. Proceedings of the Twelfth National Conference on Artificial Intelli-
gence, 1994.

[3] Gergely Neu and Csaba Szepesvari. Apprenticeship learning using inverse
reinforcement learning and gradient methods. Proceedings of the Conference
of Uncertainty in Artificial Intelligence, 2007.

[4] Umar Syed, Michael Bowling, and Robert E. Schapire. Apprenticeship learn-
ing using linear programming. Proceedings of the Conference of Uncertainty
in Artificial Intelligence, 2008.

5


