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1 Project Overview

For this project, we are going to implement a reinforcement learning (RL) agent with Deep Q
Network and train the agent to play the classic 1993 First-Person Shooting game: "DOOM".

Figure 1: A Snapshot from the DOOM Game

To make the project manageable, we will not include the entire DOOM game; rather, we adopt
a simple version where the environment is contained within a rectangular room, in which our agent
and the monster take opposite sides of the room. The action space of the agent is limited to three
actions: move left, move right, and shoot.

For each episode, a monster is spawned randomly somewhere along the opposite wall. The
agent will repeatedly choose among the three available actions until either the monster is killed,
or the episode reaches timeout.

Our main goal for this project is to successfully train the agent to identify the enemy, kill the
enemy before time is up and as efficient as possible. Our secondary goal is to demonstrate the idea
of Experience Replay, which is a technique often used with Deep Q Network to avoid forgetting
previous experiences and reduce correlations between experiences.

After we have implemented the gaming agent, we intend to evaluate its performance based on
two criteria: (1) the total reward the agent collects in an episode or game averaged over a number
of games.[1], and (2) the policyâs estimated action-value function Q. To validate our evaluation,
we will also be looking at three empirical evidence: (1) the percentage of the episode in which our
agent successfully shoots the monster, (2) number of total shots fired to the number of monsters
killed, and (3) the average time from the monster spawned to killed by our agent.
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2 Background and Related Work

Q-Learning is an off-policy TD control algorithm and one of the early breakthroughs in reinforce-
ment learning. The goal of Q-Learning is to learn a policy, which tells an agent what action to
take under what circumstances. For any finite Markov decision process (FMDP), Q-learning finds
a policy that is optimal in the sense that it maximizes the expected value of the total reward
over all successive steps, starting from the current state. It has advantages such as that it does
not require a model of the environment and can handle problems with stochastic transitions and
rewards, without requiring adaptations.[4]

Figure 2: Q-learning Algorithm

However, as the size of state space becomes larger, producing and updating Q-table can be
very ineffective. Therefore, we introduce a new idea called Deep Q-Learning (DQN). Instead
of using a Q-table, we implement a Neural Network that takes a state and approximates Q-values
for each action based on that state.

The concept of Deep Q-Learning is purposed in a 2013 paper by DeepMind in a similar research
project to use Deep Reinforcement Learning to play the Atari game. [2] In a 2015 Nature paper sub-
mitted by DeepMind, to derive efficient representations of the environment from high-dimensional
sensory inputs, and use these to generalize past experience to new situations, researchers at Deep-
Mind use recent advances in training deep neural networks to develop a novel artificial agent,
termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory
inputs using end-to-end reinforcement learning.[3]

Figure 3: Illustration of A Convolutional Neural Network Approximating Q-Value of Given States

A similar research article is the paper published by DeepMind in 2013 that uses Deep Rein-
forcement Learning to play the Atari game - Playing atari with deep reinforcement learning.
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3 Problem Formulation and Technical Approach

As mentioned in the previous section, our model is restricted to a simple version of the game
DOOM. The action space is composed of three distinct actions: move left, move right, and shoot.
The reward is given as follows:

• When the monster is killed, the agent receives +101 points

• Each time the agent pulls the trigger but misses the monster, the agent receives -5 points

• At the end of each episode, regardless of how it ended (either with the monster dead or the
episode reached timeout, the agent receives -1 points.

The reward is designed with two specific goals: The reward of killing the monster is significantly
greater than the penalty given to the agent, so it helps the agent learn the optimal policy of playing
this game; The penalty of -1 is given at the end of each episode is to tell the agent not to choose
the policy with which no shooting ever happens, just to avoid being penalized for missing the
target. Once we have a working version of the Deep Q Network agent, additional rewards can be
introduced. For example, for every second the monster is alive, the agent receives -1 point, and
the agent would learn to minimize the killing time, resulting in a more effect agent.

The core of our agent’s learning algorithm is a Deep Q Neural Network that takes a stack of
four frames at each state as input, and passes the stacked frames (after some image processing)
through the layers of the network and returns a vector of Q values for each of the three actions at
that given state.

The equation we use for updating the Q value is the Bellman equation:

Figure 4: Equation for updating Q values

Since we are using Deep Q Network, we want to update the Neural Network’s weights to reduce
error.The error is calculated by taking the difference between our Q-target (maximum possible
value from the next state) and Q-value (our current prediction of the Q-value). The equation is as
follows:

Figure 5: Equation for updating Network Weights

After we set up our Deep Q Network, we will run 500 hundred episodes and update the model
every 5 episode. The agent, once completed its training, will be evaluated for its performance. The
evaluation metric will be discussed in the following section.
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4 Evaluation and Expected Outcomes

In reinforcement learning, the evaluation is focus on the total reward the agent collects in an episode
or game averaged over a number of games.[1] Based on our evaluation metric, we periodically
compute total reward of each episode during training. Another, more stable, metric is the policy’s
estimated action-value function Q, which provides an estimate of how much discounted reward the
agent can obtain by following its policy from any given state. We collect a fixed set of states by
running a random policy before training starts and track the average of the maximum predicted
Q for these states.

We will also try to evaluate our algorithm by comparing with the best performing methods
from RL literature, such as Sarsa and Contingency. Since the game Doom has too many state,
we are not sure about whether we have enough computational power to run traditional tabular
methods. But comparing our method to traditional reinforcement agent is still on our plan.

Besides reinforcement agents, we also plan to compare the results gained by our DQL agent
with human agent, which is measured by the median reward achieved after around two hours of
playing the game Doom.

We expect that our DQN agent would outperform both traditional reinforcement agents as well
as human agents in the game, based both on empirical finding and total reward gained per episode.
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