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1 Project Overview

Legged animals use sensory feedback to inhibit or extenuate certain gait charac-
teristics online, allowing them to subconsciously navigate extreme terrain with
ease [2, 8]. Inspired by nature, legged robots can similarly traverse complex
environments inaccessible to other systems, such as wheeled robots. However,
two major challenges are presented: 1) the coordination of the many degrees-of-
freedom (DOF) often present on legged systems to produce locomotion, and 2)
determining suitable higher-level gait parameters for a given environment. In
the context of robotics, central pattern generators [3] (CPG) aid in solving the
first problem. Often modelled as a set of coupled oscillators [7], CPGs allow for
the generation of parameterized gaits and provide smooth transitions when gait
parameters are changed. The limit cycle of the CPG determines the step shape,
and other numerical parameters control specific aspects (e.g., step length, step
height, step speed).

When the path of the robot and surrounding environment is known a priori,
it is sometimes possible to set static parameter values (e.g., set a step height
larger than the highest obstacle) or encode simple rules [9]. First, such methods
are not suitable for general robot deployment, if the environment is not well-
known. Second, such methods are purely reactive; a robot may locomote to a
position in which it cannot appropriately react. Finally, these methods encode
a significant amount of domain knowledge – which may or may not be optimal.

We are interested in ensuring stable, forward locomotion of a legged system
on a variety of terrains – from flat ground to a flight of stairs. We will employ
a learning-based approach to adapt gait parameters online based on sensory
feedback. Specifically, we aim to use IMU feedback to determine 1) the slope
of the terrain in the direction of locomotion and 2) stability of locomotion (by
looking at changes in IMU feedback). By adapting gait characteristics such as
step speed, step length, and center of mass position based on this feedback,
we will enable a legged system to more naturally navigate obstacles and ensure
stable forward locomotion. We aim to apply a curriculum learning approach
to facilitate learning – increasing the complexity of the locomotive challenge
as learning progresses. Specifically, the terrains in our curriculum will have a
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variety of obstacles and slopes. We aim to develop and evaluate our curriculum
by performing a number experiments in a Gazebo simulation environment.

2 Background and Related Work

In this section, we present background information on curriculum learning before
detailing previous works on learning-based, full-robot control.

2.1 Transfer and Curriculum Learning

In reinforcement learning problems, we aim to reduce the amount of resources
used in the learning process while maximizing the reward that the agent ob-
tains. For complex tasks, transfer learning can be used to reduce the resource
requirements for a learning agent. The idea behind transfer learning [11] is
that what has been learned from experience for one task can be reused to learn
another, but different, task. Transfer learning has been successful in reducing
learning time and increasing reward achieved for complex tasks [12] compared
to learning from scratch.

We are concerned with Curriculum Learning, a flavor of transfer learning
where an agent learns from examples presented to it in a particular order, usu-
ally in order of increasing complexity. It has been shown that curriculum learn-
ing provides significant improvements in machine learning problems in terms of
better generalization, faster convergence speed, and at finding better local min-
ima [1]. In reinforcement learning, curriculum learning can be used to develop
sub-tasks as components of a multi-step curriculum with the goal of obtaining
better performance in a complex task [5].

2.2 Full-robot Control via RL

The problem of using reinforcement learning to achieve full-body control of a
robot has been explored in the past, using a variety of learning techniques. In
[4], Kohl and Stone achieved full-robot control of a quadrupedal robot using
policy gradient reinforcement learning. Their agent learned to search for gait
parameters for locomotion on level, planar terrain that maximize the walking
speed of the robot. Their approach significantly outperforms a variety of existing
hand-coded and learned solutions. Reinforcement learning has also been used to
achieve forward locomotion by learning motion patterns for different segments
of a caterpillar robot [13].

Peng et al. [6] used Deep Reinforcement Learning to achieve full-robot con-
trol for terrain-adaptive locomotion. They used a mixture of actor-critic ex-
perts to achieve locomotion in multiple planar bio-inspired characters and ter-
rain classes: gaps, steps, walls, and slopes. Specifically, their approach directly
learns a policy for assigning joint angles and forces to simulated actors.

Sartoretti et al. [10] use an aynchronous advantage actor-critic (A3C) algo-
rithm to learn a decentralized control approach for the locomotion of a modular,
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articulated snake. Specifically, using torque feedback, they to learn decentral-
ized control policies that adapt shape parameters for different windows (seg-
ments of the snake). Their learned controller greatly outperforms a shape-based
compliant control approach for forward progression in confined environments.

3 Problem Formulation and Technical Approach

We first define the learning problem precisely and present our approach before
detailing our experimental validation procedure.

3.1 Learning Problem

In this project, we aim to learn a policy for adapting specific high-level gait
parameters online based on IMU feedback for the stable, forward locomotion of
a legged robot on unstructured terrain. In the context of this project, we intend
to update desired step-length, step-speed, and center-of-mass position (along
one dimension – in the direction of locomotion), considering updates to these
parameters as discrete positive, negative, or zero increments. Thus, as stated
above, we have twenty-seven possible actions: three possible gait parameters to
adapt with three possible discrete increments to apply.

Formulating the learning problem will have two major challenges: 1) se-
lecting features for state-space representation, and 2) designing an appropriate
reward structure. As a first approach, we intend to define the current state
such that it encompasses both the current values of the adapted gait parame-
ters and additional feedback from the IMU. Specifically, we intend to define the
state with the following features: step-speed, step-length, and center-of-mass
position for locomotion; and body-roll angle and body-pitch angle for stability.
Additionally, we anticipate that a suitable reward structure will involve pro-
viding the agent positive reward for forward motion and a negative reward for
lack of body stability (this may involve taking smaller steps when the terrain is
rougher).

3.2 Learning Approach

We cannot determine the stability of the locomotion based on the IMU feed-
back at any single timestep, since a large roll or pitch body angle could be
observed during locomotion on a slope (even when the robot is stable). In-
stead, we can determine the stability of the robot by examining the change in
IMU feedback over several iterations; gradual changes over time are indicative
of terrain change, whereas rapid changes may indicate foot slippage or tipping.
To capture the temporal changes in IMU feedback, we intend to use a Deep
Recurrent Q-Network to learn a state-action mapping described above.

To facilitate learning, we intend to develop a learning curriculum. We will
begin by training on planar, level ground; here we expect the agent to learn
how to adapt its step length and speed to achieve reasonable stability. Next,
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we can begin to train on planar slopes; here we expect the agent to learn how
to adapt its center-of-mass position on top of regulating step length and step
speed. Finally, we can attempt trials on unstructured terrain – the ultimate
goal. By first presenting more simple locomotive challenges, we aim to direct
the agent to discover what types of environments (defined by IMU feedback)
should induce what parameter change. We believe that partitioning the problem
in this manner will allow for increased learning speeds.

3.3 Experimental Setup

For this project, we will perform experiments in a Gazebo simulation environ-
ment. The legged system that we will use for experimental validation is an
18-DOF hexapod robot. Each of the robot’s 18 DOFs has encoders for position
and torque measurements as well as a 3-axis gyroscope and 3-axis accelerometer
for orientation in the world.

We will use ROS (Robot Operating System) as the communication infras-
tructure for the system. The learning agent communicates the learned gait pa-
rameters to a mid-level controller, which in turn translates the gait parameters
to joint angles for the robot. These angles are then published to the Gazebo
simulation, which directly uses them to simulate the movement of the robot.
The new pose of the robot is then obtained from the Gazebo simulation and
passed as feedback back to the learning agent.

In order to develop and validate a curriculum for the agent, we will generate
different scenarios in Gazebo with increasingly levels of complexity in terms of
obstacles and terrain. Learning in a simulation environment allows for faster
learning, and avoids wear and tear of the hardware.

4 Evaluation and Expected Outcomes

To evaluate the performance of our gait-parameter control policy learned via
a curriculum, we will perform two other types of simulated experiments: 1)
learning directly from scratch on the hardest environment, and 2) with static
gait parameters (no learning involved). This project will be successful if a
learned policy out performs static parameter choices, and especially successful if
a curriculum learning approach helps significantly reduce learning times or leads
to a more-effective policy. We will determine performance using two metrics; we
are concerned with both the learning speed, which is how quickly we converge
to a policy, and the effectiveness of the policy, which will be measured based on
cumulative reward.

We expect that the curriculum learning approach will greatly increase learn-
ing speed. We believe that slowly increasing the difficulty of locomotive chal-
lenges will guide the agent to learn how to adapt gait parameters one-by-one
for both stability and forward motion. With regard to the effectiveness of the
learned policy, we expect that for a fixed number of episodes, the policy learned
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by the curriculum approach will outperform a policy learned directly on steep,
unstructured terrain.

5 Extensions

Future experiments could implement the final simulated approach using the
robot’s on-board IMUs. Additionally, future experiments could augment on-
board IMU sensing (e.g., with lidar) with additional feedback on the environ-
ment’s structure, necessary for anticipatory control. Doing so would allow the
robot to both react to its environment, and also anticipate future parameter
changes (e.g., an increase in step height to navigate a large obstacle). Antic-
ipatory control is necessary to ensure that the robot avoids locomoting into a
position/situation where it is unable to react.

6 Permissions

We have permission from Professor Howie Choset to use the “Snake Monster”
Gazebo simulation environment for this project, and have proposed robot ex-
periments if the simulated results appear promising.
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