
Finishing Sentences

Andrew Savage and Bhushan Suwal

1 Project Overview

Many of the technologies that exist in everyday life use techniques to assist
in sentence creation: messenger applications often have suggestions for the
next word to use, Gmail has both automatic response suggestions and auto-
complete for email writing, and Google search has plenty of suggestions for
queries when you begin typing. These are only a few examples of a field of very
many—sentence prediction is clearly a large area of work.

Our project will take an approach to the work of sentence completion with
natural language processing by looking at sentence completion under certain
contexts.

Partial sentence completion is certainly a hard problem alone. Partial sen-
tences can vary widely (of course) and suggest very different kinds of completions
based on itself. Some partial sentences can have a huge number of possibilities
for completion (“This is a...”) while some have very few possibilities (“Hi, my
name is...”). This makes the process for completing a sentence very inconsistent.

Currently, most of the work done with sentence completion is in syntax
formation. The organization of words in a sentence can be hard due to the fact
that in different sentences words can be organized in very different ways.

Adding on context to the problem of sentence completion drastically narrows
down the space of reasonable possibilities for the end of the sentence. Taking the
previous open ended example of “This is a...” we narrow the range of feasible
possibilities if we instead have two sentences, the first providing context for the
second: “The weather is really lovely! This is a...” gives the implication that
the second sentence should conclude something about the weather, as in “This
is a beautiful day.”

• Aim 1: Use partial sentences to attain complete sentences that are at least
decently syntactically correct.

• Aim 2: Given a context with the partial sentence, attain a complete sen-
tence which fits under that context.

2 Background and Related Work

There has been significant work done on the topic of sentence completion under
a certain context, which Google’s blog [3] explains nicely.

1



Because we also use neural networks in our example (even though the actual
implementation is built in) we need to do some feature selection. Sutton and
Barto [2] give a description of neural networks, and we have another source for
feature selection and tuning.

3 Problem Formulation and Technical Approach

Given a partial sentence, learning how to pick the next word in the context
of reinforcement learning can be a hard problem to formulate: the previous
sequence of words should of course give some information as to what the state
of the agent is in, but it is not clear how to represent that state. Similarly, how do
we define how “good” a complete sentence is? A sentence may be grammatically
correct but completely nonsensical, as in often the case with natural language
processing applications. So how do we reward the agent?

Word vectors appear to be one solution to these problems. Word vectors are
a way of quantifying words: they keep track of the syntax of the word within a
sentence, to some (variable) degree. More specifically, for each word in a piece
of text, the vectors tracks some number of previous and some number of future
words within a sentence. The word vectors track when each word appears and
does not appear within a given specified syntax, tracking which syntaxes are
usual for that word and which are unusual or do not appear at all. It is also
common to perform principal component analysis on the word vectors and prune
the resulting space based on the steps between eigenvalues produced, so one can
operate in a smaller vector space (generally by an order of magnitude) than one
would otherwise.

We will use some combination of word vectors from the context clause and
the partial previous sentence to form a point in vector space (testing different
functions to combine the word vectors to see what works the best). We will also
pull sentences from some English sentence database to incorporate a reward
function: this reward will be determined by the distance that the completed
sentence produced by the agent has from its nearest neighbor in the existing
word space consisting of sentences from the database, that is the closer the
agent’s produced sentence to the sentence in the word space, the higher its
score. We will also use context as a reward metric: if the nearest neighbor to
the agent’s sentence has a similar context to the context given to the agent, it
will result in a higher reward.

Actions are simpler—the agent just needs to pick which word will be next.
This will be done by feeding the vector consisting of the context and the existing
partial sentence into a recurrent neural network, likely as described in [1]. After
a word is fed in, the output will be a word from the English dictionary (though
this will likely be pruned to some extent to limit the amount of possibilities the
agent can run into).

We will approach testing in a variety of manners. The first testing, smoke/regression
testing, will be done manually. We will input a sentence and a partial sentence
manually and see if the result is reasonable to a degree. This is simply to make

2



sure that the algorithm actually produces a sentence, not garbled nonsense.
Next, we will begin to train it: this will likely involve some manual inter-

action to adjust variables within either the properties of the neural network or
something else, but will mostly involve automated training of the agent with
episodes of creating sentences and rewards of inverse distance as described above.

One issue we may run into is that back-propagation in the neural network
likely cannot happen at each time step once we do not test the method manually:
while we test it manually, we are able to tell the neural network when a result
is good or bad in terms of sentence completion, but once we leave the picture
and testing becomes automated, we are not able to do so. Instead, reward
is based on the distance from the nearest neighbor in word vector space from
the database we decide to use—but this may not be a reasonable reward for
every time step besides the last as sentences may be very different from how
they will be completed. The agent needs to produce a combination of words to
complete a sentence, and will not necessarily approach the best end result in a
monotonically increasing manner.

4 Evaluation and Expected Outcomes

We wish our agent to produce some weird sentences, working sporadically. We
will know we’ve succeeded when we’re getting sentences similar to the ones in
the space (i.e. rewards are maximized and distances are minimized).

If we manage to achieve this base goal, we will consider tackling quantifying
the correctness of long sentences. This problem is suitable for reinforcement
learning because the state can be modeled as an MDP because of the smaller
state space and completing long sentences is a task where reward is obtained
only much later than where a state might be. For now, we shelve this as a reach
goal.

References

[1] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev
Khudanpur. Recurrent neural network based language model. In Eleventh
Annual Conference of the International Speech Communication Association,
2010.

[2] Richard S Sutton and Andrew G Barto. Introduction to reinforcement learn-
ing, volume 135. MIT press Cambridge, 1998.

[3] Yonghui Wu. Smart compose: Using neural networks to help write emails.
Google AI Blog, 2018.

3


