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1 Project Overview

In this project, we are exploring the ability of a basic reinforcement learning
(RL) agent to land and aircraft on its approach to the runway. Specifically, we
want to see how the agent preforms with consideration of other aircraft in the
airfield, as a way to measure its ability to regard airfield safety measures on its
landing. Furthermore, we will be integrating data from an intelligent traffic data
management system to see if the input helps the intelligent agent with its overall
success of landing, and optimizes its safety while doing so.

As such, we have the following project aims:

1. Can we control an aircraft with high level commands?
2. Can we use high level commands to approach a runway?
3. Can we fly a safer approach with a traffic data management system?

The Traffic Data Manager (TDM) system was developed under the advise
of our coauthor, Vincent Houston, at NASA Langley Research Center, as a
supervised learning system which is able to determine whether aircraft’s in an
airfield are relevant enough to a flyer to be considered dangerous to a real-time
trajectory. The data used to train the learning algorithm was human labelled
from subject matter experts, namely, commercial aviation pilots. TDM has been
benchmarked for its performance against labelled datasets through comparison
and validation studies, but has yet to be observed in an live, online learning
setting. Thus, it has never been observed in a human-in-the-loop setting, let alone
a fully autonomous environment. It is our goal to observe how TDM enhances
autonomous performance, and also to observe how the safety measure of our RL
system is effected by the integration of this data.

In the following, we describe our application domain and the tools available
to us for this research effort.

1.1 Domain

In this research, we will be exploring the commercial aviation domain. Specifi-
cally, we will be using a scenario in which an intelligent system (built from our
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RL agent) is trying to land an aircraft. We will proceed in two stages: First
we will show that an RL agent is capable of landing an airplane and second,
we will show that an RL agent is able to choose a safer flight path when given
information about other aircraft in the area. Landing takes place in two main
stages, the approach, which is the larger portion of the landing bringing the
plane from cruising altitude to 100 feet in altitude, and the flare, which is the
final landing portion bringing the plane from 100 feet to the ground. The flare
is, in many ways, the more complicated portion of this as the flight dynamics
at low altitude include ground effect, heavy crosswinds, etc. Because the flare
is more complex and is not dependent on other aircraft we will likely ignore it,
ending our simulations once our agent has brought the plane to 100 feet above
the runway.
Scenario Our scenario will consist of the descent of a Boeing 757 into the Reno
International Airport, which sits at 4450 ft above sea level. The simulation will
start at 8000 ft above sea level, and will attempt to navigate the aircraft safely
to an altitude of 4550 ft above sea level. The simulation will start facing the
runway head on. This scenario is subject to change based on compatibility with
TDM scenario data, based on scope, and based on other experimental factors.

1.2 Tools

VISTAS: We will be working with a rapid proto-typing simulation environment
located at NASA Langley Research Center in Hampton VA (VISTAS simulator).
We will have a copy of an interface to the simulator that we will be using which
provides close to full range capabilities of the simulator (provides enough for our
project). The data to be used to define our state space will come from the frames
recorded from the VISTAS. The fields in section 1 of the appendix (Section 4.1)
are available to us for defining our states (populated with sample data).

Alternatives: An alternative simulation environment that we are considering
is X-plane has been used by many researchers in the past [2] [4] [3] [1]. The rea-
son why we have this consideration is because of potential issues with releasing
data/software from NASA, so we want to make sure we have an alternative op-
tion. We plan on building our system in a way that is agnostice of the simulation
environment, with two ’plug-in’ simulation interface modules that we will build
in house. We already have a proxy to the VISTAS simulator that was built by
Evana Gizzi in 2017. This simulator has been successfully used by many previous
investigators as a Reinforcement Learning environment.

2 Background and Related Work

A variety of work has already been done showing that it is possible, through a
variety of different RL methods, to safely pilot a plane through take-off, landing,
cruise and navigational aspects [4] [3] [1] [2]. However, no-one we have found has

https://www.x-plane.com/
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given the RL agent control over all aspects of flight including trajectory manage-
ment based on environmental information including data about other aircraft in
the airfield. This is where our work will be novel and, hopefully, show results
indicating that RL can be used to increase flight safety as well as suggesting
that TDM is advantageous for human pilots by allowing them to take in less
information.
It is also worth noting that our work will be novel in the sense that the majority
of past work we found on RL and flight used apprenticeship learning and “expert
instructors”. Although, we may be able to provide a certain amount of instruc-
tion to the algorithm, our lack of access to “experts” will present an intersting,
important, and novel challenge in the RL-Flight literature.

3 Problem Formulation

We begin the following section with a description of an application specific prob-
lem formulation at a theoretical level. We describe how we formulate our problem
within the context of a general reinforcement learning problem, which includes
a state space, action space, reward function, and goal state. We proceed this
formulation with a description of our implementation plan.

3.1 Theoretical Problem Formulation

State Space: We define our state space S as a set of states S1, S2, . . . Sn ∈ S
as a collection of values corresponding to the following:
{LongitudeDegree, LatitutdeDegree,RadarAltitudeFeet, P itch,Roll, Y aw,
Airspeed, Throttle, AileronPosition}.

Action Space: We define our action space as a direction vector v and a discrete
trajectory style chosen from the following set: {SPEED UP, SLOW DOWN}.
This small action set will have to feed into a system capable of translating it
into low level airplane actions like {IncreaseThrottle,MoveElevator,
MoveLeftAileron,MoveRightAileron,MoveRudder}.

Reward Function: The agent will receive a small negative reward for each
time-step and a large negative reward for “bad-orientations” and for going over
a g-limit and a large positive reward for matching, to within some delta, the goal
orientation and speed which will also end the episode.We don’t know a lot about
what a bad orientation really is so we will just assume that our plane should
never exceed a 60◦ angle in pitch or roll.

For the TDM portion of our project we will engineer our reward function
with regard for the safety measures for the landing phase of flight in commercial
aviation. We scope this to the goal of not colliding with, or coming within a
predefined proximity of other aircraft in the airfield. We will access the airfield
information through TDM input data, and use the TDM technology to identify
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aircraft as either relevant, maybe relevant or not relevant.

Goals: The overall goal of the agent is to get the aircraft below 100 ft and to
optimize the safety function overall. There is still some uncertainty regarding
what precisely makes a flight “safe”. However, within this context we have two
resources. The first, is access to the National Aeronautic and Space Administra-
tion who have offered to provide feedback and guidance. We hope to get precise
definitions from them about what constitutes a safe flight. The second, is that
success in the face of ambiguity would be further proof of the utility of RL in
the flight context. If we can show that under multiple different safety regimes,
RL maximizes safety, than we will have shown that RL is very widely applicable
to maximizing safety in an aviation context.

3.2 Implementation Plan

In the following, we describe our implementation plan in the context of our 3
project aims.

1. Can we control an aircraft with high level commands? The first goal
is going to be to show that using reinforcement learning, we can develop an agent
capable of carrying out specific high level commands in relation to changing the
orientation and speed of the aircraft. These commands will consist of combina-
tions of changes in the pitch, roll, and yaw of the aircraft as well as the airspeed.
These commands will then serve as a basis for the next to sub-goals. All of the
actions taken by this agent will keep the plane in a safe (mostly upright) orien-
tation, hopefully, be g-limited for ”customer comfort” although the g-limiting is
very much a secondary goal. The input to this agent will consist of information
about the orientation of the planes control surfaces, the current pitch, roll, yaw,
airspeed, and a g-force vector along with the distance from the goal pitch, yaw,
roll, and airspeed. The agents action space will be either... figure out if we can
give the planes ”directional/joystick” controls or if we need to independently
control the throttle and each of the control surfaces.

2. Can we use high level commands to approach a runway? The second
goal will be to use the learning from part 1 as options [5] to accomplish the goal
of approaching the runway of an airport. The end goal here is to reach a certain
region of space at a certain speed and orientation. Some type of training regi-
men, like increasing the distance from the goal over episodes, is also likely to help.

3. Can we fly a safer approach with TDM? The final goal will be to increase
the safety of the approach and in the process compare the utility of using raw
data about the location, direction, etc. of the other aircraft in the airfield against
that of TDM selected data in increasing approach safety.
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4 Evaluation and Expected Outcomes

In this work, we are looking to evaluate the performance of our system overall,
along with benchmarking the performance on a more granular level. In order to
accomplish the overall evaluation, we will observe our output in the context of
our research questions. In order to evaluate the more granular performance of
our system, we will develop a set of benchmarking measures.

4.1 Research Questions and Expected Outcomes

The main research question that we are attempting to answer with this proof of
concept model is whether TDM data helps increase the safety of autonomous air
systems. In past work, the effectiveness of TDM was evaluated against labelled
datasets to evaluate its accuracy, but has yet to be evaluated for its effectiveness
in live, online scenarios. We will evaluate its effectiveness by measures how safety
is effected by the integration of TDM data in an RL agent by comparing output
of our safety function in different trajectory trials.

4.2 Benchmarking and Evaluation Techniques

We will evaluate the lower level performance of our system by looking at multiple
factors, some of which are still to be determined. Ultimately the most important
factors will be safety, fuel usage, and speed of task completion in that order.
Interestingly, speed is the easiest of the three to understand, specify and measure,
and safety is the hardest but we are hoping that the evaluation of safety is more
of a long term goal.
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