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Abstract— Humans learn about object properties using mul-
tiple modes of perception. Recent advances show that robots
can use non-visual sensory modalities (i.e., haptic and tactile
sensory data) coupled with exploratory behaviors (i.e., grasping,
lifting, pushing, dropping, etc.) for learning objects’ properties
such as shape, weight, material and affordances. However, non-
visual sensory representations cannot be easily transferred from
one robot to another, as different robots have different bodies
and sensors. Therefore, each robot needs to learn its task-
specific sensory models from scratch. To address this challenge,
we propose a framework for knowledge transfer using kernel
manifold alignment (KEMA) that enables source robots to
transfer haptic knowledge about objects to a target robot. The
idea behind our approach is to learn a common latent space
from multiple robots’ feature spaces produced by respective
sensory data while interacting with objects. To test the method,
we used a dataset in which 3 simulated robots interacted with
25 objects and showed that our framework speeds up haptic
object recognition and allows novel object recognition.

I. INTRODUCTION

To recognize objects and their properties, humans use a
variety of non-visual sensory modalities coupled with ex-
ploratory behaviors. While robots can use vision to recognize
the shape and color of an object, camera input alone cannot
determine its haptic and tactile properties, such as whether it
is soft or hard, or whether it is full or empty. To perceive non-
visual information, a robot must interact with the object and
interpret the feedback to detect the object’s characteristics.
Previous works have indeed shown that robots can use non-
visual sensory feedback of interaction with objects such
as haptic, tactile, and/or auditory senses to perform tasks,
including object recognition, object category acquisition, and
language grounding (see [1], [2] for a review).

A major challenge when learning non-visual object rep-
resentations is that each robot requires excessive time to
perform the necessary object exploration for data collection,
which prohibits rapid learning and makes it difficult to
deploy non-visual object representations in practice. There
is no general purpose sensory knowledge representations
for non-visual features as different robots have different
embodiments and sensors. As a result, it is not easy to
transfer knowledge of non-visual object properties from one
robot to another, so each individual robot needs to learn its
task-specific sensory models from scratch.

To address this challenge, we propose a framework for
haptic knowledge transfer, shown in Fig. 1, using kernel
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Fig. 1. Overview of the proposed framework. Feature space of different
robots depict datapoints collected during object interaction. Each shape
represents a robot and each color represents an object. Once each datapoint
is projected into a common latent space, the decision function for a classifier
is grounded in the latent space rather than the robot’s own feature space.

manifold alignment (KEMA) for sharing knowledge between
multiple, heterogeneous robots. Our method projects the sen-
sorimotor features of object interaction from multiple robots
into a common latent space and use this latent space to train
the recognition models to solve various tasks, as opposed to
using each robots own sensorimotor feature space. To test
our method, we collected a dataset of 3 simulated robots
that performed 4 behaviors on 25 objects, and we used this
dataset to transfer knowledge from two source robots to a
target robot for training the target robot with less examples.
The results of our experiments show that robots can bootstrap
their haptic object perception skills by leveraging experience
from other robots in a way that speeds up learning and allows
the target robot to recognize novel objects that it has not
interacted with before test time.

II. RELATED WORK

Research in psychology and cognitive science has high-
lighted the significance of multiple sensory modalities used
by humans to recognize objects [3], [4] and interact with
them in order to learn their haptic and tactile properties
[5]. Traditionally, object recognition approaches are based
solely on the visual modality. More recently, several lines of
recent research have proposed integrating exploratory actions
with haptic modality, which has also been shown useful for
learning object categories [6], [7], [8], [9], [10], [11], object
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relations [12], [13], and grounding language used to describe
objects [14], [15], [16]. A remaining challenge is that non-
visual sensory representations cannot be easily transferred
from one robot to another, as each robot has a unique
embodiment in terms of its morphology and sensor suite.
As a result, each robot must interact with objects to learn
its models from scratch. This work presents a knowledge-
transfer framework for multiple robots that enables them to
not only recognize objects with less interactions, but also to
recognize novel objects without exploratory training.

To transfer knowledge, Tatiya et al. [17] proposed using
encoder-decoder neural network to project sensorimotor fea-
tures from a source robot’s feature space to a target robot’s
feature space, allowing the target robot to classify novel
objects into categories using the source robot’s knowledge.
One limitation was that the dataset used contained only a
single robot, and thus they transferred knowledge between
two physically identical robots across different behaviors.
Furthermore, the method proposed would work only for
two robots: the source and the target. To deal with these
shortcomings, we propose a method that enables more than
two robots of different embodiments to project their sensory
features into a common latent space, such that the decision
function for a given recognition task is grounded in the latent
space rather than each individual robot’s own feature space.

Domain adaptation is a transfer learning method that deals
with shifts in the feature spaces of a source domain (training
set) and a different but related target domain (test set). The
main goal of such methods is to reduce the domain shift
so that a machine learning classifier trained on the source
domain can make better predictions about the target domain.
Manifold alignment is a domain adaptation strategy that
aligns datasets and projects them into a common latent space.
Manifold alignment preserves the local geometry of each
manifold and captures the correlations between manifolds,
which allows knowledge transfer from one domain to an-
other. The projected datapoints are comparable and can be
used to train a single classifier for different domains.

We propose to use the kernel manifold alignment (KEMA)
[18] for domain adaptation, which can align an arbitrary
number of domains of different dimensionality without need-
ing paired examples. KEMA [18] has been successfully
applied to visual object recognition [18], facial expression
recognition [18], and human action recognition [19]. How-
ever, KEMA has never been applied to the haptic data that
robots can use for object recognition. We evaluated the per-
formance of KEMA to adapt the sensory signals of multiple
robots and obtain their aligned feature representations in a
common latent space.

III. LEARNING METHODOLOGY

A. Notation and Problem Formulation

Let a robot perform a set of exploratory behaviors (e.g.,
grasp, pick), B, on a set of objects, O, while recording a non-
visual sensory modality m (e.g. effort). Let the robot perform
each behavior n times on each object. Let us considerR such
robots’ datasets with Br, mr and nr, where r = 1, ..., R.

Each robot interacts with the same set of objects O. During
the ith exploratory trial, the robot r observation feature is
represented as xir ∈ RDr , i = 1, ..., nr where Dr is the
dimensionality of the feature space for robot r.

Our main goal is to learn a common latent feature space
for all the R robots, such that the robots can be trained to
recognize objects in that latent space, as opposed to each
robot’s own feature space. This will enable an individual
robot to use the observation features collected by other robots
to learn a recognition model and perform better than a model
trained only using its own observation features. In addition,
learning a common latent feature space would also enable
a robot to recognize objects it has never interacted with, as
long as other robots have. While learning the latent space,
it is assumed that all the robots perform the same behavior
and interact with the same set of objects.

B. Kernel Manifold Alignment (KEMA)

KEMA [18] extended the work of Wang et al. [20] by
kernelization of the original data by transforming it into a
high dimensional Hilbert space H with the mapping function
φ(.) : x 7→ φ(x) ∈ H to ensure that the transformed data is
linearly separable. Due to the high dimensional feature space,
the computational load would increase significantly and thus,
kernel trick is used in which the problem is expressed in
terms of dot products within H. A Kernel function Kij =
K(xi, xj) =< φ(xi), φ(xj) > is used to compute the kernel
matrix that encodes the similarity between training examples
using pair-wise inner products between mapped examples
without computing φ(.) directly. We adopted Radial Basis
Function (RBF) kernel as the kernel function. As there are
multiple robots, R different robots’ datasets are mapped into
R different Hilbert spaces of dimension Hr, φr(.) : x 7→
φr(x) ∈ Hr, r = 1, ..., R.

KEMA constructs a set of domain-specific projection
functions, F = [f1, f2, ...fR]T that project data from R
robots into a common latent space such that the examples
of a same object class would locate closer while examples
of different object classes would locate distantly. To achieve
this, KEMA finds the data projection matrix F that mini-
mizes the following cost function:

{f1, f2, ...fR} = arg min
f1,f2,...fR

(C(f1, f2, ...fR))

= arg min
f1,f2,...fR

(
µGEO + (1− µ)SIM

DIS

) (1)

where geometry (GEO) and class similarity (SIM) terms are
minimized and class dissimilarity (DIS) term is maximized.
The parameter µ ∈ [0, 1] controls the contribution of the
geometry and the similarity terms. The three terms are
explained as follows:

1. Geometry (GEO) is a matrix that represents the
geometry of a domain. GEO is minimized to preserve the
local geometry of each domain by penalizing projections in
the input domain that are far from each other:



GEO =

R∑
r=1

nr∑
i,j=1

W r
g (i, j)

∥∥∥fTr φr(xir)− fTr φr(xjr)
∥∥∥2

= tr(FT ΦLgΦTF )

(2)

where W r
g in a similarity matrix representing the similarity

between xir and xjr, which is typically computed by k-nearest
neighbor graph (k-NNG). Lg ∈ R(

∑
r nr)×(

∑
r nr) is a graph

Laplacian matrix computed by Lg = Dg−Wg , where Dg is
a diagonal matrix with entries Dg(i, i) =

∑
j Wg(i, j).

2. Similarity (SIM) is a matrix that represents the class
similarity of a domain. SIM is minimized to encourage
examples with the same object class to be located close to
each other in the latent space by penalizing projections of
the same object class far from each other:

SIM =

R∑
r,r′=1

nr,nr′∑
i,j=1

W r,r′

s (i, j)
∥∥∥fTr φr(xir)− fTr′φr′(x

j
r′)
∥∥∥2

= tr(FT ΦLsΦ
TF )

(3)

where W r,r′

s in a similarity matrix that has components set to
1 if the two examples from robots r and r′ belong to the same
object class, and 0 otherwise. The graph Laplacian matrix is
computed by Ls = Ds−Ws, where Ds is a diagonal matrix
with entries Ds(i, i) =

∑
j Ws(i, j).

3. Dissimilarity (DIS) is a matrix that represents the class
dissimilarity of a domain. DIS is maximized to encourage
examples with different object classes to be located far apart
in the latent space by penalizing projections of the different
object class that are close to each other:

DIS =

R∑
r,r′=1

nr,nr′∑
i,j=1

W r,r′

d (i, j)
∥∥∥fTr φr(xir)− fTr′φr′(x

j
r′)
∥∥∥2

= tr(FT ΦLdΦTF )
(4)

where W r,r′

d in a dissimilarity matrix that has components
set to 1 if the two examples from robots r and r′ belong
to different objects, and 0 otherwise. The graph Laplacian is
computed by Ld = Dd−Wd, where Dd is a diagonal matrix
with entries Dd(i, i) =

∑
j Wd(i, j). By combining Eqs. (2),

(3), and (4), the optimization problem can be formulated as:

arg min
f1,f2,...fR

tr

(
FT Φ(µLg + (1− µ)Ls)Φ

TF

FT ΦLdΦTF

)
(5)

The latent features that minimize the cost function
C(f1, f2, ...fR) are given by the eigenvectors corresponding
to the last eigenvalues of the generalized eigenproblem
derived from Eq. (5) [20]:

Φ(µLg + (1− µ)Ls)Φ
TF = λΦLdΦTF (6)

where Φ is a block diagonal matrix containing the datasets
Φr = [φr(x1), ..., φr(xnr )]T , F contains the eigenvectors

organized in rows for the particular domain defined in Hilbert
space Hr, where F = [f1, f2, ...fH ]T , H =

∑R
r=1Hr, and

λ is the eigenvalues of the generalized eigenproblem. F is
in a high dimensional space that might be costly to compute.
Thus, the eigenvectors are expressed as a linear combination
of mapped examples using the Riesz representation theorems
[21] as fr = Φrαr (or F = ΦΛ in matrix notation). By
multiplying both sides by ΦT in Eq. (6) and replacing the
dot products with the corresponding kernel matrices, Kr =
ΦT

r Φr, the final problem is formalized as:

K(µLg + (1− µ)Ls)KΛ = λKLdKΛ (7)

where K contains kernel matrices Kr in a block diagonal
form. The projection matrix Λ can be expressed in a block
structure of size n× n:

Λ =

α1

...
αR

 =



α1,1 . . . α1,n

...
. . .

...
αn1,1 . . . αn1,n

αn1+1,1 . . . αn1+1,n

...
. . .

...
αn,1 . . . αn,n


(8)

where the eigenvectors are highlighted in bold for the first
domain, and n =

∑
r nr is the total number of examples

in the kernel matrices. A new test example xir can be
projected to the new latent space by first mapping it to
its corresponding kernel form Ki

r and then applying the
corresponding projection vector αr formulated as:

P (xir) = fTr Φi
r = αT

r ΦT
r Φi

r = αT
r K

i
r (9)

where Ki
r is a kernel evaluations vector between example xir

and all examples of rth robot used to compute the projections
αr. For more details on KEMA, readers can refer [18], [20].

C. Object Recognition Model using Latent Features

Once the data is transferred to the latent space from
multiple robots, we used the transferred data on the latent
manifold to train a multi-class Support Vector Machine
(SVM) [22] model with the RBF kernel to recognize different
object classes. We trained two types of models: speeding up
object recognition model and novel object recognition model.

To build the manifold alignment for the speeding up
object recognition model, we used two source robots that
are assumed to have explored the objects extensively and one
target robot that is assumed to have relatively less experience
with objects. To train this model, we used the transferred data
from all the robots, but incrementally varied the number of
examples per object used for the target robot. To test this
model, we used the examples of the target robot that were
not used to build the manifold alignment.

To build the manifold alignment for the novel object
recognition model, we used two source robots that are
assumed to have explored all the objects and one target robot
that is assumed to have never explored a few objects. To train
this model, we used the transferred data from two source



Fig. 2. Examples of effort features using shake behavior performed on an
0.62 kg block object by Baxter, Fetch, and Sawyer (right to left).

robots of the objects that the target robot never explored. To
test this model, we used the examples of the objects that are
novel to the target robot.

IV. EVALUATION

A. Data Collection and Feature Extraction

A dataset was collected in which 3 simulated robots
(Baxter, Fetch and Sawyer) perform 4 behaviors (grasp, pick,
shake and place) on 25 block objects (each vary by weight
from 0.01 kg to 1.5 kg). The behaviors of each robot were
encoded as joint-space trajectories where the joint values are
randomly sampled within a specified range of joint values
for each joint of the robot. Thus, each interaction of the
robot is expected to be different, which is what we would
expect in the real world. During each behavior the robots
recorded effort feedback from all joints 1. Each behavior
was performed 100 times on each object, resulting in a total
of 10,000 examples (4 behaviors x 25 objects x 100 trials)
per robot. Effort data was discretized into 10 temporal bins,
where each bin consists of mean of effort values in that bin.
Fig. 2 visualizes examples of effort features of all the robots.

B. Evaluation

To evaluate the performance of manifold alignment for
knowledge transfer, we considered two tasks. In the first task,
the target robot has less interaction with objects, and in the
second task, the target robot has never interacted with a few
objects. In both tasks, we assume both source robots have
explored all the objects extensively.2

1) Speeding up object recognition: In this task, the main
goal is to improve the object recognition performance of the
less experienced target robot, by aligning the data from all the
3 robots, and then using this aligned data to train the target
robot. For the baseline condition, the target robot is trained
to recognize objects by using its own data collected during
object interactions. For the transfer condition, the target robot
is trained to recognize objects by using the aligned data in
the latent feature space corresponding to all the 3 robots.
We incremented the number of examples per object used to
train the target robot from 1 to 80, and we used the held-out
20 examples for testing. For both conditions, we performed
5-fold cross validation such that each example is included in

1The sampling rate of Baxter is 50Hz, and Fetch and Sawyer is 100Hz.
All the robot’s arm have 9 joints including 2 grippers.

2Datasets, source code and complete results for study
replication are available at: https://github.com/gtatiya/
Haptic-Knowledge-Transfer-KEMA.

test set once and computed accuracy A = correct predictions
total predictions %,

and reported average accuracy of all the folds.
2) Novel object recognition: In this task, the goal is

to enable the target robot to recognize n objects it never
interacted with. Both source robots interact with all the 25
objects, while the target robot interacts with only 25 − n
randomly selected objects. The 25−n objects shared by all 3
robots are used to build the manifold alignment that transfers
the sensory signal of the robots to the latent space. Then a
classifier is trained using the transferred data of the source
robot corresponding to the objects that are novel to the target
robot. Subsequently, to test this classifier, the transferred data
of the n objects that the target robot did not interact with
is used that were not used to build the alignment. Similar
to speeding up object recognition, we reported the accuracy
of this classifier to evaluate its performance and compared
it with the chance accuracy of the classifier. The process
of selecting 25 − n objects randomly to build the manifold
alignment, training the classifier using transferred data of the
source robots and testing the classifier on n novel objects was
repeated 10 times to produce an accuracy estimate.

V. RESULTS

A. Illustrative Example

Consider the case where the 3 robots perform the place
behavior on all 25 objects 10 different times while record-
ing effort signals, which were used to build the manifold
alignment using KEMA and generate latent features. We
plotted the first two dimensions of the latent features, and
reduced the dimensionality of the original sensory signal to
2 by Principal Component Analysis. As shown in Fig. 3, the
datapoints collected by the 3 robots of 5 different objects are
clustered together in the common latent space.

B. Speeding up object recognition results

Fig. 4 shows the object recognition performance, where
Baxter and Sawyer serve as the source robots and Fetch
serves as the target robot. To build the manifold alignment,
we incrementally varied the number of interactions of the
target robot from 1 to 80, and to test the classifier, held-out 20
examples are used. Note that to choose the amount of source
robot data for building alignment and number of dimensions
of latent features used to train the model, we performed a
grid search, in which we experimented with different amount
of source robot data and different number of dimensions and
used the optimal parameters for the final results. Generally, if
the target robot interacts less with objects, using more source
robots’ data generates better latent features, and using the
first 1 or 2 dimensions of the latent features achieves high
accuracy as they are the most correlated dimensions among
all the robots.3 Fig. 4 compares the recognition accuracy
of the baseline condition, where the target robot learns to
recognize objects using only its own features, and the transfer
condition, where the target robot learns to recognize objects

3Note that using entire source robots’ data and latent features for training
the target robot did not perform better than using optimal amount of source
robot data and number of latent features.



Fig. 3. Original sensory features of (A) Baxter and (B) Fetch for place-effort performed on 5 objects in 2D space, and first 2 dimensions of corresponding
features in the common latent feature space (C).

Fig. 4. Accuracy of the baseline and transfer conditions, where Fetch serves
as the target robot, and Baxter and Sawyer serve as the source robots.

using its own as well as the source robots’ latent features.
In both conditions, the recognition accuracy is computed
by performing a weighted combination of all the behaviors
based on their performance on the training examples.

For most behaviors, the transfer condition performs con-
sistently better than the baseline condition. A significant
boost in performance is observed with a fewer number
of the target robot’s interactions per object. Fig. 4 shows
that by performing all the behaviors with each object only
once, the target robot achieves around 0% accuracy in the
baseline condition, whereas it achieves 36.28% accuracy in
the transfer condition. This result indicates that in cases
where the target robot has limited time to learn the task,
transferring knowledge from other robots can speed up as
well as improve the classification performance. We also
experimented with Baxter and Sawyer as the target robot,
and the other 2 robots as the source robot, and observed
similar boost in performance in the transfer condition.

C. Novel object recognition results

For a case where the Fetch robot has not interacted with 2
of the objects, we trained a classifier using the latent features
of the source robots (Baxter and Sawyer) performing the
place behavior on those objects. Fig. 5 visualizes the data
used to train and test the classifier. In Fig. 5A, squares with
blue and red outline show the source robots’ training data
and circles show the true labels of the target robot’s data
used to test the classifier. Each color represents a different
object. Fig. 5B shows the predictions of the classifier, which
is able to correctly classify 100% of the test data.

Fig. 5. Visualization of the training and testing datapoint used to train
the target robot (Fetch) to detect 2 novel objects in 2D space. (A) shows
the training data in squares corresponding to the source robots (Baxter
and Sawyer) latent features of place behavior, and the test data in circles
corresponds to the true labels of the target robot (Fetch). (B) shows the
predictions of the test data, which is 100% correct.

Fig. 6. Accuracy curve of the target robot (Fetch) for detecting 2 and 5
novel objects (left to right) for different number of objects explored by it
using the knowledge transferred by the source robots (Baxter and Sawyer).

Fig. 6 shows the results when the target robot (Fetch) was
trained to recognize 2 and 5 novel objects by incrementing
the number of objects explored by the target robot used to
build the manifold alignment. To build the manifold align-
ment, 30% of the source robots’ data (Baxter and Sawyer)
was used. In most cases, the target robot achieves better than
chance accuracy, and as the target robot interacts with more
objects, its performance to recognize novel objects improves.
Thus, the target robot can learn to recognize objects it never
interacted with by using the knowledge transferred by the
source robots. Similar results were observed when the Baxter
and Fetch serve as the target robot.

D. Heterogeneous Feature Representation

A robot’s sensory features can be represented in different
ways depending on the feature extraction method. To evalu-
ate our framework with different feature representations used
by the individual robots, we discretized the effort data into
15 temporal bins, where each bin consists of effort values’
range computed by subtracting the minimum effort value
from the maximum effort value in that bin. Fig. 7 shows



Fig. 7. Results of a different feature representation, where Baxter and
Sawyer serve as the source robots and Fetch serves as the target robot.
(A) shows the results of the speeding up object recognition task, where
predictions of all the behaviors are combined. (B) shows the accuracy curve
of 2 novel objects recognition task.

the results of the speeding up object recognition and the
novel object recognition tasks on this new representation,
where Baxter and Sawyer serve as the source robots and
Fetch serves as the target robot. Fig. 7A indicates that the
transfer condition enables the target robot to perform better
than the baseline condition especially with less experience
with objects. Moreover, Fig. 7B suggests that the target
robot learned to recognize novel objects with knowledge
transferred by the source robots. These results are consistent
with the results of the previous feature representation we
presented, which means knowledge can be transferred using
KEMA for different representations.

VI. CONCLUSION AND FUTURE WORK

To enable robots to work in human-inhabited environment,
they would need to recognize objects’ properties through
interaction. Non-visual sensory signals (e.g. haptic) collected
by a robot’s interaction cannot be used to train another robot
as the feature space of such data is different for robots with
different embodiments. In addition, collecting interaction
based sensory signals is a time consuming process. Thus, we
propose using kernel manifold alignment, to align the feature
spaces of different robots into a common feature space, and
use it to train the robots. We showed that our approach can
enable the target robot to not only speed up the learning
process by learning with less interaction, but also perform
better by using aligned features from other robots rather than
learning just from its own features. Moreover, we showed
that the target robot can learn to recognize novel objects by
knowledge transferred by the source robots.

A limitation of our experiment is that the dataset we used
contains simulated robots, thus in future work, we plan to test
our proposed knowledge transfer method on real robots. A
kernel function that is designed to specifically capture time
series data such as haptics is also a promising avenue for
future exploration. Moreover, we would adapt our knowledge
transfer method to a larger variety of non-visual sensors other
than effort such as audio, temperature, and vibration. Finally,
in our experiments, we addressed the object recognition task.
In future work, we plan to extend our method to handle
sensory knowledge transfer for other tasks, such as object
manipulation, and language grounding.
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