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Abstract— When identifying an object and its properties,
humans use features from multiple sensory modalities produced
when manipulating the object. Motivated by this cognitive
process, we propose a deep learning methodology for object
category recognition which uses visual, auditory, and haptic
sensory data coupled with exploratory behaviors (e.g., grasping,
lifting, pushing, etc.). In our method, as the robot performs an
action on an object, it uses a Tensor-Train Gated Recurrent Unit
network to process its visual data, and Convolutional Neural
Networks to process haptic and auditory data. We propose a
novel strategy to train a single neural network that inputs video,
audio and haptic data, and demonstrate that its performance is
better than separate neural networks for each sensory modality.
The proposed method was evaluated on a dataset in which
the robot explored 100 different objects, each belonging to
one of 20 categories. While the visual information was the
dominant modality for most categories, adding the additional
haptic and auditory networks further improves the robot’s
category recognition accuracy. For some of the behaviors, our
approach outperforms the previous published baseline for the
dataset which used handcrafted features for each modality. We
also show that a robot does not need the sensory data from
the entire interaction, but instead can make a good prediction
early on during behavior execution.

I. INTRODUCTION

Learning to classify objects into categories is an important
skill for a wide variety of robot tasks and an open research
challenge in the fields of robotics and computer vision. For
example, a domestic service robot that has to clean up a
dining table needs to identify semantic categories of objects,
like “glass”, “full”, “open”, etc. While some categories can
be identified using visual input alone, others cannot and thus
satisfactory performance in real-world applications remains
a challenge [1], [2], [3], [4], [5].

Children learn to discern object categories and recognize
objects through physical exploration, where they not only
learn what objects look like, but also how they move,
feel, and sound [6]. This knowledge is crucial for learning
object semantics as the majority of the most common nouns
and adjectives humans use have a non-visual component
[7]. Yet, most robots today rely on pre-trained computer
vision models, e.g., [8], and thus are unable to reason about
semantics that cannot be detected using vision alone.

To address these limitations, we propose a deep multi-
modal learning methodology that enables a robot to cate-
gorize novel objects by performing exploratory interactions
and processing multi-sensory data input, shown in Figure1.

Fig. 1. Overview of the proposed categorization pipeline.

The proposed method is evaluated on a publicly available
dataset in which a humanoid robot explored a set of 100
objects using 9 different exploratory behaviors while record-
ing visual, haptic, and auditory data. For all behaviors,
the proposed multi-modal network architecture either sub-
stantially outperformed the previously published baseline,
or produced comparable recognition rates. Furthermore, we
demonstrate that our approach can produce accurate category
estimates with only a fraction of the data produced by an
individual behavior, suggesting that exploratory behaviors
can be designed to be shorter in duration, allowing a robot to
learn multi-sensory object properties quicker in a deployed,
realistic setting.

II. RELATED WORK

Object category acquisition and recognition has been stud-
ied extensively in the visual domain, where models can be
trained on large image datasets with no need for robotic
interaction with objects [1], [2], [3], [4], [5]. For many
semantic object categories (e.g., “soft”, “empty”), visual
information alone may not be sufficient as visually identical
objects can differ in material, internal state, and compliance.

To address these cases, several research lines use propri-
oceptive, haptic, auditory, and/or tactile feedback of robot
interaction with objects for category recognition [9], [10],
[11], [12]. For example, Nakamura et al. in [9] proposed
a method that enables the acquisition of object concepts
from multiple modalities, such as visual, auditory, and
haptic information gathered by robots. Sinapov et al. [10]
demonstrated a category recognition framework in which
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the robot uses multiple exploratory actions (e.g., grasping,
lifting, shaking, pushing) to learn object category models
and categorize 100 objects. More recently, Thomason et el.
[13], [14], [15] demonstrate how the category recognition
method proposed in [11] can be deployed on a service
robot to learn object semantics extracted from human-robot
dialog. These examples of multi-sensory perception used
hand-crafted features for different modalities and require
some amount of feature engineering, especially when adding
new sensory modalities.

Several works have explored deep learning methods for
tasks like surface material classification and tactile under-
standing using visual and haptic modalities [16], [17], [18].
Erickson et al. [16] presented a semi-supervised learning ap-
proach for material recognition with Generative Adversarial
Networks (GANs) that enables a robot to learn from haptic
features such as force, temperature, and vibration data from
interactions with everyday objects and classify them into six
material categories. Gao et al. [17], proposed a deep learning
method for tactile understanding using haptic and visual
signals. First, individual visual and haptic prediction net-
works were trained and then they used activations from these
networks to train a multimodal network. They demonstrated
that combining data from both modalities improves perfor-
mance. We note that further research work is necessary to use
modern learning techniques, which is relatively unexplored
in object category recognition. In particular, we present an
architecture that uses a larger number of diverse exploratory
actions, and consider three types of sensory feedback at the
same time: visual, haptic, and auditory.

III. LEARNING METHODOLOGY

For each sensory modality, we investigated several net-
work configurations to find ones that achieve high perfor-
mance on object categorization tasks using visual, audio, and
haptic data in a multimodal setting1. Next, we describe these
networks along with notation and problem formulation.

A. Notation and Problem Formulation

Let B be the set of exploratory behaviors, let O be the set
of objects, and let M = {v, a, h} be the set of modalities
(vision, audio, and haptics). During each object exploration
trial, the robot applies all of its exploratory behaviors on an
object o ∈ O and records the 3 different sensory data signals
for each modality. Thus, during the ith exploration trial, for
each behavior b ∈ B, the robot observed features:

Xv
i ∈ Rw×h×tvi ,Xa

i ∈ Rf×tai ,Xh
i ∈ Rd×thi (1)

where w and h are the width and height of each image, f
is number of frequency bins in the sound spectrogram, d is
the number of channels (e.g., number of robot joint-torque

1Datasets and source code for study replication is available
as Jupyter Notebooks at: https://github.com/gtatiya/
Deep-Multi-Sensory-Object-Categorization. Development
environment and network hyper-parameters details are discussed in the
README file of the repository. Some alternative network configurations
are also discussed with the source code.

sensors) in haptic data, and tvi , tai , and thi are the number of
frames (e.g. number of images) produced over the course of
the interaction for each of the three modalities.

Let the function label (o) → y be a labeling function
that given an object o outputs a label y ∈ Y , where Y is
the set of category labels. The task of the robot is to learn
a category recognition network for each behavior b ∈ B,
that predicts the correct label y, given a sensory signal from
modality m ∈ M detected while interacting with object o
using b. In addition, for each behavior, the robot also learns a
multimodal neural network that takes all the modalities of an
interaction with an object as input and predicts its category
label. Each of the networks estimates a probability for each
of the category labels as described below:

Pr(ŷ = y|xm
i ), for a single modality

Pr(ŷ = y|xv
i , x

a
i , x

h
i ), for all the modalities (2)

B. Visual Network Architecture

1) Image Sequence Pre-processing: For each behavior b ∈
B, we calculated the average number of image frames per
interaction and extracted that many equally-spaced frames
from each interaction’s image sequence, where each frame
was resized to 120 x 90 pixels.2 For example, the video of
a press interaction took 48 frames on average for each of
500 trials (100 objects with 5 trials each), so we extracted
48 frames from all the videos of press interactions. These
pre-processing steps were applied to all the videos of each
interaction.

2) Video Network Architecture: Convolutional neural net-
works (CNNs) have been highly successful in image classifi-
cation tasks [19], [20], [21] and Recurrent Neural Networks
(RNNs) have been shown to perform well in classifying
sequential data [22], [23], [24], [25]. Much work uses
the combination of a CNN and an RNN by processing
each frame using CNN before feeding it to RNN for video
classification [26], [27], [28]. This approach turned out to
be impractical for our dataset because the combination of
a CNN and an RNN makes a network very deep, which
requires a large number of examples to learn all the param-
eters of the network during training; however, our dataset is
very small - there are only 20 examples per category as each
object was explored 5 times and the model was trained on 4
out of the 5 objects per category.

We used Tensor-Train Gated Recurrent Unit (TT-GRU), a
type of RNN, for video classification proposed by Yang et
al. [29], which has been shown to achieve results very close
to the state-of-the-art networks on various video datasets,
despite having a very simple architecture. To reduce the
number of weight matrix parameters to be learned, TT-GRU
factorizes the input-to-hidden weight matrix using Tensor-
Train decomposition which is trained with the weights at the

2Experimentation with the original image resolution (320 x 240) was also
performed, but there was no improvement in accuracy. However, training
took a longer time.
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Fig. 2. The architecture of CNN used for sound classification.

Fig. 3. The architecture of CNN used for haptic classification.

same time. For each frame, a large group of pixel inputs are
mapped to the RNN as a latent vector, which is usually lower
in dimensionality. This latent vector is then enriched by its
predecessor at the last time step recurrently for hidden-to-
hidden mapping. In this manner, the RNN is able to learn the
inter-frame transition patterns to extract the representation of
the entire sequence of frames, and captures the correlation
between spatial and temporal patterns because the input-to-
hidden and hidden-to-hidden mappings are trained simulta-
neously. For more details on tensor factorization models and
tensor train-decomposition, see [30], [31].

C. Auditory Network Architecture
1) Sound Pre-processing: We used librosa 0.6.0 [32], a

python package for music and audio analysis, to generate
log-scaled mel-spectrograms of the wave files with FFT
window length of 1024, hop length of 512 and 60 mel-bands.
In addition to the spectrogram, we computed its derivative
as a second channel using the default librosa settings. To
get the fixed length input, we interpolated both channels of
the spectrogram, so that the rate of the audio frames was
consistent with that of the visual frames. Specifically, for
each frame in a video, we interpolated 5 frames for the
corresponding audio file. For example, the video of a press
interaction has 48 frames, so we interpolated 240 (48 x 5)
frames from its audio data.

2) Sound Network Architecture: While CNNs are largely
used on image data, they have also shown strong perfor-
mance in speech [33], [34] and music analysis [35], [36].
There is abundant research that demonstrates that the ability
of finding local features can be successfully applied in sound

classification [37], [38], [39]. Therefore, we used CNN3

for the sound dataset depicted in Figure 2 and described
as follows. The CNN consisted of a total of 6 learned
layers including 2 convolutional ReLU, 2 max-pooling and
2 fully connected layers. The first convolutional ReLU layer
consisted of 20 filters of kernel size 57 x 6 and stride 1 x 1,
and max-pooling with a pool shape of 4 x 4 and stride of 4
x 4. The second convolutional ReLU layers consisted of 40
filters of kernel size 1 x 3 and stride 1 x 1, with max-pooling
of shape 4 x 4 and 4 x 4 pool stride. Both the first and the
second fully connected layer consisted of 256 nodes.

D. Haptic Network Architecture

1) Haptic Pre-processing: In our dataset, the haptic sig-
nals from 7 joints were sampled at 500 Hz. To get the fixed
size input and to synchronize the haptic signals with video
and sound data, we interpolated each haptic feedback to
50Hz4. For example, the press interaction takes 4.8 seconds,
so we interpolated 240 (4.8 x 50) frames for each haptic
signal of a press interaction.

2) Haptic Network Architecture: Several works in the
literature have used CNNs to exploit the haptic signal for
material classification [18], [40]. CNN performed very
well because haptic feedback is expected to have temporal
correlations with repeating local features in a hierarchical
order of scales. For this reason, we used a CNN illustrated

3Experiments were also performed using an RNN as well as a CNN-RNN
combination, but both produced lower accuracy recognition rates.

4Experimentation with the original sampling rate (500Hz) was also
performed, but there was no improvement in accuracy. However, training
took a longer time.
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Fig. 4. The architecture multimodal network.

in Figure 3 for the haptic data, which consists of 5 layers
that includes 2 convolutional ReLU, 2 max-pooling and 1
fully connected layers. The first convolutional ReLU layer’s
kernel dimensions are 20 x 5 with 32 filters, and the second
convolutional ReLU layer has kernel size 1 x 3 and 64 filters.
Both first and second max-pooling layers have a pool size
of 10 x 1 and stride of 2 x 2. The fully connected layer has
1024 neurons.

E. Multimodal Network Architecture

The multimodal network inputs the same pre-processed
video, audio and haptic data as described above. We used the
same network architecture for each modality and in addition,
added a fusion layer shown in Figure 4. For each modality-
specific network, the last layer outputs 20 values for the 20
categories in the dataset. We activated these 20 outputs for
each network using ReLU activation and concatenated them
to get a layer of 60 neurons. We again activated these 60
neurons using ReLU activation and connected it to a linear
layer of 20 outputs for final predictions. ReLU activation
function gives a non-linear component to the network and
lets the network find useful patterns, while suppressing the
irrelevant features. For example, a hold interaction does
not produce relevant sound, so the network learns to give
more importance to vision and haptic feedback than audio.
The multimodal network was trained from scratch which
produced better results than training the modality-specific
networks first, and then only training the fusion layer. We
also considered combining the outputs of the modality-
specific networks using a uniform combination, but using
a fusion layer increased category recognition accuracy.

IV. EVALUATION AND RESULTS

A. Dataset Description

We used the publicly available dataset of the experiment
performed by Sinapov et al. [10], in which an upper-torso
humanoid robot (shown in Figure 1) explored 100 differ-
ent household objects belonging to 20 different categories
(shown in Figure 6) using 9 exploratory behaviors performed
with its left arm: Press, Grasp, Hold, Lift, Drop, Poke,

Fig. 5. The exploratory interactions that the robot performed on all objects.
From top to bottom and from left to right: (1) Press, (2) Grasp, (3) Hold,
(4) Lift, (5) Drop, (6) Poke, (7) Push, (8) Shake and (9) Tap.

Fig. 6. The robot along with the 100 objects, grouped in 20 object
categories.

Push, Shake and Tap (shown in Figure 5). During each
interaction, the robot recorded visual feedback in the form
of RGB images at 10 fps, auditory feedback in the form of
a waveform at 44.1 KHz, and haptic feedback consisting of
the joint-torque values sampled at 500Hz. Each behavior was
performed 5 times on each object, resulting in a total of 9 x
5 x 100 = 4,500 interactions.

B. Evaluation

We evaluated how well the trained networks perform when
recognizing the category of objects that are not found in the
training set, via 5-fold object-based cross validation. During
each round of evaluation, the training set consisted of the
data from 4 objects from each category and the test set
consisted of the remaining object for each category. Since
the robot explored each object 5 times, there were 400 (80
x 5) examples in the training set, and 100 (20 x 5) examples
in the test set. This procedure was repeated 5 times, such
that each object was included four times in the training set
and once in the test set. We used two metrics to evaluate
the category recognition performance. The first metric was
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Fig. 7. An illustrative example of the multimodal network category
probability estimates as the robot performs the tap behavior on one of
the blue container objects. The robot’s category estimates converges to the
correct category after about 0.7 seconds of interaction.

TABLE I
CATEGORY RECOGNITION ACCURACY (%) RATES FOR EACH BEHAVIOR

Behavior SVM Baseline [10] Multimodal Network

Grasp 65.2 71.4
Hold 67.0 76.8
Lift 79.0 77.8

Drop 71.0 78.0
Poke 85.4 73.8
Push 88.8 67.4
Shake 76.8 83.6
Tap 82.4 81.6

Press 77.4 58.8

accuracy (%) as defined below:

Accuracy =
correct predictions

total predictions
× 100%.

The second metric was the F -score, which is defined as
the harmonic mean between the precision and recall for a
given category label. The F -score is given by:

F = 2× precision× recall

precision+ recall
.

The F -Score is always in the range of 0.0-1.0. For a
given category, a high value of the F -Score indicates that
the category is easy to recognize, while a low value shows
the opposite.

C. Results

1) Illustrative Example: An example of the multimodal
network category probability estimates as the robot performs
a behavior on an object is shown in Figure 7. The robot’s cat-
egory estimate converges to the correct category after about
0.7 seconds of interaction. The figure plots the estimates for
only 5 of the 20 categories to prevent clutter.

2) Accuracy Results of Category Recognition: Table I
shows the accuracy for each behavior, compared with the
baseline Support Vector Machine (SVM) machine learning
approach presented by Sinapov et al. [10], which used hand-
crafted auditory, haptic features, and visual features (bag-of-
word SURF and a histogram of optical flow). In general, the
multimodal network yields comparable performance to the
baseline (chance accuracy is 5%).

In addition, we tested the accuracy of networks trained on
individual sensory modalities as a function of time over the
course of each interaction. For example, the hold behavior’s
duration was 1.2 seconds but we hypothesized that the robot
would not need all 1.2 seconds of sensory signals to make a
good prediction. Figure 8 shows the accuracy curve for every
combination of interaction and sensory modality. The results
show that for many behaviors, accurate predications can be
made without needing to execute the entire behavior. This
result is important as behavioral exploration of objects can
be costly in terms of time and suggests that in future work,
exploratory behaviors can be designed not only to maximize
accuracy but also to minimize their duration such that a robot
can learn object properties quicker.

3) F-Score Results of Category Recognition: F-scores
shown in Figure 9 indicate which modality and behavior
work better for each category. For categories in which all
the objects have similar shape and color, the visual modality
network performs better than the auditory and haptic models.
For hold and lift interactions, the haptic network detects
categories better than the sound network. Overall, the results
show that different modalities and behaviors are relevant for
different categories and suggests that robots need to purpose-
fully select relevant actions when learning new categories.

V. CONCLUSION AND FUTURE WORK

Recognizing the category of objects is an important task
for robots operating in human inhabited environments. We
proposed deep learning techniques for object categorization
using visual, auditory and haptic data acquired through
behavioral interactions that a humanoid robot can perform
on objects. We demonstrated how the robot learns to detect
an object’s category using a neural network for each of the
sensory modalities individually. In addition, we propose a
novel strategy that efficiently combines sensory modalities
in a single classifier. Furthermore, unlike previous work,
we showed that a robot does not need data from the entire
interaction, but instead can make a good prediction early on
during behavior execution.

In ongoing and future work, we are investigating the
spectrum of early vs. late sensory integration in the context of
category learning. In our experiments, we found that adding
a fusion module, consisting of one layer, increased perfor-
mance as compared to training separate modality-specific
networks and combining their outputs; yet, it is an open
question how deep the fusion module should be to achieve
optimal performance. Another open question to be pursued
in future work is how to incrementally learn new categories
instead of learning all categories at the same time. The
ability to acquire new categories on the fly would enable this
approach to be used in grounded language learning settings,
where a robot in a human inhabited environment encounters
new words describing objects over time as it interacts with
the people around it. Finally, to test the proposed method in
a more complex scenario, we can keep multiple objects in
the working space of the robot.
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Fig. 8. Accuracy curve for all the interactions and sensory modalities. The x-axis is duration (seconds) and the y-axis is accuracy.

Fig. 9. Recognition F -score for each category behavior, and sensory modality: (v)isual, (a)uditory, (h)aptic and (m)ultimodal.
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