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ABSTRACT
Software reverse engineering is a challenging and time consuming
task. With the growing demand for reverse engineering in vulnera-
bility discovery and malware analysis, manual reverse engineering
cannot scale to meet the demand. There has been significant ef-
fort to develop automated tooling to support reverse engineers,
but many reverse engineers report not using these tools. In this
paper, we seek to understand whether this lack of use is an issue
of usability. We performed a iterative open coding of 288 reverse
engineering tools to identify common input and output methods, as
well as whether the tools adhered to usability guidelines established
in prior work. We found that most reverse engineering tools have
limited interaction and usability support. However, usability issues
vary between dynamic and static tools. Dynamic tools were less
likely to provide easy-to-use interfaces, while static tools often did
not allow reverse engineers to adjust the analysis. Based on our
findings, we give recommendations for reverse engineering frame-
work developers and suggest directions for future HCI research in
reverse engineering.
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1 INTRODUCTION
Software reverse engineering is a key component of common tasks
performed by security professionals, such as vulnerability discovery
and malware analysis [13, 63], [18, pp. 5-7]. With yearly increases
in cybercrime, such as ransomeware [44], and the use of off-the-
shelf software [29], the demand for effective reverse engineering
continues to grow to analyze and defend against malware and
perform necessary vulnerability review, respectively.
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Reverse engineering is often a manual and artisanal craft, requir-
ing considerable expertise and potentially heroic effort [62]. For
example, Yakdan et al. observed reverse engineers (REs) required
about 39 minutes on average to analyze even small decompiled
programs (i.e., 150 lines of source code) [64]. Due to the complexity
of reverse engineering, there is a limited population of qualified
REs to perform this type of analysis [38], which cannot practically
scale to meet this growing need.

To close this gap, there has been considerable effort to develop
reverse engineering automation. This includes tools to simplify
the reverse engineering process, e.g., by automatically renaming
variable or inferring data structures [3, 4, 11, 35, 37, 64], or automat-
ing the entire process, e.g., by automatically finding exploitable
vulnerabilities [6, 15, 26, 34, 56, 57]. There have also been multiple
reverse engineering frameworks built that provide basic functionali-
ties (e.g., disassembler, decompiler, debugger) and extensible plugin
languages [1, 32, 50, 60]. These frameworks allow REs to develop
scripts for specific functionality needs and share plugins with oth-
ers [61].

While there is a growing supply of program analysis tooling,
prior work showed these tools often are not used [27, 62]. Even
Hex-Rays—the developers of the most popular reverse engineering
framework IDA Pro, describes some of their best user-created plug-
ins as “not exactly a walk in the park” to build and use.1 We expect
this gap occurs for two reasons: reverse engineering tools’ designs
do not always mesh with REs’ needs and mental models and many
tools are not designed for usability.

In this paper, we perform, to our knowledge, the first usability
survey of reverse engineering tools. Specifically, we seek to answer
the following questions:

• RQ1: What are the current interaction modalities for reverse
engineering tools?

• RQ2: Do current tools fit into REs’ mental models and are
designed for RE usability?

RQ1 seeks to enumerate the current common modes of human-
computer interaction (HCI) in reverse engineering. Because reverse
engineering tools are often developed in an ad-hoc manner, this
review can identify the common types of information for input and
output and provide insights for interactions that could be adopted
to improve user experience design. To answer this question, we

1https://hex-rays.com/contests_details/contest2016/#ponce
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performed an iterative open coding analysis [16], identifying input
and output modalities of reverse engineering tools. RQ2 considers
our primary question of usability. Because it would not be feasible
to measure actual usability of each tool, i.e., have REs use each tool
and measure performance and frustrations, we estimate usability
through a heuristic evaluation. Specifically, we rely on the reverse
engineering process model and usability guidelines proposed in our
previous work [62]. By evaluating how a tool fits into this process
model, we determine how it would fit with REs’ mental models and
the usability guidelines highlight the needs reported by REs. We
performed a broad search for available reverse engineering tools,
using existing lists [33, 46, 51, 59, 60], prior literature [5, 53, 55,
59], and reverse engineering keyword searches. We performed our
open coding and heuristic evaluation on a sample of 288 reverse
engineering tools.

We found that most reverse engineering tools have limited inter-
action and usability support. Most tools (56% 164/288) do not allow
input beyond the analyzed program and many (48% 138/288) do not
report their results in the context of code. The vast majority (88%
253/288) of tools have not implemented more than half of our pro-
posed usability guidelines [62]. However, the issues with usability
are not uniform across tools of differing functionality types. While
dynamic tools often do not support readability improvements or
interactions in the context of the code, static tools generally inte-
grate with reverse engineering frameworks, using available APIs to
produce more intuitive interactions. Conversely, static tools provide
little ability for REs to tune analysis, while the use of configuration
files and command-line options to adjust analysis parameters is
common among dynamic tools.

We provide recommendations for reverse engineering frame-
work developers to support improved reverse engineering usability
broadly, as well as directions for future work in HCI research for
reverse engineering tools.

2 BACKGROUND
Recent work in reverse engineering is beginning to consider human
factors. There have been investigations into the way REs work
together [45], how reverse engineering experience impacts their
actions and strategies [9, 14, 20, 40, 66], how REs choose which
software to investigate [2], and differences between demographic
groups [14, 23, 63].

Most relevant to our work, has been the study of REs’ processes
when investigating a program. Through interviews with four REs,
Bryant presented the first reverse engineering process model, de-
scribing reverse engineering as a sensemaking process where REs
generate and test hypotheses iteratively [12]. Ceccato et al. per-
formed an in-depth review of professional penetration testing ef-
forts on three case study programs, along with the result of an
open public challenge producing similar findings in the context of
obfuscated code reverse engineering [14].

Similarly, in our prior research, we conducted 16 retrospective ob-
servational interviews with expert REs to understand their process
when investigating and unfamiliar program [62]. This approach
yielded a number of key insights, most notable is a three-phase
model of RE analysis. In this model, REs begin with a high-level
program overview to identify components of interest and estab-
lish initial hypotheses about the functionality. Then, reviewing the

functions or blocks of interest, REs perform subcomponent scan-
ning, quickly reviewing pieces of the program to refine their initial
suspicious about the software. Then REs shift into focused experi-
mentation when they needed to answer specific questions. REs use
the results of the focused experiments to drive further scanning,
which leads to new questions and additional experimentation. REs
iterate between subcomponent scanning and focused experimen-
tation, learning more about the program until they can answer
their target questions (e.g., identify a vulnerability, understand a
malware infection).

Based on this model and our interviews, we established the
following five usability guidelines:

G1 Match interaction with analysis phases. Reverse engi-
neering tools should be designed to facilitate each analysis
phase: overview, subcomponent scanning, and focused ex-
perimentation.

G2 Present input and output in the context of code. Inte-
grate analysis interaction into the disassembler or decom-
piled code view to support tool adoption.

G3 Allow data transfer between static and dynamic con-
texts. Static and dynamic analyses should be tightly coupled
so that users can switch between them during exploration.

G4 Allow selection of analysis methods. When multiple
options for analysis or levels of approximation are available,
ask the user to decide which to use.

G5 Support readability improvements. Infer semantic in-
formation from the code where possible and allow users to
change variable names, add notes, and correct decompilation
to improve readability.

In this paper, we utilize the three-phase model from our prior
work to ground our analysis of tool purpose (Section 4.3) as it
presents the most thorough representation of the reverse engineer-
ing process. This model has also been validated by subsequent
large-scale RE studies [20, 40] and similar qualitative RE investi-
gations, e.g., into dynamic malware analysis [66] and hardware
reverse engineering [9]. We also found the three phases were suffi-
cient to accurately apply labels to all tools.

3 RELATEDWORK
While we believe our work is the first to thoroughly investigate cur-
rent reverse engineering tool usability, there has been significant
prior effort to survey current reverse engineering tools’ functional-
ity, and develop more usable tooling on a technique-by-technique
basis. In this section, we summarize and compare our study to this
prior work.

3.1 Tool Surveys
Perhaps most similar to our survey is the twice-annual Edge of
the Art report by TwoSix Labs, which outlines advancements in
cyber security community tools, focusing on reverse engineering
tools [59]. This living document captures available tools, their ca-
pabilities, program analysis theories and concrete approaches em-
ployed, as well as a general notion of tool usability. However, they
do not explicitly define or cite an assessed definition of usability.
We establish usability criteria as a primary assessor of various re-
verse engineering tools and conduct a more in-depth and rigorous
qualitative coding process.
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Several prior papers have reviewed existing reverse engineering
tools as part of systemizations of the program analysis literature in
various sub-areas. For example, Schwartz et al. reviewed dynamic
taint analysis and forward symbolic execution tools to produce a
precise definition of these techniques [53]. Arusoaie et al. review
open-source static analysis C/C++ vulnerability discovery tools
to compare their detection and false positive rates [5]. Similarly,
Shoshitaishvili et al. survey and reproduce offensive binary analysis
tools into a single coherent framework to allow comparison [55].
This prior work outlines the various functionalities and presents
existing tools, but they do not consider usability in their review.
We use these reviews, along with the Edge of the Art report as
seeds for our tool search (Section 4.1) and to guide our functionality
definitions (Section 4.3.3).

3.2 Technique-Specific Usability
Prior work has also focused on usability challenges specific to vari-
ous program analysis techniques or aspects of reverse engineering.
For example, Ploger et al. studied the usability challenges beginners
faced when trying to setup and run a fuzzer and static analyzer,
showing that the challenge of setting up these tools posed a signifi-
cant barrier to use [48]. Focusing on the issue of seed generation in
the context of mutational fuzzers, Shoshitaishvili et al. developed
the HaCRS system, which created an interface allowing general
users to provide input seeds without any fuzzer or even program-
ming knowledge [56].

Another area of focus has been on improving program read-
ability. Perhaps the best example is Yakdan et al. development of
DREAM++, a usability-optimized decompiler, which used heuristic-
based transformations to improve decompiled code readability. Sim-
ilar tools have been developed using various AI/ML techniques to
infer variable/function names, object structures, and types, to aid
program comprehension [3, 4, 11, 35, 37].

We have also previously considered reverse engineering plug-
ins, but focused specifically on the NSA’s Ghidra framework [61].
Through a review of 1590 community forum posts directly before
and after the public release of Ghidra, we sought to understand
the functionality and usability concerns REs have about Ghidra by
analyzing the questions asked. We observed the ability to customize
tools was of primary importance to REs, but were unable to show
specific aspects of customization, nor provide significant insights
into tool usability questions due to the lack of comparison with
other tools. This work investigating specific aspects of usability
and developing more usable tools is important because it leads to
better tooling. However, we chose to take a broader, more holistic
view of the reverse engineering tools landscape to understand the
breadth of usability issues and guide future, similar, tailored work.

4 METHODS
In this section, we discuss howwe identified RE tools for evaluation,
our qualitative coding process, and our quantitative analysis of the
coded results. An overview of our workflow is given in Figure 1.

4.1 Tool Search Process
Our first step was to identify current reverse engineering tools
(Figure 1.A). RE tools can be divided into two categories: standalone

Framework Tools Found Tools Coded
Ghidra 75 56
IDA 204 101*
Binary Ninja 78 47
Radare2 50 34
Standalone 55 50
Total 462 288

Table 1: Total number of tools found through our search and
the number qualitatively coded after applying our exclusion
criteria. The * indicates that the count of IDA plugins coded
was a random sample of 62% of the 162 tools after initial
exclusion review.

and framework plugins. Standalone operate as a self-contained
program, whereas, plugins function as an extension of a broader
tooling framework.

REs have a choice between several security frameworks that offer
similar baseline functionality. These frameworks provide binary
disassembly and sometimes decompilation, variable name editing,
and other functionalities. Each framework allows REs to create
plugins to extend the features, leveraging the information and
UIs produced by the framework. Based on discussions with seven
RE experts and prior literature [55, 59, 61–63], we identified four
popular, extendable RE frameworks to use for our review: Ghidra,
IDA, Radare2, and Binary Ninja.

To ensure an extensive tool survey, we applied multiple search
methods. We performed keyword searches of Github, Google, and
Twitter. We also reviewed each framework’s web pages looking
for downloadable plugins to run and considered tools mentioned
in prior literature reviews [5, 53, 55, 59]. The specifics of our tool
search process are given in the supplemental material 2.

Our RE tool search was conducted between January and May of
2021. We identified 462 unique tools (407 plugins; 55 standalone).
The final counts of identified tools are given in the second column
of Table 1.

4.2 Exclusion Criteria
We cast a broad net for reverse engineering tools. However, not
all plugins or standalone tools provide functionality relevant to
our review. After the initial search, we refined our list using the
exclusion criteria below.
RE-specific tools only.Wewere concerned with tools that provide
functionality specifically for the reverse engineering process. Tools
with a focus on utility were excluded, such as Screenshot Ninja
which provides a more streamlined way to take screenshots in
Binary Ninja. 53 non-RE-specific tools were excluded from review.
Extending architecture support.We excluded plugins that added
support for different instruction set architectures to a framework
without including any new functionality. For example, plugins for
loading popular gaming systems, such as Sega Genesis [42] and
Gameboy [49], which allow REs to analyze games produced for
these systems. We excluded 65 architecture support plugins.
Random sample of IDA plugins. We coded every remaining
Ghidra, Binary Ninja, and Radare2 plugin and standalone tool after
2https://osf.io/ec7j9/
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Figure 1: Workflow diagram showing our methodology from sourcing tools to final statistical analysis

Variable Definition Values 𝛼

RQ
1

Input Content The types of information provided as tool input See Table 4 1

Output Content The types of information provided as tool output See Table 5 .89
Output Method How the output is presented See Table 6 0.843

RQ
2

Analysis Phase Which RE mental model analysis phase the tool is used in Overview/Subcomponent/
Experimentation .815

UI in Code The tool presents input and output in the code viewer Yes/No –*
Static+Dynamic The tool operates on static and dynamic information Yes/No 1
Analysis Tuning The tool allows the RE to tune the analysis Yes/No 1
Readability The tool improves the program’s readability Yes/No 1
Functionality What static and/or dynamic analysis does the tool perform See Tables 7 and 8 0.833

Table 2: An overview of the codebooks used in our reverse engineering tool qualitative coding process. Detailed codebook
descriptions are provided in Appendix B. Note, adherence to the UI in Code guideline was determined based on the RQ1 coding
results and thus no additional IRR calculation was required.

applying our exclusion criteria. However, IDA hadmore than double
every other framework. Because of the significant amount of time
necessary to analyze each plugin, we chose to perform a random
sample of the IDA plugins. Specifically, we qualitatively coded
tools until we reached thematic saturation, i.e., no new themes
were identified with further review—a common stopping criteria
for initial coding—and we had coded at least 50% of the plugins
(i.e., 100 plugins). However, because some plugins were removed
according to our exclusion criteria, the final sample was at least
62%3 of the total IDA plugins. We coded 288 tools (238 plugins; 50
standalone).The final number of tools coded for each framework
and standalone tools are given in Table 1.

4.3 Qualitative Analysis
To begin analyzing our sample of reverse engineering tools, we
performed a qualitative coding of each tool considering multiple
variables related to interaction modalities, tool usability, and tool
functionality. In this section, we describe each coded element, as
well as our coding process. Table 2 provides a summary of our
codebook.

In qualitative coding, the researchers’ expertise impacts the code-
book and code application, especially with domain-specific topics.
Our team included one researcher with eight years of professional
RE experience, and tool development and usability testing experi-
ence; one researcher with one year of professional RE experience,
and one researcher with limited prior RE experience. The two less
experienced researchers coded the tools and consulted the expert to
ensure appropriate code use. The codebook was designed so codes
were straightforward and objective with positive and negative ex-
amples.

3This percentage may be higher as some unreviewed plugins would have been removed
based on our exclusion criteria after review.

4.3.1 Interaction Modalities (RQ1). To evaluate how REs interact
with their tools, we analyzed the input and output options. Specifi-
cally, we coded three variables: input content, output content, and
output method.
Input Content. First, we consider what types of input an RE can
provide the tools. This includes direct inputs (e.g., input file, com-
mand line flags, GUI) and configuration information (e.g., configu-
ration files, environment flags).
Output Content. Next, we reviewed what types of information are
given as output. This could be provided at the end of the tool’s exe-
cution or intermittently as the tool operates and the user interacts
with it.
Output Method. For the output, we also considered how and
where this information was presented. This includes output on the
command line, in a GUI, as well as different ways outputs could
be visualized. Note, we did not consider input method because the
way in which the RE provides the input is often inherent in the
type provided.

4.3.2 Usability Evaluation (RQ2). To evaluate how existing plugins
align with the reverse engineering process and mental models, we
identified which phase(s) of the three-phase RE process model [62]
it was intended to be used during, and coded whether the tool
applied each of our previously established usability guidelines. We
discuss the coding of phases and guidelines below.
Match interaction with analysis phase (Analysis Phase; G1).
As we discussed in Section 2, our prior work identified three phases
of the reverse engineering process: overview, subcomponent scan-
ning, and focused experimentation. To understand where each tool
fits with the reverse engineering process, we included a binary
variable for each phase indicating whether the tool could be used
in that phase based on its functionality. We found the three phases
to be sufficient when applying labels to each tool. Every tool fit
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into one (or more) of the three phases and a tool was never forced
into a phase.

Our first proposed usability guideline suggests tools should sup-
port transitions between each phase. When tools had functionality
covering multiple phases, we evaluated whether the functionality
in each phase supported transitions between phases. If the tool was
coded for two neighboring phases (i.e. overview/subcomponent
scanning or subcomponent scanning/focused experimentation) and
the information from the plugin could be used across both phases,
the tool would satisfy G1.
Present input and output in the context of code (UI in Code;
G2). This usability guideline was not explicitly coded in our code-
book, but was instead captured through the different input and out-
put modalities we measured for each tool. Whenever a tool would
receive input or display output directly integrated with the code
viewer or code execution graphs, the tool would also be marked as
satisfying G2. Any tools that directly modify the original binary or
annotate the program also fall under G2.
Allow data transfer between static and dynamic contexts
(Static+Dyanmic; G3)). Our prior work suggested reverse engi-
neering tools support the transition between static and dynamic
contexts. This support reduces the cognitive load on REs as they
switch between static and dynamic methods. For each tool, we
considered whether it helped users reason over static and dynamic
information by mixing these two types of analyses internally or
providing output from one context in a presentation of the other.
For example, if a tool presented the outputs of a dynamic execu-
tion trace within a disassembled code view, it would be marked as
meeting this guideline.
Allow selection of analysis methods (Analysis Tuning; G4).
We evaluated whether reverse engineering tools allow the RE to
examine results with varying levels of approximation. Throughout
the RE process, REs choose different methods to use based off their
prior experience and previous results. By enabling users to adjust
how a tool operates to better fit their needs, tools allow REs to
better explore their hypotheses and validate their results.
Support readability improvements (Readability; G5). Improv-
ing program readability is a key step in the reverse engineering
process as REs try to better simplify and understand the inspected
code. Many REs spend time manually annotating different variables
or function signatures with semantic information about their use
and functionality. Tools that automate this process can expedite
reverse engineering. We include a binary variable in our analysis
to indicate whether the tool produces output to make it easier for
an RE to understand a program.

4.3.3 Functionality Type. In addition to understanding the usability
of reverse engineering tools generally, we also sought to identify
differences between different tool functionalities. Functionality
types were divided between static and dynamic functions and we
began with definitions from prior literature reviews in program
analysis and tool surveys [5, 53, 55, 59]. Multiple functionalities
(static and dynamic) could be coded for a single tool.

4.3.4 Analysis process. Two research team members developed
the initial codebook by cooperatively coding the 47 Binary Ninja
plugins using iterative open coding [17], and through discussions

with the full research team (Figure 1.B). Next, two researchers inde-
pendently coded tools in groups of 10 (switching to groups of 20
after 3 rounds) beginning with the initial codebook and allowing
additional codes to emerge from the data. After each round, the
researchers met to compare codes, resolve disagreements, update
the codebooks, and when necessary, re-code tools(Figure 1.C). We
calculated Krippendorff’s alpha (𝛼) using the ReCal2 software pack-
age [21] to measure inter-coder reliability. We used Krippendorff’s
alpha as it provides a conservative measure, accounting for chance
agreements [30]. This process was repeated five times until 𝛼 ex-
ceeded 0.80 for each variable, Krippendorff’s recommended thresh-
old [30]. Final 𝛼 values for each variable are reported in Table 2.
The remaining tools were divided between the two researchers and
coded independently by a single researcher.

After completing our open coding, we performed axial coding
(Figure 1.D) to determine groups of codes for each variable [58,
pg. 123-142]. Axial coding identifies connections between codes
to extract higher-level representations that reduce the number of
comparisons for our quantitative analysis (described next, in Sec-
tion 4.4).

To evaluate each tool on our codebook criteria first we reviewed
the provided documentation. Many of the tools have extensive
documentation with sample images and videos that are detailed
enough to fully fill out our codebook. In the case where the docu-
mentation was insufficient, we download and install the tool as per
the installation instructions. Several tools provided toy binaries to
test the functionality of the tool which could be repeatedly used
for other tools of similar functionality.

4.4 Quantitative Analysis
With the resulting data, we sought to compare trends in the fre-
quency of different interactions and the likelihood of each usabil-
ity guideline being adopted. Because tool design varies based on
functionality and purpose, we consider the functionality type and
analysis phase in our analysis. Since the four frameworks support
the entire RE process, they offer similar features with similar plugin
types. Our sample size limited the number of statistical comparisons
we had sufficient power to perform, therefore we did not include
inter-framework comparisons.
Interaction modality comparisons (RQ1). To compare trends
in interaction modalities, we performed a series of Chi-Squared
tests—appropriate for categorical data [22]—to compare the tools in-
cluding each interaction modality type against those with another,
assessing the effect size (𝜙) and significance (𝑝 − 𝑣𝑎𝑙𝑢𝑒) of the dif-
ference. For each interaction modality variable (i.e., input content,
output content, and output method), we performed three sets of
tests each with a different covariate: one comparing modalities in
each of the three analysis phases, one comparing modalities in tools
implementing static versus dynamic functionality, and one compar-
ing modalities in integrated plugins, standalone tools, and client
plugins. For each set of comparisons, we began with an omnibus
test to determine whether any statistically significant difference
existed betweenmodalities across the covariates. If the omnibus pro-
duced a statistically significant result, we performed a full-factorial
pairwise comparison between the modality’s groups and the tested
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covariate. Because we are doing multiple comparisons, we adjust
the results using a Benjamini-Hochberg (BH) correction [10].
Usability guideline comparisons (RQ2). For each guideline, we
performed a logistic regression to understand whether the analysis
phase or functionality type were correlated with guideline adher-
ence. In each initial model, our independent variables included
a binary variable for each analysis phase (overview, subcompo-
nent scanning, and experimentation) indicating whether the tool
was used in that phase, as well as a functionality type variable
indicating whether the tool provided static, dynamic, or both func-
tionalities. The dependent variable for each model was a binary
variable indicating whether tool applied the relevant guideline. We
calculated the Bayesian Information Criterion (BIC)—a standard
metric for model fit [63]—for all possible combinations of the initial
independent variables. To determine the optimal model and avoid
over-fitting, we selected the minimum BIC model.

4.5 Limitations
There are several limitations inherent to our methodology. First, we
evaluate tools based on a heuristic model of usability, not through
a user study. It is likely there are tool design elements which make
the reviewed reverse engineering tools more or less usable, not
captured in our heuristics. However, it is not feasible to recruit
a sufficiently large sample of REs to conduct a broad interactive
usability review of reverse engineering tools. Therefore, our work
offers a necessary first pass to provide focus for future user studies.
We were not able to find any reliable metric to gauge tool popular-
ity. Knowing tool popularity would have allowed us to weigh our
analysis toward tools that are more commonly used and therefore
effect more REs. Initially we considered using Github’s Stargazers,
but we found this feature was not used often by REs and is not a
reliable measure of popularity. Further, not all reverse engineering
tools are distributed on Github, so this was not comparable across
the sample. Although we encountered many duplicate listings of
the same tool, a selection of unique tools will not be captured in
our data set. However, due to our extensive search process, we
believe our sample represents a large enough portion of the total
population to uncover representative trends.

5 TOOL CHARACTERISTICS
We begin by setting the stage for our analysis by discussing the 288
coded reverse engineering tools’ general characteristics. We report
the coded tools’ functionality and phase of use to demonstrate how
and when they are used. These results characterize our sample and
operate as covariates for our primary analyses (Sections 6 and 7).

5.1 Functionality
First, we describe the types of tool functionality divided into static
and dynamic functionality. For brevity, we do not provide detailed
descriptions of each functionality type and only describe repre-
sentative tool examples and trends. The full list, taken from prior
work [5, 53, 55, 59], and functionality counts are given in Appen-
dix B.
Static analysis was most common. Most tools included static
analyses (85%, 244/288). This was dominated by heuristic scanning
(61%, 148/244), which search the file for a pattern (often a string)

and highlights instances. Inter-tool transfer (20%, 49/244), which
allowed REs to import/export data to allow data sharing between
tools, was the second most common. Several tools produced code
visualizations (17%, 42/244), such as control flow or code complexity
graphs. Another common static type was tools that modified a
framework’s function (12%, 29/244), such as Ghidra-Jupyter which
creates a Jupyter notebook linked to the RE’s Ghirda instance [24],
but do not provide functionality for a specific reverse engineering
task. Other common static analyses include symbolic execution (7%,
18/244) and disassemblers (7%, 17/244).
Dynamic analysis was most common in standalone tools.
Dynamic functionality was less common overall (29%, 84/288), but
it was much more common in standalone tools—68% had dynamic
functionality (34/50). There were only a few common dynamic
analysis types: fuzzers (33%, 28/84), debuggers (30%, 25/84), and
tools that patch a binary to allow dynamic logging (27%, 24/84).
These three types made up 88% of dynamic analyses.

5.2 Reverse Engineering Phase
Next, we describe the reverse engineering phases in which tools
were designed to be used.
Framework plugins were most often designed for the
overview phase. 68% of plugins (163/238) were designed to provide
REs a high-level overview of the program. Further, most plugins
were designed only to provide an overview (59%, 141/238). Con-
versely, few standalone tools were used in the overview phase (42%,
21/50).
Focused experimentation was most common in standalone
tools. Standalone tools primarily focused on supporting REs as they
test hypotheses and ask specific questions. 64% of standalone tools
(32/50) were designed to be used during focused experimentation
and 58% (29/50) exclusively so. Whereas, 15% of plugins (36/238)
were used in only the focused experimentation phase.
Subcomponent scanning was the least common analysis
phase. Tools meant to be used in the subcomponent scanning phase
were the least common, with 18% (53/288) having some subcompo-
nent scanning functionality and only 11% (33/288) used exclusively
in this phase.

6 INTERACTION MODALITIES (RQ1)
Next, we describe the different interaction modalities available to
REs to interact with the tools divided by input content, output
content and output method. The full list and counts of different
input/output types are given in the Appendix in Tables 4, 5, and 6.

6.1 Input Types
Many plugins only take a file as input. The vast majority of
reverse engineering tools (91%, 261/288) take a binary or assembly
file as input as the analysis target. However, in 57% of tools (164/288),
this is the only input. This lack of interaction is more common in
plugins where 62% (148/238) only take an input file versus 32%
of standalone tools (16/50). For example, many heuristic scanning
plugins include hard-coded search patterns, requiring the RE to
edit plugin code to make adjustments.
Selected area is the most common input. Several tools allow an
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Figure 2: Stacked bar chart showing breakdown of analysis
phase by Input content type. The different groupings shown
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inputs are not shown as those two entries are present in 261
different tools.

Figure 3: Screenshot of Angr plugin for Ghidra showing pos-
sible RE inputs [43].

RE to select an area of the program, e.g., class, function, or segment
of code, to focus the analysis (17%, 49/288). For example, Figure 3
shows Angry Ghidra, a plugin that allows REs to indicate target
addresses to avoid during symbolic execution. These inputs are the
most commonly observed, as shown in Figure 2, which gives the
number of tools providing each input type.
Some tools allow analysis configuration. Some tools allow for
Analysis configuration. REs can provide user-defined scripts and
string lists (8%, 24/288), as well as operationmode flags (15%, 42/288).
In the first case, REs provide custom scripts or strings that direct
tool function. For example, climacros allows REs to use macros in
IDA’s command-line interface [7] to run user created scripts.
Standalone tools were more likely to allow operation mode
configuration. Tools were coded as providing operation mode
when command-line flags or configuration files could be modified
to change the analysis functionality. This input type was more
common among standalone tools (44%, 22/50) than plugins (8%,
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Figure 4: Stacked bar chart showing breakdown of analysis
phase byOutput content type. The different groupings shown
are used for Chi-squared tests.

20/238). For example, many fuzzers allow REs to adjust parameters
using command-line flags. Standalone tools make significantlymore
use of configuration information compared to selected area than
plugins (𝜒2 = 8.65, 𝑝 = 0.013).
Dynamic state information provided by another tool was
least common. Only 2% (7/288) of tools utilized dynamic state
information from another tool or between tool functionalities. This
includes four tools that accept program traces to highlight reached
code segments in the code viewer and a plugin that links gdb
with the IDA console to show the current line of code being de-
bugged [25]. We specifically consider dynamic state information
provided from tool-to-tool or function-to-function, as opposed to
dynamic state generally. All tools with dynamic functionality oper-
ate on dynamic state inherently as all static tools operate on the
target program code.
Selected area input is more common in subcomponent scan-
ning. Selected area input was significantly more common than
configuration input in the subcomponent scanning phase than the
overview (𝜒2 = 12.72, 𝑝 = 0.002) and focused experimentation (𝜒2
=15.73 , 𝑝 < 0.001 ) phases.This is expected as both subcomponent
scanning and focused experimentation phases have a primary fo-
cus on a program subset. Subcomponent scanning tools differ from
focused experimentation tools in their lack of other interaction
options. While 18% (33/184) of overview and 43% (36/83) of focused
experimentation tools provide configuration and dynamic state
inputs, this drops to 11% (6/53) for subcomponent scanning tools.
We did not observe any other statistically significant differences
between inputs across analysis phases or functionality types. A full
listing of our statistical test results after correction are given in the
supplemental material.

6.2 Output Types
Output most often highlighted program structure. A majority
of reverse engineering tools presented their output in the con-
text of the program’s hierarchical elements (73%, 209/288). This
included modifying or displaying function names and signatures
(52%, 151/288), variable names (27%, 79/288), classes (4%, 11/288),
and other statements throughout the program body (9%, 26/288).
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Figure 6: Screenshot of VulnFanatic which highlights vulner-
able function calls [41].

Several plugins made use of multiple structural elements (37%,
107/288) like IFL which creates an index-able table of functions,
arguments, and cross references the RE can use to navigate and
locate areas of interest [28].
Many tools highlighted cross-program relationships. Several
tools produced output regarding relationships across the program,
allowing the RE to identify links between components or focus
on segments with particular characteristics (45%, 129/288). This
included listing a function’s cross-references (26%, 75/288) or show-
ing all locations where a particular string or regular expression
matched (22%, 62/288). For example, FindCrypt can scan a binary
for common crypto and hashing constants to help the RE identify
which algorithms are used [52]. Finally, some tools highlighted
patterns in the raw binary file (1%, 3/288), such as high entropy
sections, which might suggest encrypted or packed code [39].
Dynamic tools are more likely to produce or extend sup-
plementary tool output. 28% (25/88) of dynamic tools produce
output making use of tool information. This includes debugging
information (16% 14/88), emulator information (11% 10/88), and
decompiler information (1% 1/88). This differs significantly from
static tools where only 11% (28/244) produced tool information. Our
Chi-squared tests showed static tools are significantly more likely to
make use of hierarchical (𝜒2 = 15.05, 𝑝 < 0.001) and cross-program

(𝜒2 = 25.27, 𝑝 < 0.001) information compared to dynamic tools. As
previously mentioned, most focused experimentation plugins are
dynamic tools. Therefore it follows that focused experimentation
tools are significantly more likely to make use of tool information
than cross-program information compared to overview tools (𝜒2 =
6.72, 𝑝 = 0.033).
Output was most often reported in text. Despite most reverse
engineering tools being integrated plugins that could leverage a
framework GUI, the most common method for results display was
plain text (49%, 116/238). This includes information displayed on
the integrated console log (20%, 48/238), an external command line
(10%, 25/238), and tables of text (18%, 42/238). Standalone tools are
particularly limited in their output methods, with only seven using
a visualization or GUI (15%, 7/50).
Some tools presented output in a code viewer. Despite 83%
of our data consisting of plugins, only 31% (89/288) of tools used
the code viewer to display results. This included modifying the
assembly (24%, 58/238) or decompiled code viewer (12%, 31/238),
or highlighting relevant code segments (7%, 16/238) as shown by
VulnFanatic in Figure 6. Static tools are significantly more likely
to use the code viewer than text (𝜒2 = 12.60, 𝑝 = 0.006). Plugins
were significantly more likely to use the code viewer than text
(𝜒2 = 14.96, 𝑝 = 0.002) and file modifications (𝜒2 = 6.97, 𝑝 = 0.046),
compared to standalone tools
Fewer tools utilized data visualizations. It was even more un-
common for reverse engineering tools to produce a graphical visual-
ization of the program to allow quick review (10%, 20/288) or create
their own pop-up or GUI window (10%, 28/288). This highlights the
fact that reverse engineering tool developers are unlikely to create
their own visualizations in current frameworks.
A few tools produced runnable output. Some tools created
executable output files as the analysis product (19%, 54/288). This
included modifying the target binary (8%, 23/288), such as Keypatch,
which allows REs to insert assembly instructions [19]. Other tools
produced scripts based on the analysis that could be applied in
later analysis (4%, 12/288). For example, IDA-climacros allows REs
to create static and dynamic macros to invoke during scripting or
while navigating the IDA GUI [7].

7 USABILITY GUIDELINES (RQ2)
Next, we discuss how current tools adhere to previously suggested
usability guidelines [62].
Supporting transitions between analysis phases was rare (G1).
While some tools included functionality in multiple phases (11%,
33/288), few supported transitions between phases (7%, 20/288).
For example, a heuristic scanning tool could identify potentially
vulnerable functions, but there was no tool interaction provided to
pass these results to a dynamic analysis for follow-on review.

One tool that helps facilitate the transition between phases is
Snippet Detector [67]. Snippet Detector allows a RE to add reverse
engineered code segments (i.e., snippets) to a database and label
them with relevant semantic information (e.g., rename functions),
a common process during subcomponent scanning. Then, the tool
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Variable Value OR CI p-value

Subcomponent F - - -
T 5.95 [2.78, 12.74] 0.001
(a) UI in Code (G2)

Variable Value OR CI p-value

Overview F - - -
T 3.07 [0.97, 9.65] 0.055

Subcomponent F - - -
T 2.45 [0.71, 8.42] 0.15

Functionality
S - - -
D 8.05 [1.95, 33.14] 0.004*
S/D 173.32 [49.65, 605.01] <0.001*
(b) Static+Dynamic (G3)

Variable Value OR CI p-value

Experimentation F - - -
T 4.03 [2.32, 6.99] <0.001*

(c) Analysis Tuning (G4)

Variable Value OR CI p-value

Experimentation F - - -
T 0.59 [0.29, 1.21] 0.15

Functionality
S - - -
D 0.09 [0.02, 0.33] <0.001*
S/D 0.39 [0.18, 0.86] 0.019*

(d) Readability (G5)

Table 3: Results from logistic regression for usability guide-
lines G2-5 vs analysis phase and functionality type. Odds
ratios greater than one imply the plugin is more likely to
meet the usability criteria than the base case, and less than
one imply the plugin is less likely to achieve the guideline
than base case. Significant effects are indicated with a *. Un-
der functionality, D indicates dynamic, S is static.

identifies syntactically or semantically matching snippets, provid-
ing overview support, and applying the RE-defined labels, simplify-
ing later subcomponent scanning. We did not observe statistically
significant differences between phases or functionality types; the
final regression results can be found in the supplemental material.
The majority of plugins used input/output in the context of
code (G2). 58% (139/238) of plugins allowed the RE to interact with
the tool in the context of code. This is most common in plugins
which present the results in the framework’s code viewer (62%
86/139). Only 22% (11/50) of standalone tools met this guideline.
Tools were also more likely to present input and output in context
of code in the subcomponent phase (OR = 5.95, 𝑝 < 0.001).
Tools that combine static and dynamic contexts are predom-
inantly experimentation and dynamic. While few tools inte-
grated static and dynamic contexts overall (17%, 48/288), 52% (25/48)
are used in the experimentation phase and 83% (40/48) included
dynamic functionality. Many were fuzzers leveraging symbolic ex-
ecution to expand their fuzzing path (20%, 10/48). For example,
Driller which combine symbolic execution with fuzzing to allow
the fuzzer to reach deeper portions of the program [57]. 44% (21/48)
of tools that combined static and dynamic data also allowed analy-
sis tuning. This suggests the more advanced tools often give REs
more flexibility.

Analysis tuning was most common during focused exper-
imentation (G4). Few tools allowed REs to tune their analysis
iteratively (28%, 81/288). Only 22% (41/184) overview tools and
23% (12/53) subcomponent scanning tools allow analysis tuning,
however this distribution flips with focused experimentation (49%,
41/83). As shown in Table 3c, if a plugin is used during focused
experimentation it is over 4 times (𝑝 < 0.001) more likely to allow
analysis method selection. This result was dominated by the use of
debuggers during focused experimentation, which are inherently
iterative, allowing the user to step through program execution and
introspect memory.
Readability improvements are most common (G5).Many tools
aimed to improve readability (46%, 133/288). 80% (106/133) of tools
that improved readability are static scanning tools that highlight
areas of code, or replace different matched strings. Readability im-
provements were also statistically significantly more likely when
tools employed static functionality types than tools with just dy-
namic functionality (OR = 0.09, 𝑝 < 0.001) or both static and dy-
namic functionality (OR = 0.39, 𝑝 = 0.019).

8 DISCUSSION
Our results indicate reverse engineering tools’ usability is generally
low. Most do not support input beyond the target file and many do
not provide output in the context of code or in a form beyond raw
text. While most tools adhere to at least one (78%, 226/288) or two
(49%, 141/288) usability guidelines, few meet more than half (15%,
43/288). However, the reason for limited usability is not uniform
across tool functionality. Specifically, we observed the following
overarching trends:

• Dynamic tools were less likely to improve readability and
ease of interaction. Static tools were often integrated into an
reverse engineering framework, leveraging existing UIs to
provide varied interactions and improve readability.

• Static tools allow less configuration and analysis tuning. To
modify program analysis, REs must modify the tool itself.
Conversely, Dynamic tools allowed REs to adjust analysis
parameters through configuration options.

Based on these results, we suggest the following recommenda-
tions to improve reverse engineering tool usability.
Improve reverse engineering framework interaction support.
The lack of interaction in standalone tools is likely caused by the
challenge of building new UIs for each tool. Our results and prior
work show reverse engineering tool developers are capable of pro-
ducing inventive new analyses and functionalities. However, in-
terface development requires additional time and different skills.
Instead, reverse engineering tool developers rely on the API support
from the frameworks, rarely opting to create their own UIs (10%,
28/288). We believe frameworks can play a large role in improv-
ing reverse engineering tool usability by adding more interaction
support. Reverse engineering frameworks already provide support
for static functionalities, which led to those tools providing richer
interactions and meeting the UI in Code and Readability guidelines.
However, there is limited support for dynamic analysis, which is
likely why these tools dominate the standalone category. To im-
prove usability, reverse engineering frameworks should seek to
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improve APIs for UI integration of dynamic analyses, and support
for combining static and dynamic analysis results.
HCI research in reverse engineering tool usability. We ob-
served several areas where available modes of interaction were
limited. There was very little interaction in the static tools for
analysis tuning beyond selecting a particular area. Even in the dy-
namic setting, the tuning options were often limited to text-based
configuration files and command-line options, not interactively
throughout use. Additionally, we observed few available interac-
tions in the subcomponent scanning phase. These gaps present a
clear opportunity for future research in interaction design. Because
there are limited options in this space, this suggests the need for
exploratory work to investigate user needs and patterns of manual
interaction throughout their tool use and modification of the tool’s
code. Based on use-inspired investigations, previous approaches
from other exploratory analysis domains, such as exploratory vi-
sual analysis [8, 31, 36, 47, 54, 65], may be appropriate or novel
interactions may be necessary to allow REs to run, review, and
adjust the analysis accordingly.
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A TOOL SEARCH PROCESS
Below are the different tool search methods employed to source
our data set:

• Framework-curated lists: Initially we searched the official
framework’s Github page and website for any links to user-
created plugins or lists of recommended plugins. These lists
typically indicate most popular and routinely maintained
plugins for the framework.

• Keyword search: We next searched Google and Github
broadly for plugins and extensions for each framework. We
made use of every combination of the terms IDA, Ghidra,
Radare, and Binary Ninja with the terms plugin and exten-
sion to find results for each framework. We searched every
resulting link for a downloadable plugin and continued on
until we repeatedly encountered duplicate plugins. For each
keyword search, we reviewed at least the first page of results.

• Twitter search: We searched each framework’s Twitter
page for plugin retweets. We also repeated our keyword
searches on Twitter. This method was specifically useful
for Ghidra. Ghidra is maintained by the National Security
Agency (NSA), so there are no officially approved plugin lists.
However, Ghidra’s official Twitter page retweets security
researchers when they publish a new plugin.

• Prior tool surveys: Lastly, we reviewed previously pub-
lished surveys of reverse engineering tool functionality [5,
53, 55, 59] to find individually published plugins and stan-
dalone tools. In particular, Tenaglia et al. [59] provided a
thorough overview and offered the most breadth for our
search.

B CODEBOOKS
In this section, we give the full definition and counts for the different
entries in our codebook. Starting with the input content codes
(Table 4), the output content codes (Table 5), the output method
codes (Table 6), and then the static (Table 7) and dynamic (Table 8)
functionality types.
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Code Definition Count
Input file
Binary file When the tool ONLY takes a binary file as input. 162
Assembly file When the tool ONLY takes an assembly file as input. 2
Selected area When the tool operates on a specific area the user can select. 49
Configuration
Scripts/Strings Whenever the user defines their own script, code, or values as input. 24
Operation mode When the user can specify a particular operation mode or set runtime flags for the tool. 42
Dynamic State
Trace info When the tool takes trace information as input. 5
Debugger info When the tool relies on debugging information or functions jointly with a debugger. 1
Memory dump When the tool take crash dump information or other memory dump information. 1

Table 4: Input Content Definitions: Table of each input type in the codebook listing the entry, its definition as it applies to the
tools, and the final count encountered across our data set.

Code Definition Count
Hierarchy

Function signatures When the tool produces information regarding function names, parameter information, and return
information. 151

Variable information When the tool output produces information regarding variable values or location. 79
New patched code When the tool modifies the input file to produce new patched code. 23
Selected area When the tool highlights an area of code / moves the user’s cursor to a specific location. 14
Class information When the tool output produces information regarding class structure. 11
Cross-program
Cross references When the tool produces cross reference locations of matched functions / variables / strings. 75
String matching When the tool produces a list of matched strings based on search parameters. 62
Binary file When the tool produces a new binary file. 3
Assembly file When the tool produces a new assembly file. 5
User modifications When the tool implements user modifications such as renaming all instances of a variable. 7
Tool info.
Binary data When the tool output concerns raw binary data or metrics. 3
Debugger info When the tool produces or modifies debugging information. 15
Decompiler info When the tool produces or modifies decompiler information. 13
Emulator info When the tool produces or modifies emulator information. 10
Framework output When the plugin modifies the framework’s output or modifies framework functionality. 17

Table 5: Output Content Definitions: Table of each output content type in the codebook listing the entry, its definition as it
applies to the tools, and the final count encountered across our data set.
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Codebook Entry Definition Count
Text
Command line When the tool output is provided on a command line not integrated with any framework. 62
Console log When the output of the plugin is produced on the integrated console log of the framework. 48
Table When the output is provided in tabular format. 44
Code View
Assembly Code Viewer When the output of the plugin is presented in the assembly code view of the framework. 58
Decompiled Code Viewer When the output of the plugin is presented in the decompiled code view of the framework. 31
Highlighted segments When the tool highlights an area of code. 16
File creation / modification When the tool modifies or creates a new file of any type. 61
Data Vis.
Graph visualization When the tool produces a graph or figure of the results. 30
GUI Window When the output is provided in a pop-up / integrated GUI window of the framework. 28
Image When the tool produces an image of the data. 1
Launches client plugin When the plugin launches an external tool to produce output or operate. 13

Table 6: Output Method Definitions: Table of each output method type in the codebook listing the entry, its definition as it
applies to the tools, and the final count encountered across our data set.

Codebook Entry Definition Count
Heuristic Scan /
Pattern matching When the tool scans the binary file, returning values based on predefined heuristics. 148

Inter Framework
Transfer

When the tool enables moving, copying, reporting metadata and connecting frameworks with
other frameworks or external tools. 49

Code Visualization These tools produce visualizations of the binary file, such as control flow graphs. 42
Mod Framework When the tool changes how REs interact with the framework not specific to any task. 29

Symbolic Execution These tools emulate dynamic analysis on different paths in a program to identify what parameters
on an input will create a specific path to a portion of the code being executed. 18

Disassembler When the tool extends the existing framework disassembler or functions as a disassembler. 17
Decompiler When the tool extends the existing framework decompiler or functions as a decompiler. 14
Diff When the tool identifies differences in two files or selected ranges. 9
Instruction Slicing When the tool implements machine code slicing to create simpler subsets of instructions. 1

Table 7: Static Functionality Definitions: Table of each static functionality type in the codebook listing the entry, its definition
as it applies to the tools, and the final count encountered across our data set.

Codebook Entry Definition Count
Fuzzing These tools provide random program inputs to discover new vulnerabilities or bugs. 28
Debugger These tools either extend or act as standard debuggers. 25
Hooking / Patching When the tool facilitates new patches to the binary or allows dynamic hooking. 24
Emulator When the tool emulates select functions or the entire binary to observe code behavior. 9
Kernel Symbol When the tool applies kernel symbols to binary or gathers kernel runtime information. 2
Devirtualize Calls When the tool uses runtime information to devirtualize or deobfuscate function calls. 2

Table 8: Dynamic Functionality Definitions: Table of each dynamic functionality type in the codebook, listing the entry, its
definition as it applies to the tools, and the final count encountered across our data set.
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