
An Investigation of Interaction and Information Needs for
Protocol Reverse Engineering Automation
Samantha Katcher∗

Department of Computer Science
Tufts University

Medford, Massachusetts, USA
MITRE Corporation

Bedford, Massachusetts, USA
samantha.katcher@tufts.edu

James Mattei∗
Department of Computer Science

Tufts University
Medford, Massachusetts, USA

james.mattei@tufts.edu

Jared Chandler
Department of Computer Science

Dartmouth College
Hanover, New Hampshire, USA

Jared.D.Chandler@dartmouth.edu

Daniel Votipka
Department of Computer Science

Tufts University
Medford, Massachusetts, USA
daniel.votipka@tufts.edu

Abstract
Protocol reverse engineering (ProtocolREing) consists of taking
streams of network data and inferring the communication protocol.
ProtocolREing is critical task in malware and system security anal-
ysis. Several ProtocolREing automation tools have been developed,
however, in practice, they are not used because they offer limited
interaction. Instead, reverse engineers (ProtocolREs) perform this
task manually or use less complex visualization tools. To give Pro-
tocolREs the power of more complex automation, we must first
understand ProtocolREs processes and information and interaction
needs to design better interfaces.

We interviewed 16 ProtocolREs, presenting a paper prototype
ProtocolREing automation interface, and ask them to discuss their
approach to ProtocolREing while using the tool and suggest missing
information and interactions. We designed our prototype based on
existing ProtocolREing tool features and prior reverse engineering
research’s usability guidelines. We found ProtocolREs follow a flex-
ible, hypothesis-driven process and identified multiple information
and interaction needs when validating the automation’s inferences.
We provide suggestions for future interaction design.

CCS Concepts
• Security and privacy → Software reverse engineering; •
Human-centered computing→ Interaction design; Human
computer interaction (HCI).

ACM Reference Format:
Samantha Katcher, James Mattei, Jared Chandler, and Daniel Votipka. 2025.
An Investigation of Interaction and Information Needs for Protocol Reverse
Engineering Automation. In CHI Conference on Human Factors in Computing

∗Both authors contributed equally to this research

This work is licensed under a Creative Commons Attribution 4.0 International License.
CHI ’25, Yokohama, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1394-1/25/04
https://doi.org/10.1145/3706598.3713630

Systems (CHI ’25), April 26–May 01, 2025, Yokohama, Japan. ACM, New York,
NY, USA, 21 pages. https://doi.org/10.1145/3706598.3713630

1 Introduction
There has been a long history of developing automation for re-
verse engineering, with significant research and industry invest-
ments made [3, 5, 19, 21, 32, 50, 63, 70, 74, 78]. While these efforts
have made significant strides, human intelligence is required to
supplement automation and will likely remain necessary for the
foreseeable future [11, 57, 77, 79]. Therefore, recent research has
focused on understanding and supporting reverse engineers’ pro-
cesses [11, 46, 75, 77]. However, there is limited human-automation
interaction research for reverse engineering, with existing research
focused on existing automation’s usability flaws [47], challenges
in automation setup [59], or developing novel AI/ML techniques
without primarily considering usability [2, 4, 7, 35, 43].

In this paper, we take a first step toward closing this gap. Be-
cause reverse engineering is a complex domain, we expect variation
in information and interaction needs for specific tasks. Therefore,
we first focus on a specific reverse engineering sub-field, protocol
reverse engineering (ProtocolREing). To our knowledge, prior work
investigating reverse engineering’s human factors has almost ex-
clusively considered software reverse engineering (SoftwareREing),
with none studying ProtocolREing. ProtocolREing is the task of
inferring a protocol, i.e., structured message sequence where each
message segment serves a specific purpose, from a stream of un-
structured data [39]. This task is most commonly performed for mal-
ware analysis, where an analyst reviews data transmitted between
a bot and bot controller to determine what is transferred to write
signatures for malware identification and potentially manipulating
these communications. ProtocolREing is also used when investigat-
ing the software is challenging. For example, embedded systems
often have unique architectures that are not supported by existing
disassembly and emulation tools. ProtocolREing can be thought
of as attempting to identify patterns in unstructured data, where
protocol reverse engineers (ProtocolREs) must consider many pos-
sible protocols and determine which fits the data. This differs from
SoftwareREing, where software reverse engineers’ (SoftwareREs)

https://orcid.org/0000-0001-9179-7905
https://orcid.org/0000-0002-0484-3596
https://orcid.org/0009-0008-7840-5215
https://orcid.org/0000-0001-9985-250X
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3706598.3713630
https://doi.org/10.1145/3706598.3713630

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Katcher et al.

task is to interpret a sequence of program instructions with known
meaning to determine their function. It is worth noting that Pro-
tocolREing is closer to problems in data science where an analyst
investigates data records to infer some relationship. However, in
ProtocolREing, there are clear logical and structural relationships
between fields in the underlying protocol, restricting the search
space of possible protocols. For example, messages are typically
divided into fields, multiples of a byte in size.

ProtocolREing’s ambiguity introduces a unique challenge and an
opportunity for automation to help ProtocolREs navigate this data.
Several tools have been developed to automate ProtocolREing [13,
36]. However, these tools offer limited interactivity only through
configuration file changes or modifications to the automation’s
codebase. This requires users to be familiar with the automation’s
design, creating a high barrier for interaction. Conversely, there
are full-featured user interfaces for manual ProtocolREing, most
notably Wireshark [25]. However, these tools only support limited
automation for matching data to known protocols (e.g., TLS, HTTP).
Because of the unique task characteristics and dearth of existing
tools, we sought to understand the interaction needs of ProtocolREs
to guide the development of the next-generation automation.

Specifically, we seek to answer the following research questions:

• RQ1: What process do ProtocolREs follow?
• RQ2: What information do ProtocolREs need from Protocol-
REing automation?

• RQ3: What interactions should ProtocolREing automation
support?

Because there is no existing literature on ProtocolREs, we sought
to understand ProtocolREs’ processes, e.g., what types of questions
they ask about the data, what hypotheses they generate, the specific
steps taken to learn more about the data, and what information
informs their decisions. We also wanted to understand their unique
information and interaction needs throughout.

To answer these questions, we drew inspiration from Votipka
et al.’s retrospective observational interviews with expert Softwar-
eREs to understand their process when investigating unfamiliar
programs [76]. As there is no theoretical basis on which to build
quantitative assessments, we pursued an exploratory qualitative ap-
proach drawing from prior work in expert decision-making [12, 40].

We conducted 16 interviews with ProtocolREing professionals,
asking them to interact with a paper prototype interface with au-
tomated features. We asked participants to consider sample tool
output from the automation and provide feedback on remaining
information needs, missing interactions, and thoughts on how au-
tomation can support or hinder their process.

We found that generally, the ProtocolREing process model cen-
ters around determining potential field boundaries and datatypes.
ProtocolREs cyclically update their hypotheses about field bound-
aries and datatypes, which are tightly coupled. ProtocolREs incorpo-
rate information from various sources, including context research
about the application (if available) and any tooling support. Pro-
tocolREs typically operate within field boundaries, occasionally
comparing a given field against its neighboring fields to validate
or challenge their current working hypothesis. Above all, Proto-
colREs need the ability to modify field boundaries, datatypes, and
other configuration options quickly and easily as they cycle quickly

between hypotheses, testing whether protocols that fit one part
continue to fit when looking at other message segments. Any tool-
ing or automation inhibiting this quick, cyclic process is highly
disruptive to ProtocolREs. This differs from SoftwareREing, which
has been shown to have a natural break between identifying a
hypothesis and testing that hypothesis, as the analyst shifts from
static to dynamic analysis.

Due to the application-specific nature of ProtocolREing and the
inherent ambiguity of the task, automated results should be conser-
vative and easy to reverse, acting as a guide to an iterative search.
This follows from the observation that the process was highly iter-
ative as ProtocolREs try multiple possible protocol options before
determining the correct ones. This could be seen in our participants’
nearly universal belief that automation could not correctly predict
an entire protocol, but was instead useful for providing suggestions
for parts of the protocol. Instead of taking the suggestion as an end
product, they wanted interactions that allowed adjusting the au-
tomation’s assumptions to refine the analysis and quickly validate
any suggestions iteratively. This suggests future work in human-
automation interaction is particularly important for ProtocolREing
as human review is necessary. Without good interaction design,
the automation is unlikely to be useful.

Finally, because the ProtocolREing process is mostly focused
on iterating possible datatypes and field boundaries, we observed
participants’ requests for additional information and interaction
were shaped by these two protocol properties. This included pro-
viding datatype definitions as a way of restricting automated sug-
gestions or navigating the search space by investigating neighbor
field boundaries.

From these results, we offer suggestions for ProtocolREing tool
developers and future research.

2 Background and Related Work
To our knowledge, no work has focused on understanding the
process and automation interaction needs of ProtocolREs. There-
fore, we begin by describing ProtocolREing and existing work on
automated techniques for ProtocolREing. Then, we describe the
literature on human factors of reverse engineering more generally.

2.1 Defining ProtocolREing
ProtocolREing is the task of recovering an abstract description of
the type, function, and sequence of data, i.e., a protocol, which
provides meaning to a sequence of bits. This task often takes the
form of analyzing the messages transmitted between systems to
understand what is being communicated. While ProtocolREing also
can be performed to infer a file format, we will discuss it in the
context of network communications for simplicity.

We now walk through the example used in our study to provide
a concrete picture of ProtocolREing. Imagine an analyst is given the
three hex messages shown at the top of Figure 1 in part A. These
messages represent network packets transmitted from an air traffic
control broadcasting station relaying information about in-progress
flights. Knowing the broadcast protocol could be useful for secu-
rity analysis, e.g., to support structured fuzzing-based analysis to
identify vulnerabilities, or other data processing to track the infor-
mation transmitted. It is possible to capture this information by

An Investigation of Interaction and Information Needs for Protocol Reverse Engineering Automation CHI ’25, April 26–May 01, 2025, Yokohama, Japan

inspecting the software’s instructions, i.e., SoftwareREing; however,
this is often challenging in legacy or embedded systems (such as
an air traffic control system, medical devices, or automotive equip-
ment) that use unique or no longer common architectures. Popular
disassemblers or emulators do not support many of these architec-
tures, making analyzing or running the code challenging. However,
capturing network traffic is simpler and more generally applicable.
ProtocolREing is also common in malware analysis, where code
obfuscation and anti-debugging techniques make SoftwareREing
difficult or impossible.

4708b89a0000012c41502052
4708b99a0000012a4f47414e
4708b1330000012a52444f20

35000.60
35001.60
34993.19

300
298
298

AP R
OGAN
RDO

A: Hex Messages

B: Split Fields

C: Decoded Fields

4708b89a 0000012c 41502052
4708b99a 0000012a 4f47414e
4708b133 0000012a 52444f20

ALTITUDE AIRSPEED DESTINATIOND: Semantic Meaning

Figure 1: Example hex messages (A) are examined by an an-
alyst. The analyst splits the messages into three fields (B)
based on similarities and differences in the data. Each field
is then decoded according to an inferred type (C) with the
resulting semantic meaning shown as (D).

No matter the scenario, ProtocolREs seek to reconstruct the mes-
sage format and uncover each field’s semantic meaning. They must
determine the meaning of these messages by identifying which
portions of each message belong to discrete fields (e.g., byte bound-
aries), the fields’ datatypes (e.g., float, integer, ASCII), and ultimately,
each field’s semantic meaning in the application’s context.

Returning to our air traffic control example, Figure 1.B shows
the ProtocolRE should divide each message into three fields, each of
4 bytes. Then, in Figure 1.C, these fields need to be converted into
their appropriate data types: a 32-bit IEEE Float, a 32-bit integer,
and a four-character ASCII field, respectively. They arrive at these
types by observing the range of values for each field and identifying
patterns associated with different datatypes. For example, the ASCII
field contains only values within the standard human-readable
ASCII range, while the Float field contains values mostly outside
that range. Similarly, the leading null bytes in the second field
indicate an integer where the most significant bits seldom change.

Finally, the ProtocolRE must infer what these fields represent.
They would examine the floating point, integer, and ASCII values
and infer they are related semantically to aircraft. The ProtocolRE
might note the ASCII values are consistent with airport destina-
tions, the floating point values fit aircraft cruising altitudes, and the
integer values match aircraft speeds. These semantic meanings are
shown in Figure 1.D. The information describing field boundaries,

data types, and semantic meanings comprise the protocol definition,
which could be used to interpret future messages consistent with
this protocol.

Our air traffic control scenario illustrates the challenges asso-
ciated with ProtocolREing due to the various datatypes used in
a single message and the lack of source code to validate findings.
For this scenario, a ProtocolRE must work exclusively with the
observed messages and could not rely on access to the aircraft, the
base station, or the software running on either.

ProtocolREing compared to SoftwareREing. Because signif-
icant prior work has investigated SoftwareREing, a natural next
question is whether ProtocolREing is sufficiently different in how
people perform the task, as both seek to infer function from program
data. The difference is in the data’s ambiguity. In SoftwareREing,
program instructions with a specific function are investigated. It
is the SoftwareRE’s task to interpret a sequence of instructions
according to their specification to determine their function when
performed in the given sequence. In contrast, ProtocolREs attempt
to determine meaning from unstructured data. In our air traffic
example, the ProtocolRE might try splitting the first field into two
2-byte fields instead of one 4-byte field. This changes possible data
types that could be used to decode the data and would impact the
perceived semantic meaning. Because there is no ground truth, the
ProtocolRE makes decisions about the data based on their most
likely interpretation and may adjust those opinions later. Therefore,
ProtocolREing is performed over many messages to identify trends
that reveal underlying structures.

2.2 Existing tools to support ProtocolREing
Manual ProtocolREing is challenging and time-consuming, espe-
cially as ProtocolREs review larger data volumes. Several tools exist
to help ProtocolREs visualize message data and perform common
ProtocolREing tasks.

One of the most well-known tools for examining network data
is Wireshark [25]. Wireshark is used to analyze packets’ sequences
and examine their values. Wireshark allows a ProtocolREs to fil-
ter packets by format and packet field values for known protocols
(e.g., TCP, HTTP). A ProtocolRE can then view both the raw binary
packet representation as hexadecimal data, the packet decoded as
text, and the individual packet fields interpreted when the packet is
known to belong to a specific protocol. However, Wireshark does
not provide interactive support for users attempting to determine
the specification of an unknown protocol. Instead, users must de-
termine the protocol separately and write a parser to be applied by
Wireshark. Additionally, Wireshark is generally limited to viewing
only one packet at a time, making between-packet comparisons
difficult.

Another popular online tool supporting ProtocolREing is Cy-
berChef [26]. CyberChef is aweb applicationwith several ProtocolREing-
relevant features, such as encoding or decoding Base64, Hex con-
versions, hash and checksum calculations, and IPv6 header parsing.
While CyberChef allows users to manipulate data without manag-
ing any custom algorithms, it offers limited automation or guidance
as to possibly appropriate data transformations.

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Katcher et al.

There exists significant academic work developing novel Pro-
tocolREing interfaces. Conti et al. presented a broad survey us-
ing visualizations to support security goals, including Protocol-
REing [15, 17]. However, these visualizations show data distribu-
tions instead of directly presenting messages. Other examples of
these visualizations incorporate temporal elements and multiple
file streams [1, 16].

An alternative approach comes from methods for investigating
binary files. These methods focus only on visualizing a single file
of unknown format. Conti et al.’s BytePlot interface is one exam-
ple [17]. BytePlot represents the same data with different visualiza-
tions, each tuned to various aspects and reverse engineering process
functions. For instance, one visualization provides an overview of
all file binary data, while another visually summarizes individual
regions’ byte-value distribution.

We leverage the features and designs of these tools as inspira-
tion for the prototype we used in our interviews as described in
Section 3.1.

Automation for ProtocolREing. A growing body of litera-
ture and development effort is directed at automation support for
ProtocolREing. There are various available tools with autonomous
features [22, 39, 54]. Broadly, ProtocolREing automation is classified
into two categories: tools that analyze captured network messages
exchanged between two components or tools that leverage source
code or binary files from the application to uncover the protocol
structure. For simplicity, we focused on the former for the paper
prototype.

Automation in this context attempts to identify three things:
message formats, field semantics, and rules governing the sequence
of exchanged messages. Several recent advancements in automated
field boundary detection leverage intrinsic repeated structures or
distributions of values throughout messages. Kleber et al. utilize
Sokal and Michener’s bitwise similarity metric to track the change
in congruence between bit values [38, 67]. This metric allows their
tool NEMESYS to select candidate field boundaries by identify-
ing inflection points at the rising edges of this congruence metric.
Luo et al. proposed using Latent Dirichlet Allocation models to
characterize message types and n-grams [8, 45]. This information
would be used for clustering algorithms to group similar fields
from messages that likely shared a type. Similarly, Ye et al. utilized
multiple-sequence alignment to justify all messages before using
probabilistic inference to cluster messages by their most likely
candidate type [80]. Chandler et al.’s BinaryInferno leverages an
ensemble of specialized detectors to identify common data types
and serialization patterns [13]. BinaryInferno identifies field bound-
aries by looking for all semantic types consistent with the message
bytes and then finding the overall description with the highest
explanatory power.

Although much prior work has developed novel automation
techniques for ProtocolREing, these tools do not support user inter-
action beyond complexmodification to configuration files or editing
the automation’s code. Therefore, it is unclear how these tools can
best provide inferences to ProtocolREs to help them analyze large
volumes of messages and support task efficiency. Our study inves-
tigates how to close this gap between functional interfaces and

automation, empowering the next generation of automation for
ProtocolREing.

2.3 User Studies with Reverse Engineers
To our knowledge, no prior studies have investigated the human
factors of ProtocolREing; a growing body of research has studied
the related tasks of SoftwareRE and hardware reverse engineering.
Specifically, this work has studied reverse engineers’ processes and
the usability of available tools in these contexts.

Investigating SoftwareREs’ processes. SoftwareREs were per-
haps first studied by Bryant, who conducted interviews with four
professional SoftwareREs and developed a sense-making model of
the SoftwareREing process [9]. Votipka et al. built on this work,
conducting 16 retrospective observational interviews with expert
SoftwareREs investigating an unfamiliar program [75]. Votipka et
al. refined the SoftwareREing process model into a three-phase
iterative model. They observed SoftwareREs typically began with
an overview phase, where they sought to identify code segments
of interest for further review. During this phase, SoftwareREs run
the program and observe its behavior, identify unique strings or
APIs used, and specific functions to investigate further. Next, Soft-
wareREs consider the segments identified in the subcomponent
scanning phase, reviewing them to generate hypotheses and spe-
cific questions. SoftwareREs scan for specific beacons and unique
data-flow or control-flow paths. Finally, they test their hypotheses
in the focused experimentation phase. In this phase, they execute
the program or mentally simulate it line-by-line to produce specific
answers for a certain input. Note, each of these phases is treated as
a distinct step, using different methods for each and dividing hy-
pothesis generation (overview and subcomponent scanning phases)
from testing (focused experimentation phase). Additionally, Soft-
wareREs often switch types of analysis between the subcomponent
scanning and focused experimentation phases, i.e., static and dy-
namic analysis, respectively. SoftwareREs typically iterate between
the subcomponent and experimentation phases, continually learn-
ing more about the program until they can answer their target
questions, such as identifying a vulnerability or understanding a
malware infection. This model has subsequently been supported
in large-scale quantitative measures showing how SoftwareREing
experience influences analyst actions and strategies [11, 24, 46].
Additionally, Becker et al. investigated another reverse engineering
field, hardware reverse engineering (HREing), looking at HRE’s tech-
nical and cognitive processes. They observed a similar three-phase
model for this sub-discipline of reverse engineering [6]. Although
the specific context differed from ours, we expected ProtocolREs
might have similar processes. Therefore, we utilized the process
model and design guidelines proposed from this prior body of re-
search for our paper prototype design (see Section 3.1) to ensure
the presented interfaces fit the users’ expected workflow.

Studies of SoftwareRE tool usability. Most related to our
work, recent studies have assessed the usability of specific tools
and techniques for SoftwareREing. Using the guidelines proposed
by Votipka et al., Mattei et al. assessed the expected usability of
288 SoftwareREing tools [47]. Ploger et al. studied the usability

An Investigation of Interaction and Information Needs for Protocol Reverse Engineering Automation CHI ’25, April 26–May 01, 2025, Yokohama, Japan

challenges for beginners when using a fuzzer and static analyzer,
showing that setting up these tools was a significant barrier to their
use [59]. Shoshitaishvili et al. developed the HaCRS system, which
created an interface allowing users to provide input seeds to mu-
tational fuzzers without needing expertise with fuzzers [63]. They
demonstrated that non-experts’ input improved tool outcomes but
did not assess the usability of this interaction. Finally, Yakdan et al.
developed DREAM++, a usability-optimized decompiler leveraging
heuristic-based transformations to improve decompiled code read-
ability [78]. DREAM++ achieved concrete performance gains by
improving decompiled code readability in a user-informed manner.
These studies solely focus on designing and implementing visualiza-
tions of single binary files. In contrast, we focus on understanding
ProtocolREs’ processes when investigating a collection of multi-
ple network packets. We draw inspiration from these studies to
design our prototype and assess what information and interactions
ProtocolREs need.

3 Methods
We conducted 16 semi-structured interviews with ProtocolREs with
significant ProtocolREing experience. We asked them to interact
with a paper prototype of an automated ProtocolREing tool to see
how they approach ProtocolREing tasks and how they take informa-
tion from and interact with automation. Interviews were conducted
between February and June 2023. We describe the development of
our prototype (referred to as the Prototype Interface), mock use case,
and interview protocol, as well as our study recruitment, analysis
approach, ethical considerations, and our study’s limitations.

3.1 Prototype Interface Design
To shape the interview discussion and provide a reference point,
we presented participants with a paper prototype to understand
how ProtocolREs interact with automation. A paper prototype is
beneficial as it minimizes distractions caused by interface aesthetics
and technical issues, ensuring the participants’ focus was on core
information needs and user interactions [64].

To produce a realistic interface, we first examined existing Pro-
tocolREing tools and ProtocolREing process literature to identify
common features. Then, we defined design guidelines based on
prior HCI and SoftwareREing literature. This section describes our
feature and guideline development and how we produced the final
components of our prototype, which we refer to as prototype views.

3.1.1 Tool review. As a preliminary step, we determined the fea-
tures commonly provided by existing tools to ensure a realistic
interface. We leveraged one author’s ten-plus years of experience
with ProtocolREing tool development to identify a preliminary list
of ProtocolREing tools. Then, we broadly surveyed the web using
an online keyword search for other available tools. We searched
the terms “reverse engineering” and “Protocol reverse engineering”.
We combined them with “frameworks,” “tools,” and “networking.”
We searched every resulting link, webpage, or video for download-
able tools until we repeatedly encountered duplicate tools. For each
search, we reviewed at least the first page of results.

From our search process, we found a variety of tools broadly
categorized as Hex Editors (ImHex, Hexinator, ReHex, Synalysis,
and 010 Editor), Interactive analysis tools (Cyberchef), Network

analysis tools (BinaryInferno, Nemesys, Netplier, Netzob, and Wire-
shark), and data description tools (Kaitai). These tools are listed
in Table 1. Due to our extensive search process, we expect our
resulting tools to represent what analysts would be familiar with
through their day-to-day functions to assist with ProtocolREing. To
confirm this, we asked participants in our interview to state tools
they previously used for ProtocolREing. Almost all the tools men-
tioned had overlapping features with those identified by our search.
The exception was tools for packet generation (i.e., Scappy, Fiddler,
and FakeNetNG), which went beyond direct message analysis and
were used to produce additional message data for testing. We dis-
cuss these in detail when describing participants’ ProtocolREing
processes (see Section 5.2).

3.1.2 Feature review. We reviewed each tool for the features they
provide for ProtocolREing. This review identified the following
features observed in at least one tool. Table 1 indicates the features
offered by each tool.

F1 Hex - All our surveyed tools present raw data first in hex.
This offers a view into the raw data in a compressed format,
i.e., instead of showing each bit.

F2 Decode Type - Many tools allowed users to convert the
hex data to various other datatypes, either one datatype or
multiple simultaneously.

F3 Set Type - Some tooling allowed users to specify and restrict
fields to a certain type. This was a common feature of several
tools.

F4 Suggest Type - When working on ProtocolREing, there
is missing information about the structure and type of the
messages. The tool can offer users suggested types based on
the raw hex values to guide their process.

F5 Suggest Field - Some tools try to infer potential field bound-
aries from the data and present these candidate fields to the
user.

F6 Data Distribution (Stats) - Another method for Protocol-
REs to glean insights about the raw data is through visu-
alizations and summary statistics. Tools can present this
information visually with graphs or via text.

F7 Multiple Data comparisons (Compare Multiple) - All
tools can simultaneously operate on multiple pieces of data,
packets, files, or streams, allowing for comprehensive com-
parisons and analyses. For example, several tools support the
incremental development of data parsers to handle various
input streams.

F8 Filter/Sort - Many tools offered filtering or sorting function-
ality across hexmessages. ProtocolREs could use these to sort
by an identified sequence number to preserve inter-message
contexts.

F9 User Scripting - Most of the tools could support extended
functionality from user-provided scripts.

In addition to the features identified in existing tools, we incor-
porated additional opportunities for automation interaction. While
some tools offer automated support, none allow ProtocolREs to
interact with the automation directly through the user interface.
Instead, users could only impact the automation by changing a
configuration or providing a new template. These are speculative

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Katcher et al.

Decode Set Suggest Suggest Compare Filter User
Hex Type Type Type Field Stats Multiple /Sort Scripting Use Case

BinaryInferno [13] ✓ - - ✓ ✓ - ✓ - - Network
Cyberchef [26] ✓ ✓ ✓ ✓ - ✓ ✓ ✓ ✓ Binary Data
ImHex [34] ✓ ✓ ✓ ✓ - ✓ ✓ ✓ ✓ Binary Data
Kaitai [36] ✓ ✓ ✓ ✓ - - ✓ ✓ ✓ Binary Data
Hexinator [33] ✓ ✓ ✓ ✓ - ✓ ✓ ✓ ✓ Binary Data
Nemesys [65] ✓ - - - ✓ - ✓ - - Network
Netplier [80] ✓ - - - ✓ - ✓ - - Network
Netzob [55] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Network
ReHex [14] ✓ ✓ ✓ ✓ - - ✓ ✓ ✓ Binary Data
Synalysis [71] ✓ ✓ ✓ ✓ - ✓ ✓ ✓ ✓ Binary Data
Wireshark [25] ✓ ✓ - ✓ - ✓ ✓ ✓ ✓* Network
010 Editor [66] ✓ ✓ ✓ ✓ - ✓ ✓ ✓ ✓ Binary Data

Table 1: Table of features and capabilities of various ProtocolREing tools. The * notation indicates a tool supports the feature
via plugins.

features not provided by prior tools but essential to investigating
issues of human-automation interaction.
F10 Split-merge fields - We included the ability to split and

merge fields at every byte boundary and automated sugges-
tions for additional field boundary splits beyond the prelimi-
nary fields. This additional flexibility allows users to explore
the data more meticulously and more easily change their
field boundaries as they uncover more information about
the data.

F11 Alternative data type and field boundary suggestions -
We provide additional possible suggestions besides the pre-
liminary suggested type and field boundaries. This emulates
automation, providing the top N options instead of just the
option with the most confidence. This allows users to con-
sider several suggestions in parallel and may prompt users
to consider potentially overlooked options [83, 84].

3.1.3 Design guidelines. Next, we describe the design guidelines
that directed the development of our Prototype Interface. We drew
on two bodies of literature to determine these guidelines. First, we
adopted recommendations from prior work in SoftwareREing tool
usability [47, 76]. We also consider guidelines from exploratory
visual analysis [61, 62] From these reviews, we established the
following guidelines:

D1 Filter, Zoom, and Details on Demand. Prior literature has
highlighted the importance of user-defined focus and scope.
For our Prototype Interface, this was filtering the data or
zooming and drilling down to get a more detailed view [62].
Tools should allow users to get a richer, more detailed view
of their data as they need it. These core functionalities enable
users to refine their focus and extract only the relevant details
to continue investigating their hypotheses.

D2 Input and Output presented in line - To integrate into
users’ processes more seamlessly, tools should accept in-
puts and present outputs in the same window or medium
with which the user is engaged. For our context, we ensured
that users had potential input and output options for each
interface view, which were presented in line with the data.

D3 Analysis Tuning - To better suit the needs of their users,
tools should allow their functionality to be customized or

fine-tuned. This additional flexibility enables users to impart
contextual information and better interpret the results of
any automated tooling.

D4 Readability Improvements - Wherever possible, tooling
should support additional readability improvements to allow
users to navigate their environment and data more efficiently.
This can take many forms, including color coding, data dis-
tribution or entropy visualizations, and decoding data types.

3.1.4 Prototype Views. We created five distinct views for our Pro-
totype Interface to include many of the features identified in our
tool review (Section 3.1.1. Each view was developed with our de-
sign guidelines in mind by a research team member with over ten
years of professional graphic and web design experience. Here, we
describe each in turn.

Hex View (F3, F4, F1, F7, F5, F11, D2, D3). The first view
consists of showing multiple related messages simultaneously, as
shown in Figure 2.A. Intuitively, each message is shown on a line,
with the bytes aligned across messages using a mono-space font in
Hex (F1, F7, D2). This format is consistent with ASCII text display,
with data ordered left to right, top to bottom.

This interface automatically assigns field boundaries to the raw
data and separates the data into candidate fields and suggested
types, as shown in Figure 2.A (F4, F5). Users can select from alterna-
tive data type suggestions the automation has deemed potentially
valid (F3, F11, D2, D3). This broad view allows users to get an
overview of patterns across all the data or narrow their focus to a
single field boundary, type, or message.

Split-Merge View (F3, F4, F1, F7, F5, F10, F11, D2, D3). The
second view is similar to the first in how the data is presented
(F4, F1, F7, F5, D2), but it gives more control to the user. Users
can modify the suggested initial field boundaries, combining fields
or splitting to create new boundaries and change the suggested
types (F3, F10, D3). Users can adjust field boundaries via a graphical
interface presented directly in line with the hex data immediately
(D2), as shown in Figure 2.B.

In addition to the initially suggested field boundaries, this in-
terface allows the user to choose alternative field splits using a

An Investigation of Interaction and Information Needs for Protocol Reverse Engineering Automation CHI ’25, April 26–May 01, 2025, Yokohama, Japan

A: Hex Data View

C: Histogram View

D: Decoding View

B: Split Merge View

Figure 2: Combined View interface shown to participants during the interview. The labeled elements correspond to the
components shown for each specific view, where were individually introduced progressively, building the final Prototype
Interface. That is, each specific view could be generated by only showing the part of the image marked with the associated
bracket or dotted line. A - Hex View, B - Split-Merge View, C - Histogram View, D - Decoding View

wedge glyph. Similar to the additional suggested data types, this
indicator can be a subtle nudge to ProtocolREs to explore other field
boundary and data type possibilities when investigating the data
(F11). One of the wedge glyphs was highlighted to show a candidate
field boundary the automation thought was possible. We used this
to ask participants how they preferred incorporating automated
tooling.

Histogram View (F1, F6, F7, D1, D4). Another way to visual-
ize the data is through a histogram, as shown in Figure 2.C. The
visualization is organized by byte position, with each column rep-
resenting the aligned bytes across the collection of Hex messages
(F1, F7). This visualization shows the frequency of different values
at a byte offset into a message as a line chart (F6, D1, D4). We order
the chart with lower hex values at the top and higher hex values
at the bottom. A legend of hex values is shown on the vertical
axis. Visualizing the data in this manner allows the frequency of
values to be compared within a byte offset or between fields. We
removed the suggested types and split-merge capabilities from the

prior interfaces to avoid overloading participants with too many
new features simultaneously.

Decoding View (F1, F7, F2, F8, D1, D3, D4). Our penultimate
view introduces several key features to manage the data: decod-
ing as multiple data types (F2), filtering, and sorting (F8, D1, D3).
First, this view showed the data decoded as a variety of standard
datatypes, as shown in Figure 2.D. This interface allows the analyst
to observe the decoded values and judge whether any hex values
translate to valid values for multiple common data types (F1, F7,
F2, D4). By providing multiple comparisons, this view facilitates ex-
ploration and rapid evaluation of hypotheses for data types where
the interpreted values appear random or inconsistent with analyst
knowledge.

This view allows analysts to filter or sort messages to refine
their focus on specific data (F8, D1, D3), as shown in Figure 2.D.
We did not restrict how filtering or sorting could be utilized but
instead asked participants how they might want to perform these
operations. For example, they could modify their focus based on

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Katcher et al.

criteria such as timestamps, source and destination addresses, or
message content. Because we tried to cover several features but
wanted to ensure we were respectful of our participants’ time, we
could not always cover all views when participants gave more
detailed answers earlier in the interview. To avoid missing partici-
pants’ responses to the combination of all views, we chose to skip
the filtering and sorting, which are well-established in UI design
practice [23, 51, 56, 61, 72] and already employed in several existing
tools in Figure 1. The interviewer decided whether to skip filter-
ing and sorting at the time of the interview. These features were
skipped in six of the 16 interviews.

Combined View (F1-F8, D1-D4). The final view integrates
elements of all prior views as shown in Figure 2. The Combined
View allows candidate fields to be split and merged(F4, F5, D3,
D4), interpreted as various data types (F3, F1, F7, F2, D1, D2, D3,
D5), and displays summary visual information(F6, D1, D2, D5). The
advantage of this interface is it allows simultaneous comparison
across multiple dimensions and gives users multiple options to
tweak the data and explore hypotheses. Participants were prompted
to explain which interface elements are useful, overbearing, or
distracting while performing their tasks.

Due to the nature of our Prototype Interface, we chose not to
directly implement a scripting view across our interface. Instead, we
prompted participants during the interview to describe how they
would like to extend each view with scripting or how they would
like to interact with the combined interface programmatically.

3.2 Interview Protocol
Interviews were conducted and recorded on Zoom and lasted 60
minutes on average. The same author conducted all interviews to
ensure consistency. Participants were asked to review each view
and provide feedback. Our study protocol is summarized in Figure 3,
and the script and additional interview materials are provided in
an OSF folder [37].

Participant background and experiences in ProtocolREing
(Figure 3.A,B). The interviews began with an open-ended ques-
tion asking participants to describe their ProtocolREing backgrounds
and expertise. We concluded this section by asking participants to
describe ProtocolREing tools they commonly use.

Interview scenario. Participants were told to determine the
protocol of an example set of captured messages. We used the
example given in Section 2.1 to populate our interface but did not
provide context to participants. The interview started with a sample
of the message data shown as hex, with one message per line. We
instructed participants that each message was transmitted in the
same direction (host A -> host B), so each line was a different
instance of one-directional communication.

View interaction (Figure 3.C-G). Next, we showed participants
the different views described in Section 3.1.4. Participants were
progressively walked through the different views in the following
order: Hex View, Split-Merge View, Histogram View, Decoding
View, and finally, Combined View.

Demographics

Participant Background

Participant RE Experience

Hex View

Split-Merge View

Histogram View

Decoding View

Combined View

Screening
Survey

Interview

Paper
Prototype
Exercise

RE Experience

A

B

C

D

E

F

G

Figure 3: Study recruiting and interview structure.

We asked participants to walk through their approach to investi-
gate this data using all of our prototype views. For each view, we
asked participants to review the automation output and say if they
had any hypotheses about the data, if they thought any output was
incorrect, and what other features or information they would need
to complete their process. We asked participants to “think aloud” to
reveal their ProtocolREing approaches and decision-making criteria.
We asked follow-up questions to investigate participants’ thought
processes, information and interaction needs, or any sources of
confusion. To challenge participants’ perspectives, we introduced
an incorrect automated suggestion across all views and added a
noisy errant message during the Split-Merge View.

The interview scenario was developed independently of the de-
sign of the Prototype Interface. While we consistently used the
airline data scenario for testing, the interface was designed to be
versatile and applicable to many other protocols beyond just this
use case. We aimed to capture genuine interactions and decision-
making processes while allowing flexibility for participants to sug-
gest feature improvements that better align the tool’s workflow
with their ProtocolREing process.

3.3 Recruitment
We posted on reverse engineering-related channels on social media
(e.g., LinkedIn and Reddit), posted on Slack channels for various
popular reverse engineering tools (e.g., BinaryNinja and Ghidra),
shared our recruitment message with the leadership of social or-
ganizations focused on reverse engineering, and sent emails to a
curated panel of security professionals who made themselves avail-
able for user studies. Anyone who responded to these recruitment
efforts was asked to fill out a screening survey that asked ques-
tions about experience with ProtocolREing. Specifically, we asked
participants to rate their skills in reverse engineering, vulnerabil-
ity discovery, malware analysis, and software development on a
Likert scale ranging from “Basic (Limited exposure)” to “Expert

An Investigation of Interaction and Information Needs for Protocol Reverse Engineering Automation CHI ’25, April 26–May 01, 2025, Yokohama, Japan

(An acknowledged source of knowledge).” Additionally, we asked
respondents to submit their resumes detailing their reverse engi-
neering experiences to contextualize their responses and help us
understand their background and familiarity with ProtocolREing.

We interviewed all candidates with self-reported “advanced” or
“expert” skill levels in at least two categories. P5 did not provide their
experience level in the survey, but from their CV, we determined
they met our interview criteria. We also required participants to be
English-speaking and at least 18 years old. While our recruitment
focused on smaller communities focused on reverse engineering, we
still received several inauthentic responses. We removed responses
with duplicate answers to open-ended questions and very similar
responses (e.g., email addresses with a few letter changes) within
a short period. While this slowed recruitment efforts, it did not
impact our data collection as it was straightforward to determine
whether a participant actually had ProtocolREing experience once
the interview began. Specifically, one participant was removed
from our study and not included in our analysis because they did
not understand basic ProtocolREing concepts, such as converting
hex to ASCII, and could not provide specifics about their process
when asked to elaborate. Additionally, this participant reported
conflicting information during their pre-screening survey and at the
beginning of the interview (i.e., their job title and roles performed),
indicating issues with this participant.

All participants were compensated with an Amazon.com gift
card valued at $40 USD.

3.4 Analysis
In this study, we employed iterative open coding [68, pg. 101-122]
to analyze the interviews and identify key themes related to par-
ticipants’ approaches to ProtocolREing and their interaction with
the automations’ suggestions. We primarily followed an inductive
approach, allowing codes to arise from the data. However, we used
some predefined codes from previous work as a foundation to guide
our framing. Specifically, we drew initial codes regarding reverse
engineers’ processes and usable tool guidelines as described in Sec-
tion 3.1.2 and from prior studies [48, 75]. We expanded on these as
necessary to capture unique aspects of ProtocolREing.

The interviewer and one additional researcher collaboratively
coded two interviews and discussed the results with the entire re-
search team to develop the initial codebook. The codebook, given
in Appendix A, centered around three high-level categories: their
ProtocolREing processes, information needs, and automation inter-
action needs. We also code other items, such as their doubts about
the automation’s suggestions and any additional requested features.
Because we presented multiple views, we applied codes uniquely
for each view to capture differences between their components.
This allowed participants to preempt features provided in future
views, suggesting that those features are general needs instead of
specific needs in certain contexts.

Using this codebook, two researchers independently coded the
remaining 14 interviews, meeting after every two interviews to
compare codes and resolve disagreements. After each round, the
full research team discussed the codes and updated the codebook
accordingly; these changes were reapplied to previously coded

interviews. Because the researchers jointly reviewed every coded
transcript, we did not calculate inter-rater reliability [49].

Next, we performed axial coding to identify connections within
and between our applied codes, allowing us to extract higher-level
themes and relationships [68, pg. 123-142]. We specifically wanted
to identify the different information and interaction needs and our
participants’ reservations regarding automation.

3.5 Limitations
This research shares limitations that are common to other ex-
ploratory qualitative work. First, our sample size is small, and our re-
sults may not generalize. For most findings, we indicate the portion
of participants who stated the theme to provide a general indication
of prevalence. However, participants who do not mention a theme
may still agree but may not have thought to mention the theme.
Therefore, we chose not to perform statistical comparisons, and our
prevalence results may not generalize beyond our sample; instead,
we suggest directions for future work. We attempted to recruit
broadly to capture diverse perspectives. Because we reach satura-
tion of themes, we expect our results to represent many approaches
to and opinions on ProtocolREing.

Our results may also be limited by the specific ProtocolREing
scenario we used as an example and the prototype views we be-
gan with. This priming likely introduced some anchoring bias, i.e.,
participants are more likely to focus on information and interac-
tions presented than they might if shown other views first [44].
We attempt to account for this bias by utilizing multiple views and
developing views to represent a range of existing tools through
expert feedback and our tool review (see Section 3.1). We chose our
scenario as it is representative of a common class of ProtocolRE-
ing problems, i.e., interacting with embedded and legacy systems,
and required participants to consider various data types and rela-
tionships between fields. We also included probing questions to
encourage participants to think beyond our views and scenario.
We believe we achieved this as several elements of our ProtocolRE
process diagram in Figure 4 were inspired by our participants even
though they fell outside the direct actions they took in our scenario.

Our study was conducted in a lab setting with a paper proto-
type. When performing ProtocolREing, participants can directly
interact with tools and utilize additional resources like running the
code with different configurations, reverse engineering associated
binaries, or reading device documentation. While our study does
not capture their full ProtocolREing process, it does elucidate their
interaction needs with automation and their information needs to
complete their tasks properly. Furthermore, several participants
remarked that the Combined View was familiar and reflected the
types of interfaces they encounter in their daily work. Future work
is required to investigate other facets of the ProtocolREing process.

4 Ethical Considerations
Before the study, participants were informed about the data col-
lection practices, including the nature of the collected data, how it
would be used, and the various measures to protect their confiden-
tiality. Each participant provided informed consent, indicating their
voluntary agreement to participate in the study. They were made
aware participation was entirely optional and they could withdraw

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Katcher et al.

at any time without penalty. Additionally, participants could skip
questions or tasks they preferred not to answer. This study was
reviewed and approved by our institution’s ethics review board.

5 Results
This section presents our findings. We start by describing the partic-
ipant population before addressing our thematic findings on Proto-
colREing process, ProtocolREs’ information needs, and ProtocolREs’
interaction needs. We refer to participants using the notation "PX"
where X is an anonymized number unique to each participant. See
Table 2 for more details on each participant. As we are presenting
qualitative results, we do not report participant response counts
for observed themes as these can be misleading. Instead, we use
quantifier terminology this is a qualitative interview study, we do
not report exact participant response counts. Instead, we use gen-
eral quantifier terminology, which is conventional in qualitative
research [18] and matches prior similar works [28, 42, 82].

5.1 Participants
Our participants provided diverse demographic and professional
backgrounds, as described in Table 2. Of our 16 participants who
completed the interview, one identified as non-binary, one de-
clined to share their gender, and the remaining identified as men
(N=14). While ethnicity was an optional category, 13 participants
self-identified as White. Most reside in the US (N=11), and five were
located outside North America, including Eastern and Western
Europe. Participants were between 19 and 44 years old, with the
average age being 33.8 years old. Participants were highly educated,
almost all holding a Bachelor’s degree (N=13), and about half (N=7)
had graduate degrees. This is consistent with the demographics
from prior large-scale surveys of SoftwareREs [10, 29, 30]—there
are no similar surveys of ProtocolREs to our knowledge—, but our
population skews slightly older andmore educated. This is expected
as we targeted experts. Participants reported various roles and titles
in software development, security research, reverse engineering,
and academic roles, such as PhD students with a focus in reverse
engineering.

We did not observe any difference in the processes, informa-
tion needs, or interaction preferences between participants who
reported intermediate versus advanced reverse engineering expe-
rience; therefore, we do not make direct comparisons between
experience levels.

5.2 ProtocolREing Process (RQ1)
Based on participants’ interactions with the prototype and the dis-
cussion of their ProtocolREing process, we observed their processes
could be described as an iterative cycle of hypothesizing parts of
the protocol and assessing whether these definitions fit the data.
We present the components of this process model in Figure 4. Partic-
ipants’ hypotheses centered on asserting potential field boundaries
(Figure 4.C) and datatypes (Figure 4.D), testing how different con-
figurations challenge or support their beliefs. In this section, we
discuss how participants interleave identifying and assessing hy-
potheses across these dimensions, supported by additional external
information to produce a final protocol, as shown in Figure 4.G.

Participants used landmarks and/or neighboring bytes as
indicators to determine field boundaries (Figure 4.C). All
of our participants expressed the importance of identifying field
boundaries during ProtocolREing. Participants primarily described
two methods for determining field boundaries: 1) Investigating
differences between neighboring bytes or fields. 2) Using easily
identifiable patterns as “landmarks” to set field boundaries.

When establishing initial potential field boundaries, most partici-
pants described using differences in neighboring bytes to determine
natural breaks. For example, P8 chose to segment into fields based
on differences in the data distributions, saying they chose that field
boundary “because the repeating parts are grouped together, and the
non-repeating parts are grouped in a way that makes sense.” Proto-
colREs can use these subtle indicators between bytes to set initial
field boundaries for further investigation.

Additionally, most participants described landmarking using
typical networking values like magic numbers or ASCII characters.
When evaluating the automation’s suggested field boundaries, P16
described how “Field one could definitely be like amagic value of some
sort. This is the same for every packet, just like a protocol identifier.”
These repeating patterns across multiple messages were a clear
indicator to determine field boundaries or details about the data
sample. The majority of participants described identifying trends
across multiple messages, like P9 said in the Decoding View: “I’m
looking at things as columns. . . and then I see 301 300 298 and I see
these values are monotonically decreasing. So now I’m thinking
the messages are out of order in the original data.”

Participants’ assumptions about datatypes in the protocol
supported or disproved their hypotheses (Figure 4.D). One
technique nearly all participants described was using a common,
easily recognizable datatype, typically ASCII, as an anchor point
to establish initial field boundaries. Most participants recognized
ASCII characters from the raw hex values and used bytes inside the
valid ASCII range to set initial field boundaries like P8: “It looks like
some kind of ASCII characters because the ranges of the bytes fall in
ASCII range.” Similarly, P2 recognized the hex bytes as valid ASCII
characters and wanted the automation to take this into account:
“ I would like to be able to do something about that to affirm to the
algorithm. That’s good. Please take this into account.” This idea of
incorporating user feedback is described further in Section 5.4.

Once the automation decides a type to suggest or the ProtocolRE
produces a hypothesized data type, almost all participants wanted
the data decoded as that type. By decoding the data as the specific
type in-line, ProtocolREs can quickly assess whether the type fits.
For example, when trying to determine the type of one of the fields,
P7 said, “I think that field four should be ASCII characters, so if I can
tell [the automation] that should be represented as ASCII and see it
as that immediately, that would be helpful.”

Several participants found the data distribution presented in the
Histogram View helpful when determining datatypes. P2 scanned
the Histogram View and was able to determine the final field was
ASCII because all the values were contained within the ASCII range,
saying, “the obvious signal amongst this noise is the ASCII characters
at the end of the messages.” However, several participants felt the
Histogram View was only useful for initially providing an overview

An Investigation of Interaction and Information Needs for Protocol Reverse Engineering Automation CHI ’25, April 26–May 01, 2025, Yokohama, Japan

ID Role Education RE Experience Vuln discovery Malware analysis Software dev

P1 Developer Doctorate Intermediate Basic None Expert
P2 PhD Student Master’s Advanced Intermediate Advanced Advanced
P3 PhD Student Bachelor’s Intermediate Intermediate Basic Advanced
P4 Developer Some college Advanced Advanced Intermediate Advanced
P5 Reverse Engineer Bachelor’s Expert - - -
P6 Reverse Engineer Master’s Expert Intermediate Intermediate Expert
P7 Other (Security) Bachelor’s Expert Expert Intermediate Advanced
P8 Developer Bachelor’s Expert Intermediate Intermediate Advanced
P9 Reverse Engineer Some college Advanced Advanced Intermediate Advanced
P10 Reverse Engineer Master’s Intermediate Beginner Advanced Beginner
P11 Developer Some college Intermediate Intermediate Basic Expert
P12 Other (Security) Doctorate Advanced Intermediate Basic Basic
P13 Leadership Bachelor’s Expert Expert Intermediate Intermediate
P14 Leadership Doctorate Expert Expert Expert Advanced
P15 Other (Security) Master’s Intermediate Intermediate Basic Intermediate
P16 Reverse Engineer Bachelor’s Expert Intermediate Expert Intermediate

Table 2: Participant ID, functional roles, education, and reverse engineering skills.

Field Boundary
Identification

Dataype
Inference

CAT
DOG
LOG

Outside Systems

Automation

Context
Research

Considering Neighbors
Identifying Landmarks

001
002
002

Data Distribution over
Multiple Messages

Multiple Decoded Views

User
Annotations

User Feedback Suggestion

Protocol
Description

F
B

A

C D E

G

Figure 4: Illustration of the Protocol reverse engineering (PRE) process. The core components, Field Boundary Identification
(C) and Datatype Inference (D) interactively drive the development of a Protocol Description (G) describing the data, field
boundaries, and datatypes. Automation (A) and Contextual Research (B) each inform and are guided by both the current
description and user feedback. Users typically start by performing Contextual Research (B) or by identifying fields (C) and types
(D). Outside Systems (E) use the description and data for further validation. Throughout the PRE process, User Annotations (F)
allow the user to store and recall ideas about the data and their hypotheses.

of the data but did not provide any additional insights. For example,
P15 explained, “ once you realize that it’s ASCII text, the histogram
is no longer useful.”

Lastly, several participants described how decoding hex values
to several datatypes simultaneously benefited their process. P9
described how the tool he typically uses for his job, “[has] the

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Katcher et al.

ability to visualize things side by side and simultaneously visualize
more [datatype] interpretations at once.”

Participants regularly switched between identifying field
boundaries and datatypes (Figure 4.C-D). We found the rela-
tionship between field boundaries and datatypes is tightly coupled.
ProtocolREs often use their hypotheses about the field boundaries
to inform hypotheses about the datatypes, subsequently adjusting
their field boundaries and continuously iterating cyclically. Several
participants described how a small change to one field can lead to a
cascade of other updates. P1 explained, “For example, you adjusted
this boundary now, and the delta in Field 2 became this much more
variable across the whole data set also, probably per field.” Because
these two aspects are so interconnected, we observed all partici-
pants regularly switched between considering datatype and field
boundary hypotheses as new patterns and ideas arose.

Participants want automation to integrate with other Pro-
tocolREing systems and information (Figure 4.B,E). Most
participants expressed the importance of integrating multiple in-
put and output streams. Early in the interviews, participants often
wanted to do context research, like reviewing the binary and source
code, comparing findings to established templates, or looking at
documentation. P9 said, “The truth is in the binary. If you can get
access to the binary that you can reverse engineer, that is often the
quickest way to deal with things.”

Other participants described turning to documentation related
to the application they were investigating that might reveal some
information about the protocol. For example, P11 said, “I would go
look at the RFC [Request for Comments] . . . to understand how the
protocol is designed.” Similarly, P5 described looking for patents,
saying, “Is there a patent on these people?’ so that this way I can find
what they think they’re doing.”

Several participants described transferring the results of their
ProtocolREing efforts to other tools for testing or use in other ap-
plications. For example, P15 described their process of switching
between multiple tools: “If this is a lot of traffic, we filter and auto-
mate Scapy extraction of data . . . Then we can change, and can state
in a descriptive language like in Kaitai-struct a definition [of the pro-
tocol].” As another example, P14 described wanting the automation
to generate scripts usable by other packet processing tools, saying,
“I would like it to generate decoder code that fits the tool that I am
using [Wireshark].”

Participants emphasized the importance ofmessage ordering
by avoiding the provided filtering and sorting features. We
initially thought filtering and sorting features would be beneficial.
However, participants had mixed reactions. Of the ten participants
who interacted with these features, half felt they were not helpful,
as filtering and sorting could disrupt the sequence and ordering of
messages. P16 explained, “Preserving the time of the messages and
showing them in time order. It’s extremely important.”

However, a few participants liked the idea of filters as they would
help focus the view only on relevant messages. For example, P9
wanted to utilize filtering visually in the Histogram View to focus
on messages within a certain value range, saying “I’d want to be
able to drag a region in the visualization and have it filter the rest

of the data dynamically to only that data. It lets you immediately
see that the field one values never change; that the field two values
are somewhat periodic, and that the field three values never really
change.”

5.3 Information Needs From Automation (RQ2)
Given participants’ ProtocolREing process from the prior section,
we now discuss themes in the types of additional information par-
ticipants wanted when working with automation. In particular, we
observed two general themes. First, participants often did not ex-
pect the automation to be exactly correct due to the ambiguity of
the task; therefore, they wanted the automation to take a conserva-
tive approach and provide mechanisms for evaluating the outputs.
Also, participants wanted ways to inspect and compare multiple
suggestions by the automation.

5.3.1 ProtocolREs do not trust automation to provide a complete
solution, but see value in automation as a support agent. When
considering the suggestions, most participants doubted that any
automation could be sufficiently accurate to correctly determine
a full protocol due to challenges inherent to ProtocolREing. That
is, finding samples to train or test ProtocolREing automation on,
especially for malware analysis, is difficult due to the rapidly chang-
ing and adversarial nature of malware [52, 69]. Several participants
shared a similar sentiment to P16, who said, “ Most of the time we’re
dealing with new and novel stuff [that] isn’t in the [training] data
set.” Other participants believe current automation does not scale
to complex real-world examples. For example, P14 said, “They don’t
work on real software. That’s why I say automated reverse engineering
tools don’t really exist because they only really exist on paper.”

Despite participants’ belief that automation would make mis-
takes when automatically identifying a protocol, most participants
believed the suggestions were still helpful as a starting point for
their analysis and to give them ideas for further analysis as an
interactive support agent. For example, P12 said, “the more options
that the system gives and says, Hi, we think it is this. . . the more that
the system says here is a possible suggestion the better.”

Prior work investigating trust in other uses of automation has
shown users initially distrust automation, though this reduces with
use as they learn its boundaries [41, 60]. Several participants ex-
pressed a similar sentiment to P10 when using automation, “If I’m
using the tool and find that the suggestions often are helpful, Then
over time my trust in it would develop.” Similarly, P16 described
learning an automated tool’s “individual quirks, and if it’s sugges-
tions are going to be helpful or not, and what kinds of things it’s better
it’s suggesting.”

Automation should make conservative field boundary and
datatype edits. Most participants wanted automation only to
edit the presented fields and data types when it was confident and
present information with a minimal visual footprint otherwise. P16
said liberal field boundary and datatype edits place a burden on
ProtocolREs, creating extra work, saying “it’s just like 15 other things
that you have to go through and like, minimize and click through.”
This is particularly problematic if users cannot override suggestions
or limit the scope of changes made by the automation. For example,
P8 described how this would be frustrating, saying, “If I assign one

An Investigation of Interaction and Information Needs for Protocol Reverse Engineering Automation CHI ’25, April 26–May 01, 2025, Yokohama, Japan

type, and then it goes and re-assigns types for other fields that I have
already reviewed the suggestions for, it would mess me up.”

Participants want semantic characteristics about the data as
suggestion explanations. In addition to wanting the automa-
tion to provide conservative suggestions, most participants wanted
ways to assess and understand those suggestions, then make re-
finements (which we discuss further in Section 5.4). P16 said, "With
automated tools like this, you kind of have to get some experience
with them to figure out their individual quirks. And if it’s suggestions
are going to be helpful or not, and what kinds of things it’s better
at suggesting." To help them make these assessments, participants
wanted the automation to justify its suggestions. P1 said, “I’d want
to understand what information is going into that prediction. Why is
it picking that?”

Providing these explanations for automation results is a common
request beyond ProtocolREing [27, 53]. However, we further refine
this need by observing ProtocolREs wanted these explanations pre-
sented as characteristics of the data fitting the suggested datatype’s
range. For example, P15 wanted to know if a datatype suggestion
was based on a relationship between two fields, explaining the
automation should show “the length of this field is controlled by
this field over here.” Similarly, P9 described a checksum relationship
between two field, saying “these 2 bytes of this data might be a check-
sum because they are a valid CRC16 with X,Y,Z parameters [fields].”
Additionally, many described looking for these datatype character-
istics when inferring the datatypes manually. For example, most
participants investigated whether a field’s data was restricted to the
ASCII range, indicating it was an ASCII string, or monotonically
increasing, likely a counter.

Several participants believed adding some indicator of the au-
tomation’s confidence in a result, based on these characteristics,
would help users make assessments. P13 described this, saying, “For
any automated tool, I like to show confidence level. [What] does the
tool really think percentage wise? This is 90%, it’s probably certain,
is it 85? We’re not really confident, but we have a good guess. Is it
50? We’re just guessing out of the blue. . . That helps not having to go
down a wild goose chase.”

5.3.2 ProtocolREs perform analysis by comparing data both within
single messages and across multiple messages. Due to the complex
nature of ProtocolREing and the large number of analyzed mes-
sages, participants appreciated features that allowed different forms
of comparison. The Combined View included allowing quick com-
parisons across all messages using the histogram, viewing multiple
messages simultaneously, and seeing the data decoded into multi-
ple datatypes simultaneously. P9 described their information needs
saying, “workflow-wise. . . [what] I’m used to is much more paral-
lel. . . viewing the data in multiple ways at the same time.”

However, excess visual information can overload ProtocolREs;
thus, several participants described wanting to hide parts of views
once they were no longer needed. Cluttered visuals are a common
challenge in interface design, but our results indicate when dif-
ferent information should be presented. For example, P16 felt the
histogram was not needed at all times: “ Having the ability to hide
them is useful because it’s something I’ll look at once, and then I never
look at them again.” Similarly, P13 described wanting to “just ‘x’

[the float and integer windows] out, and they would leave and then
say the Hex data or the ASCII field would automatically resize bigger.”
While participants discussed wanting to hide many of the views,
no participant indicated they wanted to hide the Split-Merge View,
likely because this interaction with fields and data types is central
to ProtocolREs’ processes.

Participants mostly wanted to view each field boundary de-
coded according to its suggested datatype, notmultiple datatypes.
To assess the validity of a suggestion, participants often focused on
the datatype representation. This included wanting to see the data
decoded as the specific datatypes on a per-field basis. For example,
P6 said, “If it could break the message, some of it being ASCII, some
of it being the floats, some of it being an integer while still display-
ing each individual message broken up as a comparison, that would
be more helpful.” This allows ProtocolREs to visualize the parsed
protocol data and assess whether the presented data matches the
ranges they would expect to see. However, presenting the message
decoded as each datatype simultaneously, as we did (See Figure 2.D),
was viewed as overload for many participants. Instead, they pre-
ferred some drop-down option, allowing quick switching between
decoding types for comparison instead of showing all at once. P2
explained, “There is totally enough mental bandwidth to say, ‘click’,
and then within a millisecond field four changes [to ASCII]. And then
I could just click back to integer if it doesn’t help.”

Participantswanted to knowhowdatatype suggestions changed
when field boundaries were moved. As the automation pro-
vides different field boundary suggestions or the user splits or
merges fields, this would cause the automation to suggest additional
datatypes for newly formed fields. Some participants indicated they
wanted a way to see each of these states of the field boundaries and
compare how changes to the fields impact within-field variation
and patterns. For example, P1 said, “I want it to say, for example, you
adjusted this boundary, now field 2 became this much more variable.”
This follows from the fact that we observed ProtocolREs regularly
switching between assessing field boundaries and data types; thus,
information helping them see aspects of this relationship was ben-
eficial.

5.4 Interaction Needs With Automation (RQ3)
Finally, we discuss how participants wanted to interact with the
automation. These include programmatically extending datatype
descriptions, interacting with suggestions and reverting actions,
and automatically generating scripts for future ProtocolREing pro-
cess steps.

Participants wanted extendable datatype descriptions that
consider multiple fields. In the Prototype Interface, we only
showed a few basic datatypes, but participants discussed wanting
the automation to identify a wide range of possible complex non-
traditional datatypes like sequence counters or message identifiers.
P14 wanted the automation to recognize non-traditional datatypes
like hashes saying, “It would save me time identifying what things are
probably integrity checks like series or Md5 or check digits.” Because
some semantic types might be specific to the studied application,

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Katcher et al.

participants wanted the ability to write their own type definitions
or provide something like C struct definition that could help the
automation recognize these relationships in the data. This would
also support alternative data encoding—a need expressed by almost
all participants—, such as specific string encodings. P9 explained,
“I’d feel limited by ASCII. I know this is probably ASCII data, but what
if it’s not a normal code page? what if it’s CJK encoding, which is
common in China, or Shift-JIS encoding, which is common in Japan?”

As discussed in Section 5.2, many participants attempted to deter-
mine datatypes by looking at relationships between fields, such as
message type identifiers or checksums. A few participants reported
these trends are typically harder for ProtocolREs to identify by
hand; thus, they wanted additional feature support to help identify
these relationships, which could be supported through extended
datatype representations.

ProtocolREs want to guide automation by constraining field
boundaries and datatypes. As discussed previously, most par-
ticipants expect the automation to make some mistakes due to the
problem’s complexity. Therefore, most participants wanted to in-
crementally guide the automation by changing a field’s datatype or
boundaries and forcing the automation to use those changes when
determining future suggestions. P13 explained, “Most automated
testing a lot of times is incorrect. . . I know patterns because that’s
something that I use all the time. Automated systems don’t always
know these patterns, or they don’t know something that I’ve seen
before, but they haven’t. And so, having that flexibility to change it
and then see, does that correct it if I think something is wrong, or does
that make it perform better?”

ProtocolREs need the ability to switch back and forth be-
tween possible automation suggestions quickly. As we dis-
cussed in Section 5.2, ProtocolREs regularly switch back and forth
between field boundaries and datatypes, testing whether different
possible protocol specifications fit their data. Therefore, when in-
teracting with the automation, several participants emphasized the
importance of quickly and easily reverting actions or configuration
settings while working. For instance, they could test how changes
in field boundaries or datatypes might impact their understanding
of the protocol. Then, they can quickly revert or compare these
changes to their original analysis. P7 described using a preview of
changes to make a comparison, saying “if [there’s] some way to split
[fields] up and then undo it. . . preview how it would affect the guesses
or the field values, so you split it at this point and then you can see
the values of the [fields] and what the guess type for the new fields
would look like.”

Similarly, several participants wanted ways to maintain their
mental models and understanding of the data. This can take nu-
merous forms, from leaving in-line comments or sticky notes as P5
described: “If I’m looking at this in three weeks, when I get pulled to
something else; If I come back I have no [idea] when I figured out what
this ASCII meant. I have no idea what it meant to me back then.”

Participants wanted support for generating data to validate
automated suggestions and their protocol inferences. Many
participants wanted a mechanism to provide additional input mes-
sages or generate output messages that could be validated with an

external tool (Figure 4.E). Some participants wanted to manually
craft new messages to see how specific changes would impact the
automated suggestions. For example, P2 said, “I would like to be able
to add a new message and arbitrarily manipulated bytes, and see in
real-time how it gets parsed as a float. That would easily allow me to
test hypotheses about what this program is showing me.”

Alternatively, half of the participants requested some form of
script generation based on their inferred protocol definitions to
use with other tools to assess the validity of their final protocol
definition. For example, Wireshark and other packet parsing tools
allow users to provide data decoders for new protocols, using these
decoders to parse received packets. Multiple participants mentioned
they wanted the automation to generate a decoder that could be ap-
plied to a packet parser and give it a large volume of packets. If the
parser fails, this would indicate the protocol definition is incorrect.
For example, P14 said, “I’d want [the prototype] to be provable. . . I
probably want it to be something that emits C code that then can
handle decoding whatever packet capture you like, or maybe it emits
a Wireshark dissector.” Other participants proposed validating their
inferred protocols by automatically producing code that would gen-
erate packets matching the inferred protocol. Then, these packets
could be sent to a server that uses the studied protocol to see if it
responds as expected. As P14 explained, “I would generate packets
and send them at real servers and see what happens. The live poking
of things can be really useful as a lot of them will drop packets on
the floor if they’re wrong or respond with an error.” A few partici-
pants pointed out these scripts would also provide a dual use, as
they could be directly used for future security tasks like intrusion
detection systems.

6 Discussion
Based on the interviews with professional ProtocolREs, we ob-
served the process model described in Figure 4, where ProtocolREs
cyclically iterate between adjusting field boundaries (Figure 4.C)
and establishing datatypes for fields (Figure 4.D). These decisions
are tightly coupled, and ProtocolREs incorporate information from
various external sources, including context research about the appli-
cation (Figure 4.B) and automated suggestions (Figure 4.A). Partici-
pants investigated multiple hypotheses in parallel and preferred to
view data in various formats simultaneously. Participants expected
the automation would make some errors, especially for novel data;
thus, many participants wanted the automation to take a conserva-
tive approach, provide additional information related to the data’s
semantic characteristics to assess suggestion accuracy. Theywanted
automation interaction through user-defined custom datatypes (Fig-
ure 4.F) and allowing the user to switch back and forth between
suggested protocol definitions and constrain user-specified field
boundaries and datatypes (Figure 4.A). Lastly, participants valued
the ability to interface with other ProtocolREing tools, like Wire-
shark, to validate their inferred protocols (Figure 4.E).

ProtocolREing differs from SoftwareREing in the distinction
between generating and testing hypotheses. While we ex-
pected there would be some similarity between ProtocolREing and
SoftwareREing as they have similar goals and are often performed
by the same people, there are key differences in process due to the

An Investigation of Interaction and Information Needs for Protocol Reverse Engineering Automation CHI ’25, April 26–May 01, 2025, Yokohama, Japan

inherent difference in the ambiguity of the underlying task, as dis-
cussed in Section 2.1. Comparing our process model (Figure 4) with
three-phase SoftwareREing model defined in prior work [9, 76],
they are both hypothesis-driven and iterative. However, the clear
difference is that the ProtocolREing process is more condensed,
meaning there are not clear distinctions between parts of the pro-
cess as participants discuss performing hypothesis generation and
testing using the same interfaces and sometimes simultaneously.
Thus, we present a cyclic process centered on the dual problems
of field and data-type identification, whereas prior work found
the SoftwareREing model can be broken into three distinct phases
SoftwareREs progress through and use different tools to support,
dividing hypothesis generation and testing. This distinction cre-
ates unique needs for ProtocolREing automation and interaction,
as ProtocolREs want to use automation as an interactive support
agent, and cannot trust it to produce final answers.

6.1 Recommendations for ProtocolREing
Automation Developers

As we discussed in Section 1, while ProtocolREing differs from
SoftwareREing due to the ambiguity of the analysis, it is similar
to problems in data science where analysts visualize and consider
data records in different ways to reveal relationships. We saw this
play out with the information and interaction needs identified (Sec-
tions 5.3 and 5.4, respectively) as participants wanted to see the
data presented in many different ways, wanted the automation to
provide explanations for suggestions, wanted the ability to validate
and correct the automation, and wanted to get this information
without creating information overload. These are common chal-
lenges when using automation to support visual data exploration
tasks, thus these similarities suggest existing guidelines from this
domain [20, 31, 58, 73, 81] could be leveraged for future automation
design. However, our results provide additional insights regarding
how these can be best explicitly applied to support ProtocolREs.
Specifically, we observed two overarching themes for interface
design based on participants’ responses. We discuss each in turn.

Organize interactions around datatypes and field boundary
characteristics. Throughout our interviews, we observed par-
ticipants’ investigations centered around the unique semantic char-
acteristics of different datatypes and restrictions on possible field
boundaries. These components were central to their processes, and
shaped their interaction needs. For example, participants specifi-
cally liked the HistogramViewbecause it allowed them to determine
whether data in a field matched the known bounds of particular
datatypes. However, because the view did not allow them to view
inter-field relationships, they wanted it extended to capture richer
datatype representations. Additionally, the only information we
did not hear anyone say they wanted to hide was the field bound-
aries and datatype labels, further indicating the centrality of this
information. Therefore, any ProtocolREing interaction should be
designed around datatypes and field boundaries.

Focus interfaces on supporting iterative investigation. The
second theme arises from the fact that our participants expected
automation to make erroneous suggestions but still saw these tools

as helpful in supporting their process of quickly testing variations
on potential protocols. They quickly move through the search space,
swapping a datatype or field boundary, and want automation to
take a similar approach, conservatively suggesting changes to parts
of the protocol definition when confident. To support this iterative
search, automation should enable easy comparison by neighbor
points in the search space by allowing analysts to preview or undo
a suggestion and visualize the impact of a change.

6.2 Recommendations for Researchers
While this study provides direct recommendations for tool develop-
ment, we can draw out valuable insights for researchers investigat-
ing ProtocolREing. First, we identify a process model for Protocol-
REing, which can be used to guide the development of controlled
empirical studies of the various tasks. Our study was conducted in
an observed setting without a working tool, but future work should
build on our foundation to test with a live tool and networking data.
This would allow future research to answer questions about the
most effective common practices and strategies and what interfaces
help save time and streamline the process for ProtocolREs. Similarly,
we enumerated the set of ProtocolREs’ information and interaction
needs, but our study design prevents us from identifying which
would be the most useful. Developers must make tradeoffs with
limited development time, especially in this domain where many
tools and plugins are produced by the open source community in
their own time [48], so assessing actual feature value is necessary.

The information and interaction needs we identified should be
assessed with additional populations and settings. First, because
we only test with expert ProtocolREs, whether these requirements
hold for beginners is not apparent. Repeating our study directly
with beginners will likely not be sufficient as beginners likely lack
the experience to envision what they might be missing. However,
given the additional information and interactions, a future study
could assess whether these are helpful for beginners. This would
be most useful in defining initial universally usable default views.
Finally, future work should investigate how these processes change
in alternate settings, specifically when users can access application
source code or binary files. Work in this setting will provide a
bridge between our work and the prior SoftwareREing literature [6,
9, 11, 24, 46, 75, 77], likely unearthing unique insights at their
intersection.

7 Conclusion
While some tools automate protocol RE, none have a user interface
for ProtocolREs to guide the automation. Therefore, we sought to
understand how best to build an interface for this task to support
ProtocolREs. To this end, we interviewed 16 ProtocolREs, asking
them to interact with a paper prototype and provide feedback.
We found ProtocolREs ground their process by investigating two
core components of network protocols, the field boundaries, and
the datatypes. These central actions are supported by numerous
information streams, including automated tooling support, con-
text research, user annotations, and feedback. Further, we found
they expected any automation to make mistakes and to be unable

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Katcher et al.

to describe a full protocol due to ambiguity. Therefore, human-
automation interaction work is particularly necessary so Protocol-
REs can actually use and incorporate automation into their work-
flow.

Finally, we found these interactions should be tailored to Pro-
tocolREing by focusing on the datatype characteristics and rela-
tionships between field boundaries, which provide the underly-
ing structure ProtocolREs rely on to search the possible protocol
space. These interactions should focus additionally on the rapid
exploration of the search space by comparing different field and
boundary possibilities and allowing ProtocolREs to apply and undo
automation suggestions and investigate numerous hypotheses si-
multaneously. Our results will help the development of tooling
interactions necessary to make ProtocolREing automation more
usable and widely adopted in the field.

Acknowledgments
Many thanks to the anonymous reviewers who provided helpful
comments on drafts of this paper and Jordan Wiens for help with
recruitment. This project was supported by NSF grant CNS-2247954.
The first author’s affiliation with The MITRE Corporation is pro-
vided for identification purposes only, and is not intended to convey
or imply MITRE’s concurrence with, or support for, the positions,
opinions, or viewpoints expressed by the author. MITRE has ap-
proved this work for public release and unlimited distribution;
public release case number 24-3822.

References
[1] Kulsoom Abdullah, Christopher P Lee, Gregory J Conti, John A Copeland, and

John T Stasko. 2005. IDS RainStorm: Visualizing IDS Alarms.. In VizSEC. 1.
[2] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. 2015. Sug-

gesting AccurateMethod and Class Names. In 2015 Joint Meeting on Foundations of
Software Engineering (Bergamo, Italy) (ESEC/FSE ’15). Association for Computing
Machinery, New York, NY, USA, 38–49. doi:10.1145/2786805.2786849

[3] AllsafeCyberSecurity. 2021. Awesome Ghidra.
https://github.com/AllsafeCyberSecurity/awesome-ghidra. (Accessed
08-11-2021).

[4] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. Code2vec: Learn-
ing Distributed Representations of Code. Proc. ACM Program. Lang. 3, POPL,
Article 40 (Jan. 2019), 29 pages. doi:10.1145/3290353

[5] Dejan Baca, Bengt Carlsson, Kai Petersen, and Lars Lundberg. 2013. Improving
software security with static automated code analysis in an industry setting.
Software: Practice and Experience 43, 3 (2013), 259–279. http://dblp.uni-trier.de/
db/journals/spe/spe43.html#BacaCPL13

[6] Steffen Becker, Carina Wiesen, Nils Albartus, Nikol Rummel, and Christof Paar.
2020. An Exploratory Study of Hardware Reverse Engineering — Technical
and Cognitive Processes. In Sixteenth Symposium on Usable Privacy and Se-
curity (SOUPS 2020). USENIX Association, 285–300. https://www.usenix.org/
conference/soups2020/presentation/becker

[7] Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin Vechev. 2016.
Statistical Deobfuscation of Android Applications. In 2016 ACM SIGSAC Con-
ference on Computer and Communications Security (Vienna, Austria) (CCS ’16).
Association for Computing Machinery, New York, NY, USA, 343–355. doi:10.
1145/2976749.2978422

[8] DavidMBlei, Andrew YNg, andMichael I Jordan. 2003. Latent dirichlet allocation.
Journal of machine Learning research 3, Jan (2003), 993–1022.

[9] Adam Bryant. 2012. Understanding How Reverse Engineers Make Sense of Pro-
grams from Assembly Language Representations. Ph. D. Dissertation. US Air Force
Institute of Technology.

[10] Bugcrowd. 2023. Inside the Mind of a Hacker. https://www.bugcrowd.com/wp-
content/uploads/2023/11/Inside-the-Mind-of-a-Hacker.pdf. Accessed: 2024-08-
17.

[11] Kevin Burk, Fabio Pagani, Christopher Kruegel, andGiovanni Vigna. 2022. Decom-
person: HowHumans Decompile andWhatWe Can Learn From It. In 31st USENIX
Security Symposium (USENIX Security 22). USENIXAssociation, Boston,MA, 2765–
2782. https://www.usenix.org/conference/usenixsecurity22/presentation/burk

[12] Janis A Cannon-Bowers and Eduardo Ed Salas. 1998. Making decisions under
stress: Implications for individual and team training. American psychological
association.

[13] Jared Chandler, Adam Wick, and Kathleen Fisher. 2023. BinaryInferno: A
Semantic-Driven Approach to Field Inference for Binary Message Formats.. In
NDSS.

[14] Daniel Collins. 2024. ReHex. https://github.com/solemnwarning/rehex/. (Ac-
cessed 08-11-2024).

[15] Greg Conti. 2007. Security data visualization: graphical techniques for network
analysis. No Starch Press.

[16] Gregory Conti and Kulsoom Abdullah. 2004. Passive visual fingerprinting of
network attack tools. In Proceedings of the 2004 ACM workshop on Visualization
and data mining for computer security. 45–54.

[17] Gregory Conti, Erik Dean, Matthew Sinda, and Benjamin Sangster. 2008. Vi-
sual reverse engineering of binary and data files. In International Workshop on
Visualization for Computer Security. Springer, 1–17.

[18] Shelby Corley. 2024. How to “Quantify” Qualitative Data. https://www.
evalacademy.com/articles/how-to-quantify-qualitative-data.

[19] DARPA. 2016. DARPA | Cyber Grand Challenge. http://archive.darpa.mil/
cybergrandchallenge/ (Accessed 02-26-2017).

[20] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. 2014. Explore-by-
example: An Automatic Query Steering Framework for Interactive Data Explo-
ration. In SIGMOD ’14 (Snowbird, Utah, USA). ACM, New York, NY, USA, 517–528.
doi:10.1145/2588555.2610523

[21] Adam Doupé, Marco Cova, and Giovanni Vigna. 2010. Why Johnny Can’T
Pentest: An Analysis of Black-box Web Vulnerability Scanners. In Proceedings
of the 7th International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (Bonn, Germany) (DIMVA’10). Springer-Verlag, Berlin,
Heidelberg, 111–131. http://dl.acm.org/citation.cfm?id=1884848.1884858

[22] Julien Duchêne, Colas Le Guernic, Eric Alata, Vincent Nicomette, and Mohamed
Kaâniche. 2018. State of the art of network protocol reverse engineering tools.
Journal of Computer Virology and Hacking Techniques 14 (2018), 53–68.

[23] Daniel Fallman. 2003. Design-oriented human-computer interaction. In Proceed-
ings of the SIGCHI conference on Human factors in computing systems. 225–232.

[24] Irina Ford, Ananta Soneji, Faris Bugra Kokulu, Jayakrishna Vadayath, Zion Leona-
henahe Basque, Gaurav Vipat, AdamDoupé, RuoyuWang, Gail-Joon Ahn, Tiffany
Bao, and Yan Shoshitaishvili. 2024. "Watching over the shoulder of a professional":
Why Hackers Make Mistakes and How They Fix Them. In Proceedings of the IEEE
Symposium on Security and Privacy.

[25] Wireshark Foundation. 2024. Wireshark, the world’s most popular network
protocol analyzer. https://www.wireshark.org/. (Accessed 08-11-2024).

[26] gchq. 2024. CyberChef. https://github.com/gchq/CyberChef. (Accessed 08-11-
2024).

[27] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu Xing. 2018.
LEMNA: Explaining Deep Learning based Security Applications. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security
(Toronto, Canada) (CCS ’18). Association for Computing Machinery, New York,
NY, USA, 364–379. doi:10.1145/3243734.3243792

[28] Hana Habib, Sarah Pearman, Jiamin Wang, Yixin Zou, Alessandro Acquisti,
Lorrie Faith Cranor, Norman Sadeh, and Florian Schaub. 2020. "It’s a scavenger
hunt": Usability of Websites’ Opt-Out and Data Deletion Choices. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems.

[29] Hackerone. 2019. 2019 Hacker-Powered Security Report. Technical Report.
Hackerone, San Francisco, California. https://www.hackerone.com/resources/
reporting/the-hacker-powered-security-report-2019

[30] HackerOne. 2020. The 2020 Hacker Report. Technical Report. HackerOne, San
Francisco, California.

[31] Jeffrey Heer and Ben Shneiderman. 2012. Interactive Dynamics for Visual Analy-
sis. Commun. ACM 55, 4 (April 2012), 45–54. doi:10.1145/2133806.2133821

[32] Hex-Rays. 2019. Plug-in Contest 2018: Hall of Fame. https://www.hex-
rays.com/contests/2018/index.shtml. (Accessed 05-30-2019).

[33] Hexinator. 2024. Hexinator. https://hexinator.com/. (Accessed 08-11-2024).
[34] ImHex. 2024. ImHex. https://imhex.werwolv.net/. (Accessed 08-11-2024).
[35] Alan Jaffe, Jeremy Lacomis, Edward J. Schwartz, Claire Le Goues, and Bogdan

Vasilescu. 2018. Meaningful Variable Names for Decompiled Code: A Machine
Translation Approach. In 2018 Conference on Program Comprehension (Gothen-
burg, Sweden) (ICPC ’18). Association for Computing Machinery, New York, NY,
USA, 20–30. doi:10.1145/3196321.3196330

[36] Kaitai-Project. 2015. Kaitai. https://kaitai.io/. (Accessed 08-11-2021).
[37] Samantha Katcher, James Mattei, Jared Chandler, and Daniel Votipka. 2024. Sup-

plementary Material - An Investigation of Interaction and Information Needs for
Protocol Reverse Engineering Automation. https://osf.io/ernux/.

[38] Stephan Kleber, Henning Kopp, and Frank Kargl. 2018. NEMESYS: Network
Message Syntax Reverse Engineering by Analysis of the Intrinsic Structure of
Individual Messages. In 12th USENIX Workshop on Offensive Technologies (WOOT
18). USENIX Association, Baltimore, MD. https://www.usenix.org/conference/
woot18/presentation/kleber

https://doi.org/10.1145/2786805.2786849
https://doi.org/10.1145/3290353
http://dblp.uni-trier.de/db/journals/spe/spe43.html#BacaCPL13
http://dblp.uni-trier.de/db/journals/spe/spe43.html#BacaCPL13
https://www.usenix.org/conference/soups2020/presentation/becker
https://www.usenix.org/conference/soups2020/presentation/becker
https://doi.org/10.1145/2976749.2978422
https://doi.org/10.1145/2976749.2978422
https://www.bugcrowd.com/wp-content/uploads/2023/11/Inside-the-Mind-of-a-Hacker.pdf
https://www.bugcrowd.com/wp-content/uploads/2023/11/Inside-the-Mind-of-a-Hacker.pdf
https://www.usenix.org/conference/usenixsecurity22/presentation/burk
https://www.evalacademy.com/articles/how-to-quantify-qualitative-data
https://www.evalacademy.com/articles/how-to-quantify-qualitative-data
http://archive.darpa.mil/cybergrandchallenge/
http://archive.darpa.mil/cybergrandchallenge/
https://doi.org/10.1145/2588555.2610523
http://dl.acm.org/citation.cfm?id=1884848.1884858
https://doi.org/10.1145/3243734.3243792
https://www.hackerone.com/resources/reporting/the-hacker-powered-security-report-2019
https://www.hackerone.com/resources/reporting/the-hacker-powered-security-report-2019
https://doi.org/10.1145/2133806.2133821
https://doi.org/10.1145/3196321.3196330
https://osf.io/ernux/
https://www.usenix.org/conference/woot18/presentation/kleber
https://www.usenix.org/conference/woot18/presentation/kleber

An Investigation of Interaction and Information Needs for Protocol Reverse Engineering Automation CHI ’25, April 26–May 01, 2025, Yokohama, Japan

[39] Stephan Kleber, Lisa Maile, and Frank Kargl. 2018. Survey of protocol reverse
engineering algorithms: Decomposition of tools for static traffic analysis. IEEE
Communications Surveys & Tutorials 21, 1 (2018), 526–561.

[40] Gary A Klein. 1993. A recognition-primed decision (RPD) model of rapid decision
making. Decision making in action: Models and methods 5, 4 (1993), 138–147.

[41] Jan H. Klemmer, Stefan Albert Horstmann, Nikhil Patnaik, Cordelia Ludden,
Cordell Burton, Carson Powers, Fabio Massacci, Akond Rahman, Daniel Votipka,
Heather Richter Lipford, Awais Rashid, Alena Naiakshina, and Sascha Fahl. 2024.
Using AI Assistants in Software Development: A Qualitative Study on Security
Practices and Concerns. In Proceedings of the 2024 on ACM SIGSAC Conference
on Computer and Communications Security (Salt Lake City, UT, USA) (CCS ’24).
Association for Computing Machinery, New York, NY, USA, 2726–2740. doi:10.
1145/3658644.3690283

[42] Sabrina Klivan, Sandra Höltervennhoff, Rebecca Panskus, Karoly Marky, and
Sascha Fahl. 2024. Everyone for Themselves? AQualitative Study about Individual
Security Setups of Open Source Software Contributors. In 45th IEEE Symposium
on Security and Privacy (SP).

[43] Jeremy Lacomis, Pengcheng Yin, Edward Schwartz, Miltiadis Allamanis, Claire
Le Goues, GrahamNeubig, and Bogdan Vasilescu. 2019. DIRE: A Neural Approach
to Decompiled Identifier Naming. In 2019 IEEE/ACM International Conference on
Automated Software Engineering (ASE ’19). 628–639. doi:10.1109/ASE.2019.00064

[44] Falk Lieder, Thomas L Griffiths, Quentin J M. Huys, and Noah D Goodman. 2018.
The anchoring bias reflects rational use of cognitive resources. Psychonomic
bulletin & review 25 (2018), 322–349.

[45] Xin Luo, Dan Chen, Yongjun Wang, and Peidai Xie. 2019. A type-aware approach
to message clustering for protocol reverse engineering. Sensors 19, 3 (2019), 716.

[46] Alessandro Mantovani, Simone Aonzo, Yanick Fratantonio, and Davide Balzarotti.
2022. RE-Mind: a First Look Inside the Mind of a Reverse Engineer. In 31st USENIX
Security Symposium (USENIX Security 22). USENIX Association, Boston, MA,
2727–2745. https://www.usenix.org/conference/usenixsecurity22/presentation/
mantovani

[47] James Mattei, Madeline McLaughlin, Samantha Katcher, and Daniel Votipka. 2022.
A Qualitative Evaluation of Reverse Engineering Tool Usability. In ACSAC 2022,
Annual Computer Security Applications Conference.

[48] James Mattei, Madeline McLaughlin, Samantha Katcher, and Daniel Votipka. 2022.
A Qualitative Evaluation of Reverse Engineering Tool Usability. In Proceedings of
the 2022 Annual Computer Security Applications Conference (Austin, Texas, USA)
(ACSAC ’22). Association for Computing Machinery, New York, NY, USA.

[49] Nora McDonald, Sarita Schoenebeck, and Andrea Forte. 2019. Reliability and
inter-rater reliability in qualitative research: Norms and guidelines for CSCW
and HCI practice. Proceedings of the ACM on Human-Computer Interaction 3,
CSCW (2019), 1–23.

[50] Gary McGraw and John Steven. 2011. Software [In]security: Comparing Apples,
Oranges, and Aardvarks (or, All Static Analysis Tools Are Not Created Equal).
http://www.informit.com/articles/article.aspx?p=1680863. (Accessed 02-26-2017).

[51] Matthew B Miles and A Michael Huberman. 1994. Qualitative data analysis: An
expanded sourcebook. sage.

[52] JaronMink, Hadjer Benkraouda, Limin Yang, Arridhana Ciptadi, Ali Ahmadzadeh,
Daniel Votipka, and Gang Wang. 2023. Everybody’s got ML, tell me what else
you have: Practitioners’ perception of ML-based security tools and explanations.
In 2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2068–2085.

[53] Azqa Nadeem, Daniël Vos, Clinton Cao, Luca Pajola, Simon Dieck, Robert Baum-
gartner, and Sicco Verwer. 2023. SoK: ExplainableMachine Learning for Computer
Security Applications. arXiv:2208.10605 [cs.CR] https://arxiv.org/abs/2208.10605

[54] John Narayan, Sandeep K Shukla, and T Charles Clancy. 2015. A survey of
automatic protocol reverse engineering tools. ACM Computing Surveys (CSUR)
48, 3 (2015), 1–26.

[55] Netzob. 2024. Netzob. https://github.com/netzob/netzob?tab=readme-ov-file.
(Accessed 08-11-2024).

[56] Don Norman. 2013. The design of everyday things: Revised and expanded edition.
Basic books.

[57] Timothy Nosco, Jared Ziegler, Zechariah Clark, Davy Marrero, Todd Finkler,
Andrew Barbarello, and W. Michael Petullo. 2020. The Industrial Age of Hacking.
In 2020 USENIX Security Symposium (USENIX Security ’20). USENIX Association,
1129–1146. https://www.usenix.org/conference/usenixsecurity20/presentation/
nosco

[58] Adam Perer and Ben Shneiderman. 2008. Systematic Yet Flexible Discovery:
Guiding Domain Experts Through Exploratory Data Analysis. In IUI ’08 (Gran
Canaria, Spain). ACM, New York, NY, USA, 109–118. doi:10.1145/1378773.1378788

[59] Stephan Plöger, Mischa Meier, and Matthew Smith. 2021. A Qualitative Usability
Evaluation of the Clang Static Analyzer and libFuzzer with CS Students and CTF
Players. In 2021 Symposium on Usable Privacy and Security (SOUPS ’21). USENIX
Association, 553–572.

[60] Neele Roch, Hannah Sievers, Lorin Schöni, and Verena Zimmermann. 2024. Nav-
igating Autonomy: Unveiling Security Experts’ Perspectives on Augmented
Intelligence in Cybersecurity. In Twentieth Symposium on Usable Privacy and
Security (SOUPS 2024). USENIX Association, Philadelphia, PA, 41–60. https:
//www.usenix.org/conference/soups2024/presentation/roch

[61] Ben Shneiderman. 1987. Designing The User Interface: Strategies for Effective
Human-Computer Interaction, 4/e (New Edition). Pearson Education India.

[62] Ben Shneiderman. 2003. The eyes have it: A task by data type taxonomy for
information visualizations. In The craft of information visualization. Elsevier,
364–371.

[63] Yan Shoshitaishvili, Michael Weissbacher, Lukas Dresel, Christopher Salls, Ruoyu
Wang, Christopher Kruegel, and Giovanni Vigna. 2017. Rise of the HaCRS:
Augmenting Autonomous Cyber Reasoning Systems with Human Assistance.
In Proc. of the 24th ACM SIGSAC Conference on Computer and Communications
Security (CCS ’17). ACM.

[64] Carolyn Snyder. 2003. Paper prototyping: The fast and easy way to design and
refine user interfaces. Morgan Kaufmann.

[65] Nemesys Software. 2024. Nemesys. https://www.nemesys-soft.com/. (Accessed
08-11-2024).

[66] Sweetscape Software. 2024. 010 Editor. https://www.sweetscape.com/010editor/.
(Accessed 08-11-2024).

[67] Robert R Sokal and Charles D Michener. 1958. A statistical method for evaluating
systematic relationships. (1958).

[68] Anselm Strauss and Juliet Corbin. 1990. Basics of qualitative research. Vol. 15.
Newbury Park, CA: Sage.

[69] Octavian Suciu, Connor Nelson, Zhuoer Lyu, Tiffany Bao, and Tudor Dumitras.
2022. Expected Exploitability: Predicting the Development of Functional Vul-
nerability Exploits. In 31st USENIX Security Symposium (USENIX Security 22).
USENIX Association, Boston, MA, 377–394. https://www.usenix.org/conference/
usenixsecurity22/presentation/suciu

[70] Larry Suto. 2010. Analyzing the Accuracy and Time Costs of Web Application
Security Scanners. Technical Report. BeyondTrust, Inc.

[71] Synalysis. 2024. Synalysis. https://synalysis.com/. (Accessed 08-11-2024).
[72] Jenifer Tidwell. 2010. Designing interfaces: Patterns for effective interaction design.

" O’Reilly Media, Inc.".
[73] Manasi Vartak, Sajjadur Rahman, Samuel Madden, Aditya Parameswaran, and

Neoklis Polyzotis. 2015. SeeDB: Efficient Data-driven Visualization Recommenda-
tions to Support Visual Analytics. VLDB Endowment 8, 13 (Sept. 2015), 2182–2193.
doi:10.14778/2831360.2831371

[74] Vector35. 2019. Vector35/Community-Plugins.
https://github.com/Vector35/community-plugins/tree/master/plugins. (Accessed
05-30-2019).

[75] Daniel Votipka, Seth Rabin, Kristopher Micinski, Jeffrey S. Foster, and Michelle L.
Mazurek. 2020. An Observational Investigation of Reverse Engineers’ Processes.
In 29th USENIX Security Symposium (USENIX Security 20). USENIX Association,
1875–1892. https://www.usenix.org/conference/usenixsecurity20/presentation/
votipka-observational

[76] Daniel Votipka, Seth Rabin, Kristopher Micinski, Jeffrey S. Foster, and Michelle L.
Mazurek. 2020. An Observational Investigation of Reverse Engineers’ Processes.
In 29th USENIX Security Symposium (USENIX Security 20). USENIX Association,
Boston, MA. https://www.usenix.org/conference/usenixsecurity20/presentation/
votipka-observational

[77] Daniel Votipka, Rock Stevens, Elissa M Redmiles, Jeremy Hu, and Michelle L
Mazurek. 2018. Hackers vs. Testers: A Comparison of Software Vulnerability
Discovery Processes. In Proceedings of the 39th IEEE Symposium on Security and
Privacy (IEEE S&P ’18).

[78] K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith. 2016. Helping Johnny
to Analyze Malware: A Usability-Optimized Decompiler and Malware Analysis
User Study. In IEEE S&P ’16. 158–177. doi:10.1109/SP.2016.18

[79] Khaled Yakdan, Sergej Dechand, Elmar Gerhards-Padilla, and Matthew Smith.
2016. Helping Johnny to Analyze Malware: A Usability-Optimized Decompiler
and Malware Analysis User Study. 2016 IEEE Symposium on Security and Privacy
(SP) 00 (2016), 158–177. doi:doi.ieeecomputersociety.org/10.1109/SP.2016.18

[80] Yapeng Ye, Zhuo Zhang, Fei Wang, Xiangyu Zhang, and Dongyan Xu. 2021.
NetPlier: Probabilistic Network Protocol Reverse Engineering from Message
Traces.

[81] J. S. Yi, Y. a. Kang, and J. Stasko. 2007. Toward a Deeper Understanding of the Role
of Interaction in Information Visualization. IEEE Transactions on Visualization and
Computer Graphics 13, 6 (Nov 2007), 1224–1231. doi:10.1109/TVCG.2007.70515

[82] Shikun Zhang, Yuanyuan Feng, Yaxing Yao, Lorrie Faith Cranor, and Norman
Sadeh. 2022. How usable are ios app privacy labels? Proceedings on Privacy
Enhancing Technologies (2022).

[83] Tianyi Zhang, Zhiyang Chen, Yuanli Zhu, Priyan Vaithilingam, Xinyu Wang,
and Elena L. Glassman. 2021. Interpretable Program Synthesis. Association for
Computing Machinery, New York, NY, USA.

[84] Tianyi Zhang, London Lowmanstone, Xinyu Wang, and Elena L. Glassman. 2020.
Interactive Program Synthesis by Augmented Examples. In Proceedings of the
33rd Annual ACM Symposium on User Interface Software and Technology (Virtual
Event, USA) (UIST ’20). Association for Computing Machinery, New York, NY,
USA, 627–648. doi:10.1145/3379337.3415900

https://doi.org/10.1145/3658644.3690283
https://doi.org/10.1145/3658644.3690283
https://doi.org/10.1109/ASE.2019.00064
https://www.usenix.org/conference/usenixsecurity22/presentation/mantovani
https://www.usenix.org/conference/usenixsecurity22/presentation/mantovani
http://www.informit.com/articles/article.aspx?p=1680863
https://arxiv.org/abs/2208.10605
https://arxiv.org/abs/2208.10605
https://www.usenix.org/conference/usenixsecurity20/presentation/nosco
https://www.usenix.org/conference/usenixsecurity20/presentation/nosco
https://doi.org/10.1145/1378773.1378788
https://www.usenix.org/conference/soups2024/presentation/roch
https://www.usenix.org/conference/soups2024/presentation/roch
https://www.usenix.org/conference/usenixsecurity22/presentation/suciu
https://www.usenix.org/conference/usenixsecurity22/presentation/suciu
https://doi.org/10.14778/2831360.2831371
https://www.usenix.org/conference/usenixsecurity20/presentation/votipka-observational
https://www.usenix.org/conference/usenixsecurity20/presentation/votipka-observational
https://www.usenix.org/conference/usenixsecurity20/presentation/votipka-observational
https://www.usenix.org/conference/usenixsecurity20/presentation/votipka-observational
https://doi.org/10.1109/SP.2016.18
https://doi.org/doi.ieeecomputersociety.org/10.1109/SP.2016.18
https://doi.org/10.1109/TVCG.2007.70515
https://doi.org/10.1145/3379337.3415900

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Katcher et al.

A Codebook
In this section, we give the full definition for the different entries
in our codebook.

An Investigation of Interaction and Information Needs for Protocol Reverse Engineering Automation CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Code Description

Preserving mental model Participant wants to preserve their mental model of the current state of the protocol
RE task .

Context research Participant performs research into the context for the protocol RE task to inform the
process, field choices, structure, etc.

Look for counters / magic num-
bers

Participant looks for well-known magic numbers / sequential counters.

Investigating and confirming hy-
potheses

Participant performs investigation and confirmation of hypotheses regarding the
data.

User provided tests / data Participant uses their own test and input data as part of the RE process.
Looking for patterns Participant looks for patterns in the data.
Landmarking Participant looks for landmarks in the data.
Preprocessing Participant performs preprocessing of the data prior to examination.

Table 3: Codebook definitions for ProtocolREing processes

Code Definition

Visualization Participant wants changes to how data was presented or plotted.
Format / presentation of data Participant wants changes to the format or presentation of the data.
Alternate plotting options Participant wants alternate plotting options.
Final presentation of data for reporting Participant wants feature related to output of results for reporting.

Alternative I/O Participant wants means to move data into or out of the system.
External tool integration / interoperability Participant wants integration or interoperability with an external tool.
User provided data Participant wants to input a message or data and see how it is represented in the tool.
Generates Scaffolding Participant wants tool to automatically generate code / interface for parsing data or IO

with another tool.
Programmatic interaction with data structure Participant wants to interact with the data in a programmatic way.

Focus Participant wants to control the focus / layout / UI elements of the tool or data.
Searching Participant wants to search data.
Bit Level View Participant wants to view data at the bit-level.
Sorting Participant wants to sort data.
Moving windows in and out of display Participant wants to be able to use the interface across multiple windows, such as to

facilitate use with other tools or to retain focus
Easy interface for drilling down Participant wants tool to facilitate focusing on a subset of the data.
Hide parts of interface Participant wants to show / hide parts of tool interface.
Filtering, general Participant wants to select specific rows within the data to perform filtering actions.
Filtering by value Participant wants to filter rows by the value of a field or fields.
Filtering by message sequencing Participant wants to filter rows by a criteria and include messages with a relative offset

(before or after) to those rows matching the criteria.
User filters data and reruns analysis Participant wants to filter data and see how analysis changes.

Table 4: Tool Features codebook.

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Katcher et al.

Code Definition

Field Boundaries Participant wants a feature related to or for manipulating field boundaries.
Automatic field boundary assignment Participant wants automation to assist with assigning field boundaries.
Identifying connected features Participant wants a feature identifying which pieces of information are related.
User defines connected features Participant wants a feature allowing them to specify which pieces of information are

related.
Automatic checksum management Participant wants a feature related to automatic calculation or validation of checksum.
User choice in field boundaries Participant wants to be able to set the field boundary themselves.
Bit boundaries Participant wants boundaries at the bit level.
Filter / sorting applies across fields Participant wants filtering and sorting capabilities that can be performed on one field

should be able to apply to either reorder and filter data in other fields
Dotted vertical lines for visualizing breaks Participant wants a visual indicator for visualizing splits before making the split.
Variable message size Interface should support non-aligned field boundaries in messages which are variable

length.
Variable field size Participant wants field sizes to vary across messages.
Provide field boundary alternatives Participants wants a feature which provides alternative field boundaries to one selected.
Automatic field boundary assignment Participant wants a feature which automatically assigns field boundaries based on a

condition.

Data type Participant wants a feature related to or for manipulating data types.
Automatic data type assignment Participant wants a feature related to automatic data type assignment.
User restricts data type and rerun analysis Participant wants a feature related to automatic analysis with data type restrictions.
Additional supported encoding types Participant wants a feature related to supporting additional text encoding formats.
User choice of endianness Participant wants to be able to view / choose the endianness of the data types used.
User choice in mixed-type view in-line Participant wants to select data and see it decoded as a bunch of different types simul-

taneously.
Provide data type alternatives Participant wants tool to show alternative datatypes which are consistent with the data.
Decode as datatype Participant wants to choose data and see it decoded as a particular datatype.
Decode as float Participant wants to see data decoded as a float.
Decode as hex Participant wanted to see data decoded as a hex.
Decode as ascii Participant wanted to see data decoded as ASCII.
Additional supported data types Participant wants additional data types beyond what was shown.

Table 4: Tool Features codebook.

An Investigation of Interaction and Information Needs for Protocol Reverse Engineering Automation CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Code Definition

Meta data Participant wants summary statistics, or metadata.
Timestamp Participant wants to see timestamp when data was collected.
Summary statistics Participant wants tool to calculate statistics such as min, max, median, mode for field

values.
Identify data distribution Tool should identify if data is drawn from a well known or user supplied distribution.
Histogram by field Participant wants to see a histogram distribution for each field.
Show counts Tool should display counts of messages / field values.
Confidence Metric Automated system should provide a confidence measurement for inferred splits / types

(OR) Interface should allow participant to record how confident they are in a piece of
data.

Size of fields Tool should give the size of fields based on field boundaries.

State-based modification Participant wants features related to undo, redo, preview, or storing annotations.
Look back at previous states Participant wants to be able to look at previous tool states for comparison.
Sticky notes / in-line comments Participant wants to annotate data / interface with information, recording their mental

model into the interface
Preview before change Participant wants to see a preview of what will happen by making a change, comparing

current state with next state
Undo button Participant wants to undo last action, moving interface to previous state.
Impact of changes in field variance Participant wants a tool feature allowing them to see the impact of changes on the

variance of fields.

Displaying connected data Participant wants features allowing brushing, or coordinated multi-view.
Coordinated Views / Brushing Participant wants to select data and have related pieces of data highlighted throughout

the interface.
Color coding Participant wants data to be color coded by type or value such as all bytes in ASCII

range shown with a fixed color.

Other

Reason for automated choice Participant wants information as to how the automated system made a choice.
Solution steps for automated decisions Participant wants tool to provide specific steps that the automation took when develop-

ing a solution.
General customization Particpant wants a feature related to general customization of the tool.

Table 4: Tool Features codebook.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Defining ProtocolREing
	2.2 Existing tools to support ProtocolREing
	2.3 User Studies with Reverse Engineers

	3 Methods
	3.1 Prototype Interface Design
	3.2 Interview Protocol
	3.3 Recruitment
	3.4 Analysis
	3.5 Limitations

	4 Ethical Considerations
	5 Results
	5.1 Participants
	5.2 ProtocolREing Process (RQ1)
	5.3 Information Needs From Automation (RQ2)
	5.4 Interaction Needs With Automation (RQ3)

	6 Discussion
	6.1 Recommendations for ProtocolREing Automation Developers
	6.2 Recommendations for Researchers

	7 Conclusion
	Acknowledgments
	References
	A Codebook

