
"I’m trying to learn. . . and I’m shooting myself in the foot": Beginners’
Struggles When Solving Binary Exploitation Exercises

James Mattei∗, Christopher Pellegrini∗, Matthew Soto∗

Marina Sanusi Bohuk†, and Daniel Votipka∗
∗Tufts University; †MetaCTF

Abstract
Vulnerability discovery is an essential security skill
that is often daunting for beginners. Although there
are various supportive organizations and ample on-
line resources to learn from, beginners often strug-
gle, become frustrated, and quit. We conducted
semi-structured observational interviews with 37
vulnerability discovery beginners attempting to ex-
ploit 51 vulnerable programs. We capture the ques-
tions beginners have when trying to identify and
exploit vulnerabilities, how they search for answers,
and the challenges they face applying their searches’
results. We performed a rigorous qualitative coding
of our dataset of 3950 events characterizing partic-
ipants’ actions to identify several behaviors and
obstacles faced, along with quantitative measures
to determine their most frequent issues.

We found beginners struggle to understand how
to exploit vulnerabilities, craft their solutions, and
even complete common technical tasks. They were
often unable to find relevant information online to
overcome these struggles, as they lacked the rele-
vant vocabulary to craft effective keyword searches.
When they did find relevant web pages, they strug-
gled to properly transfer information from the web
to their challenges due to misunderstandings and
missing context. Based on our results, we offer sug-
gestions for vulnerability discovery educators and
resource creators to produce higher-quality materi-
als to help facilitate beginner learning.

1 Introduction
As technology continues to proliferate into our
daily lives and supports more critical infrastruc-
ture, we rely more on skilled practitioners to per-
form security reviews to ensure early vulnerabil-

ity identification and mitigation [28, 40]. This need
is compounded by the continual rise in cyberat-
tacks [22, 63] and has been echoed by multiple gov-
ernments’ calls to grow the workforce [18, 64, 85].

There are a plethora of freely available resources
online, including self-guided courses [24, 51], ma-
jor conference talks about novel techniques [2, 3, 5],
and thousands of hands-on exercises [86]. These re-
sources are a testament to the security community’s
collective altruism and have led many to suggest
beginners learning vulnerability discovery should
utilize the abundance of online resources [86]. How-
ever, participants in previous studies reported diffi-
culty finding the right resources and understanding
how to apply them without prior knowledge [46].
Education literature suggests extraneous cognitive
load spent understanding online resources can im-
pede learning outcomes and burden beginners who
may already be struggling with new material [84].

This paper seeks to understand what happens
when beginners use these online resources. Because
vulnerability discovery education is often in an un-
structured setting [86, 90], learning relies on finding
the right information, as well as being able to un-
derstand and apply it. Specifically, we focus on be-
ginners’ challenges when completing vulnerability
discovery exercises (VDEs). The security commu-
nity has often turned to VDEs to teach vulnerability
identification skills because they provide hands-on,
practical applications of security concepts and real-
world exposure to various vulnerabilities [86, 90].
While these exercises can take many forms, the most
common VDE is the Capture-the-Flag competition
(CTF), which presents challenges as individual prac-
tice sets students can move through at their own
pace. Challenges may cover web and binary ex-

ploitation, forensics, cryptography, and more. In
each challenge, the goal is to discover a “flag” (a
secret string of text) by exploiting some vulnera-
bility, and participants can then submit that flag in
exchange for points based on challenge difficulty.

These exercises are generally regarded as valu-
able educational tools—security experts report
them as their most valuable learning tool [90]; high-
profile technology companies highlight their value
by hosting large external competitions [50] and use
them internally for employee training [16, 49]; and
much of the recent security education literature has
focused on designing new types of VDEs [13, 20, 36,
37, 61, 67, 91].

Unfortunately, prior work has found that VDEs
can be particularly challenging for beginners, often
leading them to get discouraged and stop pursuing
the field [10,47,70,71,73,81,90]. Therefore, any multi-
challenge study investigating knowledge transfer
and true learning beyond single task completion
would suffer from survival bias. As a necessary first
step toward improving learning for beginners, we
must identify common roadblocks beginners face
which introduce extraneous cognitive load, cause
frustration, and prevent beginners from completing
challenges. Improving task completion by remov-
ing these extraneous barriers can allow future work
in security education and prior learning science lit-
erature suggests limiting extraneous load can have
direct improvements on learning [84].

We seek to quantify what challenges beginners
face during this process. Specifically, we strive to
answer the following research questions:

RQ1: Where do beginners often struggle when
attempting binary exploitation exercises?

RQ2: What types of information and web pages
do beginners use when attempting binary ex-
ploitation exercises?

RQ3: Are these resources understandable and
transferable to their context? What difficulties
do beginners face applying the information
within the resources?

To answer these questions, we performed a semi-
structured observational study with 37 participants,
asking them to identify and exploit a vulnerabil-
ity in a simple binary program. Each participant
was asked to find and exploit a vulnerability in one
to two (of four) vulnerable programs, each with
a different type of vulnerability. Our participants

completed 51 challenges. We specifically consid-
ered binary exploitation problems, which require
the review of a compiled binary program or related
source code to identify and exploit a vulnerability.
We chose to focus on a single challenge type, as we
expected the knowledge and background needed
for other categories to vary, complicating recruit-
ment and our ability to produce detailed findings.
We chose binary exploitation, as opposed to other
potential categories (e.g., web exploitation), as this
category has been shown to be the most challenging
for beginners [27, 79]. Therefore, any improvements
made by our work would be likely to have signifi-
cant positive impact for beginners.

The challenge set was designed to expose
students to the most common binary exploita-
tion vulnerabilities [79]. Each challenge was de-
signed as simply as possible, reflective of entry-
level challenges beginners would encounter in bi-
nary exploitation exercises (BEEs). While partici-
pants solved their challenge, we recorded their ap-
proaches, their difficulties, and any resources (on-
line or offline) they used.

We found that while there is no shortage of re-
sources available to participants, they often need
help crafting relevant queries and are prone to mis-
interpreting or misapplying the information they
find. This typically occurred when understanding
the vulnerability or crafting their exploits, and they
even struggled with common technical tasks such as
providing hex input. Participants often got stuck in
a trial-and-error loop of trying various commands
and keyword searches without a clear goal. We also
noticed the utility of a given web page varied based
on the participant’s background. Less experienced
beginners could not infer details not included on a
page, preventing them from translating the infor-
mation they found to their specific problem. Finally,
some participants used ChatGPT to help solve their
problems with varying levels of success.

Based on these results, we outline recommenda-
tions for BEE design and student support resources
to make vulnerability discovery more approachable
for all leaners regardless of prior experience.

2 Related works

Our interviews provide the first in-depth view of
beginners’ experiences solving binary exploitation
challenges, their strategies, and the resources they
use. Prior work has investigated security profession-

als’ processes for vulnerability discovery, security
education using VDEs, and the barriers to entry into
the vulnerability discovery community.
Vulnerability discovery. A growing body of litera-
ture has sought to understand how security profes-
sionals perform vulnerability discovery tasks [17,
23, 25, 43, 59, 82, 88–90, 94]. Multiple studies have
sought to identify security professionals’ strategies
when reverse engineering software to inform au-
tomation development [23,25,59,89]. However, this
work has focused primarily on defining security
professionals’ processes and interactions with code;
investigations of beginners remain limited.

Perhaps the most similar to our work is a recent
study by Ford et al., which classified mistakes 11
security professionals make during live hacking ses-
sions while they solve BEEs [43]. Ford defined four
mistake categories depending on their root cause:
Programming/Miscellaneous, Implementation, Strategy,
and Tooling. We drew inspiration from their research
by analyzing our participants’ mistakes, but we fo-
cused on a different population—beginners. There-
fore, the mistakes and challenges identified for ex-
perts likely do not translate directly. Our work aims
to understand how to get beginners to that level.
Security education using VDEs. The security and
CS education communities have explored strate-
gies for supporting beginners in security educa-
tion. Much of this work has considered alternative
VDE designs [41, 61, 67, 73]. Owens et al. found
that gradually increasing challenge difficulty in-
creased student engagement and reduced within-
exercise dropout [67]. Researchers have also in-
corporated peer-based elements to encourage stu-
dent collaboration [13, 61, 62]. Others have stud-
ied currently available exercise content (e.g., chal-
lenge topics and difficulty) to identify knowledge
gaps [26] or pedagogy [86] to identify opportuni-
ties for alternative VDE formats. Some researchers
have also proposed alternatives to CTF-style exer-
cises [19,34,44,69,74,75,92,93]. While this work has
investigated several aspects of VDEs, our focus on
the resources students use and their specific misun-
derstandings in practice offers a unique perspective
on how the security community can produce re-
sources and tools that better suit beginners’ needs.
Barriers to entry into vulnerability discovery. Fi-
nally, recent research has investigated the barriers
beginners face when entering the vulnerability dis-
covery community [10, 42, 46, 53]. This work has
motivated our current study, as early security edu-

cation has shown to be a consistent barrier across
all this prior work. Some of this research found
that groups historically marginalized in security
often do not have the community support needed
to guide them through the large sea of available ed-
ucational resources [46]. Women, in particular, feel
othered and often face harassment, which makes
it more challenging to seek help when stuck. Our
work seeks to lower artificial barriers by making
it easier for these beginners to find and use online
resources, allowing them to focus on learning con-
cepts germane to real-world vulnerability discovery.
We hope this is a small initial support, especially for
those who may continue to struggle to reach out for
help due to the ostracization they have faced.

3 Methods
We now describe the methodology for our study.
The interviews were conducted between April 2023
and April 2024.

3.1 Interview Structure

We performed video teleconference interviews
where participants attempted a binary exploita-
tion challenge (the “interview challenge”). Interviews
lasted between 70 and 90 minutes and were con-
ducted by a single interviewer.

Our interview challenges adopted a BEE-like
structure where participants are given a vulnera-
ble program that has read access to a secret string of
text called a “flag.” The challenge’s goal is to reveal
the flag by exploiting a vulnerability. We adopted
this BEE format for our interviews to give our be-
ginner population some structure and reflect how
security professionals often report being introduced
to the subject matter [90]. This format guides partici-
pant attention while allowing ample opportunity to
troubleshoot and work through a difficult challenge.
Participants were given the challenge source code,
binary, and the IP address of the hosted challenge
(to which they connected via netcat).
Available tools. Participants used a development
environment preconfigured with command line
tools such as GDB, Valgrind, and pwntools [48, 72,
83]. The challenges and development environment
were hosted on t2.micro EC2 instances running
Ubuntu 20.04. Participants could install any other
tools they wanted; this minimized the chance partic-
ipants would perform poorly due to an unfamiliar
working environment. For participants unfamiliar

Figure 1: Overview of Just Google It observational study flow for participants

with the tools, we provided immediate help regard-
ing their usage to ensure they could focus on vulner-
ability identification and exploitation. The complete
list of tools is provided in the Supplemental mate-
rial [6].

Provided materials and instructions (Figure 1.B).
Before starting the interview challenge, participants
were read an introductory script covering the struc-
ture of the interview and reviewing the functional-
ity of the available tools [6]. Participants were also
given a reference sheet with several commands, se-
lected such that all the interview challenges could
be solved only using the reference sheet [6]. The
interviewer described each command on the sheet
and allowed participants to ask clarifying questions.

Tutorial challenge (Figure 1.C). Before the inter-
view challenge, participants were guided through a
tutorial challenge that mirrored the interview chal-
lenge’s structure. This problem did not involve ex-
ploiting a vulnerability but could be solved with
basic code comprehension [1]. The tutorial famil-
iarized participants with the task environment, the
provided tools, and the challenge structure.

Interview challenge (Figure 1.D). After the tuto-
rial challenge, participants were given one hour to
solve one of four binary exploitation challenges. Sec-
tion 3.2 includes descriptions of each challenge. No
system defenses (e.g., ASLR, canaries, noexecute
stack) were enabled in any challenge. Participants
shared their screens, allowing us to record all the
commands they used, visited webpages, and uses of
the BEE reference sheet. Participants were asked to
“think aloud” as they completed the challenge so we
could capture their thought process. The interviews
were recorded using Zoom’s built-in recording func-
tionality. Participants were instructed to refrain
from viewing sensitive information such as email.
If such information was accidentally recorded, the
video was edited to redact the private information
before further review and storage.

We limited the interview challenge to one hour
after several discussions with VDE organizers. We

believe this time pressure is comparable to what
beginners face when completing a BEE for the first
time while still allowing enough time for beginners
to investigate the challenge sufficiently. One VDE
organizer reviewed their logs and conservatively
estimated beginners’ work on BEE challenges for
53 minutes on average before finishing or giving
up, not accounting for participants choosing to at-
tempt other challenges first or taking breaks while
solving the challenge. Another VDE organizer es-
timated beginners take 107 minutes on average to
solve a similar challenge. However, this setting was
less comparable as the problem is broken into seven
distinct challenges requiring the participant to com-
plete tasks not found in our challenges and partici-
pants are not given the program’s source, making
the task more difficult. Given these comparisons, we
believe our time limit is a reasonable approximation
as we provide regular hints described in Section 3.3,
preventing participants from being stuck for long.

In some cases, participants were either reluctant
to or struggled to craft web searches or use any tools.
See Section 4.4.1 for a detailed discussion of this
phenomenon. Because this prevented participants
from progressing through the challenge, the inter-
view protocol included cues to nudge participants
to search the web for information or try commands
on the terminal (See Section 4.2 for details).

Finally, we periodically asked probing questions
to capture participants’ processes. Some partici-
pants required this additional prompting as they
focused on attempting to solve the challenge.

Probing and follow-up questions (Figure 1.E). To
get a more detailed view of our participants’ reason-
ing and information-gathering process, we asked
participants to describe the quality of the webpages
they visited, their solution strategy after a break-
through, and what helped them improve their un-
derstanding. To avoid response fatigue, we limited
questions to once every 10 minutes or after a notable
breakthrough [15]. Once the interview challenge
was completed, we asked participants to describe

their roadblocks, what resources helped them over-
come them, and which were not helpful.

3.2 Types of Vulnerabilities

Participants were assigned one of four different
interview challenges. We chose to focus on bi-
nary exploitation challenges as they were identi-
fied as the most difficult in Burns et al.’s review
of 3600 CTF challenges [79]. We chose a diffi-
cult challenge type to investigate obstacles begin-
ners face broadly, and findings from the most diffi-
cult challenges will more likely generalize to easier
challenge types. We incorporated elements from
six of the top seven most common vulnerability
types identified—excluding the more sophisticated
ROP challenges. A research team member with pro-
fessional experience designing and hosting CTFs
wrote the four challenges—each centered around a
different vulnerability type. We chose a heap over-
flow, buffer overflow, integer overflow, and format
string vulnerability and designed the challenges to
be solvable within one hour. Table 1 lists the differ-
ent challenge steps. The challenges are as follows:

• Heap overflow (Heap) - A basic buffer over-
flow on the heap that hinges on overwriting a
function pointer to a new destination.

• Buffer overflow (Buff) - A slightly more com-
plicated buffer overflow problem on the stack
following the typical “Ret-2-win” format. “Ret-
2-win" involves redirecting program execution
to a specific function that, when run, will pro-
vide the flag value.

• Integer overflow (Int) - A more complicated
version of Buff that requires participants to uti-
lize an integer overflow to execute the vulnera-
ble buffer overflow code.

• Format String (FmtStr) - A program requiring
participants to perform a format string attack
to leak the value of an un-referenced variable.

We designed each challenge to be difficult enough
that participants would need to learn new informa-
tion but not too easy that participants could acci-
dentally solve the challenge. We piloted the entire
interview process with four pilot participants (one
for each challenge type) to assess challenge diffi-
culty and validate our interview infrastructure. We
increased the difficulty of the Int and Heap chal-
lenges, as our pilot participants were able to solve

them too quickly. The change in difficulty was veri-
fied with new pilot participants whose data was in-
cluded in the final dataset, as there were no further
changes to the challenges afterward. We believe we
achieved an appropriate difficulty balance as 41%
of attempted challenges were solved, and 98% (all
but one) made it to the final challenge step.

3.3 Hints

Our goal in this study was to identify beginners’
struggles in vulnerability discovery, so we wanted
to ensure every participant could make progress
and attempt every facet of the challenge. To this end,
participants were given a hint every 10 minutes,
slowly revealing more detailed insights about the
challenge. Prior work in this space has suggested
quality hints that guide beginners through the steps
of vulnerability discovery are a core aspect of good
vulnerability discovery learning support [27, 31, 55,
79, 80]. We designed our hints to mirror the steps to
solve each challenge. The complete list of hints can
be found with the source code for the challenges [1].
Our hints progressed as follows:

10 minutes: Vulnerability name
20 minutes: Vulnerability location
30 minutes: General solution strategy
40 minutes: Specific first solution steps
50 minutes: Tailored in-depth help

The interviewer also delivered additional nudges
to assist participants. These nudges never pre-
empted information of scheduled hints. They were
not delivered immediately to correct mistakes, as
we wanted to capture the debugging behavior, but
rather after the participant was stuck for an ex-
tended period. Nudges included help interpreting
tool output, adjusting participant solution strategy,
and overcoming roadblocks.

3.4 Recruitment

Because we wanted our results to generalize to a
broad population of beginners, we used several re-
cruitment methods to find participants:
University forums. We periodically posted the re-
cruitment message in the supplemental material to
our university’s Computer Science Piazza page [6].
We contacted faculty at ten other universities to dis-
tribute the message, informed them of our target
audience, and allowed them to decide the most ap-
propriate venue to post our message.

Challenge Step Description Applicable
Challenge

Identify vulnerability Determine what vulnerability exists in the program All Challenges
Locate vulnerability Identify what line(s) or function call is vulnerable All Challenges
Understand vulnerability Understand how the vulnerability can be used to access the flag All Challenges

Find the flag address Certain challenges had a flag function that needed to be executed. Finding it’s
address is essential for the create payload Heap, Buff, Int

Determine offset Determine where in the payload the address of flag should be provided to
leverage the vulnerability to print the flag Heap, Buff, Int

Determine how to get past
length check

When the participant correctly determined input sizes that would result in an
integer overflow Int

Find user input on stack Identify the position on the stack at which user input starts FmtStr

Provide flag at correct offset Create a payload with the appropriate flag address at the correct offset to
print the flag value Heap, Buff, Int

Provide flag as input and
print address with %s Create a payload with the flag address, dereferencing the address with %s FmtStr

Steps with dashed lines in between were grouped for post-hoc analysis. See explanation in section 3.6.

Table 1: Unique Challenge steps: Table of each challenge step, their definition, and applicable challenges.

CTF competition mail lists. We also worked with
PicoCTF [66] and Pwncollege [76], two popular se-
curity education platforms, to send our recruitment
message to students who had either previously
competed in their VDEs or made an account with
the platform to solve practice challenges. While re-
cruiting on these lists resulted in some responses
from more experienced individuals, we found many
people who qualified according to our eligibility
criteria—some people signed up for a VDE but
did not solve any challenges at all. Participants
with experience beyond our eligibility criteria who
were not identified in the screening survey (see
Section 3.5) were easily discovered during the in-
terview. These experienced participants’ responses
were not included in our final dataset.

VDE Discords. Finally, we posted the recruitment
message to various university student groups on
VDE Discord channels. These channels offer stu-
dents support and resources to help them practice
their skills. As with the CTF mailing lists, these
channels included beginners interested in vulnera-
bility discovery with limited experience.

Participants were compensated with a $50 gift
card for participating in the first interview. After the
interview, participants were offered the opportunity
to complete a second challenge for an additional $30.
14 participants completed two challenges. To avoid
potential carryover effect, participants were only
allowed to complete one of Int, Buff, and Heap as
the solution steps for each were similar [79].

To capture various approaches to our challenges,
we conducted interviews until we reached satu-

ration of themes [29, pg. 113-115]. We observed
unique themes across each vulnerability type, espe-
cially in the FmtStr challenge, which was the most
different from the other three. Therefore, we consid-
ered saturation separately for each challenge type.
After 12 interviews for all the challenge types, we
reached saturation except FmtStr, which required 15
interviews. In total, our dataset includes interviews
with 37 participants who solved 51 total challenges.

3.5 Participant screening (Figure 1.A)

We required participants to be proficient in C and
have prior experience with assembly and machine
architecture. Participants needed to know the basics
of stack construction to understand the vulnerabili-
ties, and we did not want participants wasting time
learning C syntax. To confirm their eligibility, all
participants completed the pre-screening survey in
the supplemental materials [6]. We assessed partic-
ipants’ fluency in C using two questions adapted
from Danilova et al.’s assessment of software devel-
opment competency [33]. These questions showed
one C function and asked participants to identify
specific features. Survey respondents had to answer
both correctly to be interview-eligible.

Similarly, we wanted to ensure our participants
did not have too much experience with BEEs. To do
this, we assessed participants’ perceived vulnerabil-
ity discovery skill level using the validated 9-item
vulnerability discover subscale of Votipka et al.’s
Secure Software Development Self-Efficacy Scale
(SSD-SES), which asks participants to rate their abil-

ity to perform nine vulnerability discovery tasks on
a 5-point Likert scale [87]. We asked participants to
self-report their years of security experience and any
security education. Survey respondents who had
previously participated in more than three VDEs or
solved more than three BEEs were considered too
experienced and were not interviewed.

This cutoff was progressively determined as we
conducted interviews with more experienced par-
ticipants who could complete the challenge with-
out referencing any resources, demonstrating clear
prior knowledge of the correct solution strategy.
This unique behavior was straightforward to iden-
tify and unique to participants who self-reported
previously participating in several VDEs or com-
pleting multiple binary exploitation challenges. We
removed their interview from our final dataset and
tightened our exclusion criteria. The survey con-
cluded with common demographic questions to as-
sess the representativeness of our sample.

3.6 Data analysis

We used qualitative and quantitative methods for
our analysis, described below. We first performed a
rigorous qualitative coding of 3950 events across all
interviews to label all aspects of the beginners’ vul-
nerability identification and exploitation process,
enumerating the range of their strategies, mistakes,
and roadblocks. Then, we performed quantitative
comparisons using this dataset to determine com-
mon struggle areas. These analyses work together
to provide a rich view of beginners’ experiences.

Qualitative analysis. The interviews were ana-
lyzed using iterative, open coding [78, pg. 101-122].
Two researchers jointly reviewed two videos and
discussed with the research team to identify themes
and generate the initial codebook. We used an event-
based approach when defining the features of our
codebook. We wanted to capture every action taken
and roadblock encountered, so our codebook in-
cluded tags to describe when participants read the
source code, used various tools, visited a webpage,
made a mistake, got frustrated, and received a hint,
among other features. The supplemental material
[6] provides the full list of codes and definitions.

Using this codebook, two researchers indepen-
dently coded interviews in groups of two (switch-
ing to groups of three after the first three rounds and
five for the final round to allow for higher incidents
of uncommon codes), beginning with the initial

codebook and allowing additional codes to emerge
from the data. After each round, the researchers
met to calculate Krippendorff’s alpha (α), compare
codes, resolve disagreements, update the codebook,
and re-code interviews. Interviews were only jointly
reviewed by the full research team after they were
coded. We calculated α using the ReCal2 software
package to measure inter-coder reliability [52]. We
used α as it provides a conservative measure, ac-
counting for chance agreements. This process was
repeated seven times until α values exceeded 0.80
for each subjective variable. Final α values are re-
ported in the supplemental material [6]. We did not
calculate α for objective variables like what com-
mand participants used or the type of hints they
received, as suggested by IRR best practices [60],
as these can be drawn directly from the transcript.
After reaching agreement, the remaining 27 inter-
views were divided between the two researchers
and coded by a single researcher. The reported α

values are for the seventh round when agreement
was reached. The 27 singly coded interviews ana-
lyzed afterward did not impact reported α values.

After completing open coding, we performed ax-
ial coding to determine groups of codes for each
variable. Axial coding identifies connections be-
tween codes to extract higher-level themes [78, pg.
123-142]. We specifically wanted to identify com-
mon strategies and pitfalls that impede progress.

Quantitative comparisons. To understand which
steps were most challenging or required the most
online searching, we conducted pairwise Chi-
squared tests appropriate for categorical data [45]
across participants and problem steps of the distri-
bution of hints, mistakes, frustrations, and webpage
reviews. To account for multiple testing, we applied
a Bonferroni correction [39].

To compare across all challenge types, we needed
to group the unique steps of Int and FmtStr to match
the same six-step structure of Buff and Heap as
shown in Table 1. Int had one additional step: De-
termine how to get past length check. Since leveraging
the Integer Overflow and calculating the offset for
the Buffer Overflow influence the construction of
the final payload, we decided to merge these with
the Determine Offset step.

FmtStr shares the same first three steps with the
other challenge types but has unique final steps:
Find user input on stack and Provide flag as input and
print address with %s. The latter step is function-
ally the same as Provide flag at correct offset. There-

fore, these steps are grouped to Provide payload. Find
user input on stack is a unique challenge step in our
dataset. Still, in terms of completing FmtStr, this is
the penultimate step, serving a similar function as
Determine Offset for the other problems. Participants
needed to find their offset on the stack and then
incorporate that information into their payload.

These step groupings for Int and FmtStr were
done for post-hoc evaluation to guide our analy-
sis. We do not attempt to compare time-to-solve be-
tween challenges directly. These results were used
to develop further questions for our dataset.

3.7 Limitations

While we attempted to replicate the experience of a
real-world vulnerability discovery, there are inher-
ent limitations with a lab setting. While we tried
to emulate the structure of a standard BEE experi-
ence, we included more detailed hints than would
be given in a real-world setting. Thus, our success
rate may be higher than expected in practice. This
was necessary to ensure we captured participants’
struggles throughout the challenge but limited us
from making claims about their efficiency.

We also place relatively short time constraints on
participants. While competition-based VDEs often
have time limits, students typically have more than
one hour to solve a BEE challenge. We discuss this
further in Section 4.4.3.

Participants may have also changed their behav-
iors because they knew they were being watched,
introducing a Hawthorne effect [54]. However, the
typical response to this effect is to increase produc-
tivity or focus, so our results likely provide an upper
bound on student effort.

While we attempted to recruit broadly to avoid
bias, we cannot claim our sample represents all
beginners’ experiences and may be specific to the
Western-centric institutions through which we re-
cruited. Additionally, while we have a sufficient
sample to make claims about the frequency of vari-
ous events, it is not large enough to make generaliz-
able claims in all cases. For example, we included
multiple types of vulnerabilities in our challenge
programs but did not directly compare them, as a
small number of participants were assigned to each.
Throughout our results, we present statistical results
for cases with sufficient data to make comparisons.
Otherwise, results should be viewed as qualitative
themes, which should be tested in future work.

Lastly, our study investigates beginner difficul-
ties when solving BEEs, which may differ from their
struggles when solving other VDE challenges, such
as web exploitation or cryptography. Despite this,
we believe that many of our results about begin-
ners searching and using online resources can be
applied broadly to similar scenarios. Additionally,
BEEs are sufficiently complex to capture various
roadblocks beginners face that may not be present
in other easier challenge types.

4 Results
This section presents our findings. When referring
to a particular participant, we use the notation “PX,”
where X is an anonymized number unique to the
participant. When referring to many participants,
we use ”N=”; and when referring to a number of
events, we use ”E=”.

4.1 Participants

Table 2 gives experience metrics for all 37 partici-
pants. Only 15 (39%) had previously participated
in a VDE. The majority (68%) had never solved a
binary exploitation challenge. There was no clear
difference in task performance between participants
with or without prior experience.

Our participants came from 11 different univer-
sities across four countries. Our sample is also de-
mographically similar to prior surveys of CS un-
dergraduate students and participants in VDE exer-
cises [12, 70]. Our population is mostly male (70%),
Asian (42%) or White (27%), and young (63%< 25).

4.2 Where Beginners Struggled (RQ1)

We first sought to understand where beginners most
often struggled when attempting to find and exploit
vulnerabilities. We focused on four events from our
codebook which indicate participant struggles: Mis-
takes, Frustration, Hints, and Web Pages. These events
encompass both when our participants got stuck
and when they needed the most additional informa-
tion support help them make progress.

Figure 2 shows a line graph indicating the num-
ber of participants with the code types’ given count.
Each line represents a challenge step. This section
discusses trends for each variable across steps and
issues participants struggled with at each step. We
present statistically significant results where rele-
vant. The χ2 and corrected p-values for each com-

Figure 2: Line graph showing the number of participants with different counts of Mistakes and Web Pages
grouped by problem step. Each line represents one of the steps for the interview challenge. The Y-axis shows
the number of interviews that had the number of instances of specific codes on the X-axis.

parison are provided in the supplemental mate-
rial [6].

Participants struggled to determine how to ex-
ploit vulnerabilities. Participants often struggled
the most during the Understand vulnerability step
as they figured out how to exploit it. The clear-
est indicator was that participants visited the web
the most during this step compared to every other
step (Identify Vulnerability χ2 = 127.22, p < 0.001; Lo-
cate Vulnerability χ2 = 144.17, p < 0.001; Find Flag
χ2 = 227.70, p < 0.001; Determine Offset χ2 = 23.52,
p < 0.001; and Provide Payload χ2 = 12.96, p < 0.001).
This step naturally requires participants to search
for information online, but several participants con-
tinuously updated their understanding of the vul-
nerability throughout the interview. P20 worked
on this step for over 40 minutes, visiting seven dif-
ferent kinds of web pages and searching for eight
different types of information—more than any other
participant.

Many participants found relevant web pages
about the vulnerability but struggled to implement
the information. Of the 25 participants who exhib-
ited frustration, 21 experienced it when trying to
transfer exploit knowledge from web pages. Par-
ticipants were more likely to be frustrated during
the Understand vulnerability step compared to the
Identify vulnerability (χ2 = 16.94; p = 0.001), Locate
vulnerability (χ2 = 15.11; p = 0.002), and Find flag
(χ2 = 13.44; p = 0.004) steps. P2 experienced this in
practice, spending nearly ten minutes trying to get a
command referred to on a web page (cyclic) to run.
After giving up on that approach, they continued
searching the web to try and find another web page.

Also, many participants (N=25) needed several

hints to complete this step, suggesting participants
had difficulty applying information from the web to
the challenge. For FmtStr in particular, participants
struggled to find their input on the stack and print
out the flag variable. More participants completed
this step via hint (N=11/15) than any other step for
any challenge (Buff 6/12; Int 6/12; Heap 7/12).

Participants often misunderstood how to perform
technical procedures. The Provide payload and De-
termine offset steps were particularly challenging
for participants. This difficulty is reflected in the
number of mistakes, which were statistically signif-
icantly more common in the Provide payload step
compared to Identify vulnerability (χ2 = 94.41, p <
0.001), Locate vulnerability (χ2 = 99.03, p < 0.001),
Understand vulnerability (χ2 = 36.25, p < 0.001), De-
termine offset (χ2 = 15.22, p = 0.001), and Find flag
(χ2 = 96.69, p < 0.001). Similarly, frustrations were
most common during the Determine offset step. This
difference was statistically significantly different
when compared to Identify vulnerability (χ2 = 14.23,
p= 0.002), Locate vulnerability (χ2 = 12.50, p< 0.006),
and Find flag (χ2 = 10.94, p < 0.014).

Both of these steps are relatively formulaic; there
is a clear set of steps to follow once the vulnerability
is identified, and they are mostly consistent across
vulnerability types. However, determining these
steps is difficult for those unfamiliar with binary
exploitation. For example, most participants had
never provided a hex address as input to a program
and realized they could not just paste it as input
(N=33). Many participants attempted to convert the
flag address to ascii before providing it as input
(N=15). Similarly, several participants made mis-
takes interpreting the hex output from GDB when

ID VDE
Skill1 VDE Exp2 BinEx

Chal3 Vuln Type

P1 0 No No FmtStr/Heap
P2 19 No No Buff/FmtStr
P3 14 No One Heap
P4 0 One No FmtStr/Int
P5 10 No No Heap/FmtStr
P6 0 One Mult. (2-3) Int / FmtStr
P7 34 Mult. (2-3) No Buff/FmtStr
P8 33 One One Buff/FmtStr
P9 16 One Mult. (2-3) Int
P10 0 Mult. (2-3) Mult. (2-3) Buff
P11 24 No No Buff/FmtStr
P12 40 Mult. (2-3) Mult. (2-3) Int/FmtStr
P13 21 No One Buff
P14 23 Mult. (2-3) One Int/FmtStr
P15 17 Mult. (2-3) Mult. (2-3) Heap
P16 29 No No Heap
P17 18 No No Buff
P18 28 No No Int/FmtStr
P19 25 No No Heap/FmtStr
P20 30 No No Buff/FmtStr
P21 27 No No Heap/FmtStr
P22 29 No No FmtStr
P23 28 No No Heap
P24 30 No No Buff
P25 25 One Mult. (2-3) Int
P26 29 No No Heap
P27 19 No No Buff
P28 30 No No Int
P29 25 One No Heap
P30 31 One No Buff
P31 25 Mult. (2-3) Mult. (2-3) Int
P32 26 No No Heap
P33 27 No No Buff
P34 28 One No Int
P35 31 No No Heap
P36 26 Mult. (2-3) One Heap
P37 22 No No Int

1The cumulative score of 10 self-efficacy questions on a Likert
scale. 0 - did not answer, 10 - least confident, 50 - most confident
2The number of formal VDE competitions participated in
3The number of binary exploitation VDEs solved.

Table 2: Participants’ self-reported demographic in-
formation and assigned vulnerability types.

calculating the offset (N=16). Despite the reference
sheet describing commands to complete these steps,
many participants either discarded the commands
as irrelevant or did not know how to use them.

Additionally, participants had trouble providing
their payload to the remote location over netcat,
despite confirming their solution was functional
with the local copy of the challenge (N=8). After
struggling for an hour to solve the challenge, getting
robbed of the satisfaction of seeing the actual flag
value left those participants even more frustrated.
P34 said, “Wow, I really suck at these. . . This was
actually, legitimately terrible.”

Finally, participants neglected to convert ad-

dresses to little-endian format (N=24). While sev-
eral participants recalled learning endianness, some
shared the same sentiment as P10 when asked if
they had previously heard about little versus big
endian: “Oh, right. I remember learning about that,
I just didn’t really think it was important.”
Many participants required a hint to find the vul-
nerability. The incidence of hints for the Identify
vulnerability step was one of the lowest by counts
(E=44) and had statistically significantly fewer than
Understand vulnerability (χ2 = 35.52, p < 0.001), De-
termine offset (χ2 = 41.40, p < 0.001), and Provide pay-
load (χ2 = 21.23, p < 0.001). Since participants only
needed one hint to progress past this step, many
were stuck until they received a hint (N=30). For
example, P20 explicitly declared after receiving the
vulnerability name hint, “OK, I guess I have some-
thing to Google now, so thank you!”

4.3 Most Common Resources (RQ2)

Our participants visited web pages 711 times. Ta-
ble 3 includes the top four most common web page
types and the number of times they were referenced
for each step. We identified 12 different web page
types. We only discuss the top page types for brevity
(∼75% of viewed web pages), but we discuss the
others in our supplemental material [6].
Forum pages were universally used. Forum pages
were the most commonly visited (N=33, E=175)—
this included StackOverflow, StackExchange, Red-
dit, and other similar websites. Participants most
commonly used forum pages to understand the vul-
nerability (E=63), determine offsets (E=55), and pro-
vide the exploit payload (E=39). These pages often
included short walkthroughs of VDE challenges or
examples of using various tools.
Many participants also reviewed pages that in-
cluded command-line tool specifications. The
second-most common web pages used were sites
providing resources similar to the Unix man pages
(N=21, E=130). This included websites like Geeks-
forGeeks, TutorialsPoint, and DigitalOcean. Partic-
ipants used these sites early in the vulnerability
discovery process to try to identify (E=40), locate
(E=21), and understand (E=43) the vulnerability.
Several participants used large language models
to support information search and tool output in-
terpretation. Large Language Models (LLMs) are
a single location to search for new information in-
stead of scouring multiple pages. Twelve partic-

Code Type Sub Code Type Identify
Vuln

Locate
Vuln

Understand
Vuln

Find
Flag

Determine
Offset

Provide
Payload Totals

Mistakes Application of info 4 1 13 2 34 63 117
Address and memory 1 2 17 10 22 45 97
Syntax 3 4 21 3 26 38 95
Endian 0 0 6 0 7 36 49

Total 8 7 57 15 89 182 358

Frustration Lack of familiarity 4 5 20 1 19 9 58
Tool output 0 3 11 2 6 3 25
Web page 0 0 3 1 8 2 14
Arbitrary roadblock 3 1 0 1 1 2 8

Total 7 9 34 5 34 16 105

Web Pages Forum page 17 10 63 11 55 39 175
Man page adjacent 40 21 43 3 15 8 130
LLM 7 12 39 11 38 12 110
Web results only 43 15 18 14 7 7 163

Total 107 58 163 39 115 66 578

Table 3: Top four Web pages, Mistakes, and Frustration broken down by step and challenge. Note that there
are instances of double counting, as a participant can make one mistake or visit the same web page while
working on several steps simultaneously. Thus the values in the table may not sum to the reported Totals.

ipants (∼32%) used LLMs (E=119) as interactive
tools to search for information. P30 described the
tradeoff between traditional web pages and LLMs,
saying, “That’s the bad thing about these static web-
sites. If it has the info, it has it; if it doesn’t, then you
can’t ask follow-up questions or anything.”

LLMs can also act as a utility to help interpret
tool output. When trying to understand the output
of GDB, several participants did not know how to
interpret it correctly. P25 thought to utilize an LLM
saying, “So, obviously, I have no clue what’s going
on here. . . but maybe ChatGPT can help.”

Participants did not always click into the search
results. We observed several participants conduct
a search, scan the returned results, and move on
(N=32, E=163). Some participants learned the in-
formation they needed from just the returned re-
sult summaries. However, we found that of the 163
times this happened, the participant answered their
question in only 59 cases (36%). As discussed in Sec-
tion 4.4.1, viewing just the search results was more
often an indicator the participant was struggling.
Participants often exhibited this behavior when un-
derstanding the vulnerability (E=43).

4.4 Struggles Using Resources (RQ3)

Finally, we observed that participants often strug-
gled to search for, understand, and apply relevant
information to exploit their vulnerability.

4.4.1 Search paralysis

We observed several cases in which participants
could not progress because they lacked any clear
idea of what to search for. We define this behavior
as search paralysis. It often presented as the partici-
pant pausing for long periods and expressing they
were stuck or attempting several searches in rapid
succession without a clear goal.

Many participants paused when they lacked the
vocabulary to craft search queries. P33 acknowl-
edged, “In class, they never taught me how to [ex-
ploit the gets() function]—just ‘don’t [use it]’.”
This was particularly common before we provided
participants the vulnerability name hint. P8 de-
scribed their struggles to find relevant keywords
to guide their web searches, saying, “[I’m] trying
to learn what I need to learn, and I’m shooting my-
self in the foot from that.” Several participants ex-
periencing search paralysis spent more than five
minutes trying to form a search query.

Even after participants had some information to
work from, their lack of experience limited their abil-
ity to develop useful search terms or understand the
search results they received. This often led partici-
pants to progress through several searches quickly.
For example, in six minutes, P8 made seven dif-
ferent web searches. They explained this behavior
saying, “There isn’t much logic to what I’m doing.
I’m just trying to do something to get started some-
where in some kind of direction because I’m feeling

very lost as a newcomer.” In many cases, these par-
ticipants did not even click on any of the links for
their search results, as described in Section 4.3.

4.4.2 Divergence in page utility

We observed several cases where multiple partic-
ipants viewed the same webpage but diverged in
whether they could use the presented information.
Prior experience impacted participants’ ability to
apply relevant information. Often, participants
could not process webpage information due to a
lack of background knowledge (E=218). In one in-
stance, two participants working on two different
challenges navigated to the same forum page with
step-by-step instructions on using cyclic to help
find the offset. P21 found the page early on and
returned to the page nine times to reference the ma-
terial and complete this step. Conversely, P2 recog-
nized the page as relevant but had difficulty using it
because it did not describe how to use the tool. They
proceeded to perform several subsequent searches
related to cyclic’s use, which did not yield the
information they needed. Instead, P2 eventually
restarted their search process and found a walk-
through using GDB, which they successfully repli-
cated the steps to make progress.
Participants frequently skimmed web pages,
missing key information. Participant webpage
navigation ranged from quickly skimming page
headings (E=472) to thoroughly reviewing each el-
ement and clicking through relevant links (E=124).
Their deployment of these strategies often varied
depending on the questions they were trying to an-
swer. This is expected based on prior studies of gen-
eral user web information retrieval practices [35,56].
However, these behaviors dramatically affected
whether they could find relevant information. The
clearest example of this was OWASP’s webpage
about format string attack [7]. This page was visited
by almost all participants who were assigned the
FmtStr challenge (N=11 of 15). Linked within that
page is a longer academic writeup detailing format
string exploits that was visited by only seven par-
ticipants, and only three read it in enough detail to
understand the vulnerability. None of the other in-
terview challenge types had a similar concentration
of participants visiting the same webpage.
Int was the most challenging problem for our par-
ticipants in terms of hints and frustration. The Int
challenge was designed to be the most difficult chal-

lenge in terms of the number of steps needed to
solve it out of the interview challenges. This was re-
flected in Int having the highest count of hints and
incidences of frustration compared to all other chal-
lenge types. Conversely, the Heap challenge was
the simplest version of a data overflow challenge
and had the fewest number of visited webpages.

Prior experience and navigation differences also
impacted LLM use. Often, participants could not
tell when an LLM was hallucinating. For example,
P25 tried to use an LLM to convert a hexadecimal
value (0x61616168) to ascii. It incorrectly asserted
that the ascii value was “aahh”, instead of “aaah.”
This resulted in P25 using the wrong offset for the
problem. Conversely, familiarity with LLM hallu-
cinations led several participants to discard valid
answers for fear it could be a hallucination (N=7).
P34 asked an LLM ”how can attack jump to a func-
tion using a buffer overflow attack with examples?”
The response contained a relevant example and de-
scribed steps to progress on their challenge. How-
ever, P34 suspected the LLM’s example was wrong.
After briefly skimming the response, they continued
their search on the web instead.

Some participants provided the entire source
code (N=4), relevant addresses (N=6), and clear in-
structions to create a payload to solve the challenge.
One participant managed to get an LLM to solve
Buff. However, this approach appeared to have
blunted the participant’s learning process. When
asked to explain why their solution worked, they
could not accurately describe why the offset was
significant or why the flag function was executed.

4.4.3 Other struggles engaging with websites

We also observed interesting emergent behaviors
among our students that created unique struggles.

Participants were hesitant to use walkthroughs.
Despite repeated encouragements to utilize any in-
formation available online, several participants had
reservations about using walkthroughs for other
similar VDE challenges (N=10). Challenge walk-
throughs are a commonly suggested online resource
for VDE beginners to reference when learning about
new topics [38, 77]. However, participants like P14
and P8 thought reading that information would
“ruin the fun” and “wasn’t in the spirit of the chal-
lenge,” respectively. At least one participant did not
realize walkthroughs of other VDE challenges ex-
isted. Other participants expressed similar hesitance

to rely on LLMs (N=3). For example, P28 stated, “If I
just copy-paste all this code into ChatGPT, it would
probably give me the answer, but I don’t want to do
that because I want to learn!” The observer effect
may also influence this number [14].

Some participants felt the time pressure im-
pacted learning. Another reason participants cited
for their struggles was the time pressure (N=7). P25
exemplified a common sentiment, saying, “I wish
I used Google more, but the time pressure really
made it feel like I didn’t have time to spend fully
understanding and learning something and then
go apply it.” This time pressure dissuaded other
participants from reading any web pages that were
too long, even if they recognized them as poten-
tially useful. P20 described a web page other partici-
pants used to help solve the challenge as “useful for
research and understanding, but in a time-boxed
scenario maybe not as much.”

5 Discussion and Recommendations

Students struggled most to understand vulnera-
bilities, determine offsets, and provide payloads.
Search Paralysis was a common occurrence both be-
fore participants knew the name of the vulnerability
and when trying to refine their understanding of
it. Many of these struggles were caused by techni-
cal difficulties not specific to a particular challenge.
Participants needed help crafting relevant search
queries and translating information on webpages
to the challenge context. Participants could find rel-
evant webpages but struggled to understand ones
laden with unfamiliar terms. Participants who suc-
cessfully utilized these pages had to exhibit patience
and perseverance to implement the information. Fi-
nally, we noticed new emergent stymied behaviors
among students, such as avoiding walkthroughs
and managing hallucinating LLMs. Many of these
challenges introduce cognitive load extraneous to
learning how to exploit the vulnerabilities, limiting
learning [84]. Based on these results, we provide
the following recommendations for VDE organizers
and anyone who creates online resources to support
beginners learning binary exploitation.

5.1 Suggestions for VDE Organizers

Our results provide valuable insights into the parts
of challenges where students most often struggle, in-
dicators that students are stuck, and other common

student misconceptions. VDE organizers can lever-
age these results in their exercise design to develop
a more supportive and responsive environment.

Focus hints on resolving basic technical chal-
lenges. Many participants struggled to provide the
flag address to the program and overlooked endi-
anness as a factor that could break their solution.
These mistakes were particularly time-consuming
for our participants but ultimately separate from
learning about the vulnerability. A well-timed re-
minder to consider endianness or a nudge to refer-
ence a command sheet would help students over-
come these obstacles and make continual progress.
Several VDE reference sheets already exist [8, 9],
but more timely hints might prevent students from
overlooking the resources already available.

Monitor beginners’ commands and web search
behavior to identify stymied students. Being able
to get oneself unstuck is a critical aspect of learning.
Still, the learning sciences literature suggests stu-
dents need feedback before they become overly dis-
couraged and potentially stop trying altogether [11,
21, 30]. Existing VDEs struggle to provide this type
of timely active feedback [86], but our work offers a
path forward. We observed two common behavioral
patterns indicating participants were stuck. The first
occurred when participants quickly attempted sev-
eral commands or searches to see if any output in-
spired a new idea. The other occurred when partic-
ipants paused for long periods and expressed no
new ideas for progression. VDE organizers could
track these behaviors and provide automatic hints
to help students progress [57]. The former is rela-
tively straightforward to monitor if the VDE offers
an in-browser experience, as some beginner VDEs
already provide [66, 76]. The latter is more compli-
cated, as long pauses could be from the participant
taking a break. To resolve this ambiguity, the VDE
could ask the user if they need help and offer a hint.
Future research must investigate the proper balance
and specific connection between observed behav-
iors and frustration. Furthermore, organizers could
benefit from observing participant search frequency,
which can strongly indicate that participants are
stuck and aimlessly searching the web.

Destigmatize walkthroughs for beginners. In Sec-
tion 4.4.3, we observed several participants chose
not to view walkthroughs because they believed
they would ruin their learning experience. How-
ever, walkthroughs can be an excellent resource,
detailing why and how a vulnerability can be ex-

ploited through step-by-step instructions. Reading
them can help students establish the baseline knowl-
edge to make sense of other webpages and solve
different challenges on their own [68]. Some VDE
index websites allow for uploading walkthroughs
once the competition is over [4], but VDE organizers
should prioritize normalizing their use [32].

When initially establishing the experience cut-
off for our study, we interviewed five individuals
who were so experienced they solved the inter-
view challenge without using the web. Although
we excluded their data, all five said they would
go directly to a VDE walkthrough if they had to
search the web for information. While this is a pro-
hibitively small sample, it suggests walkthroughs
may not hinder vulnerability discovery education.
Help students understand the strengths of LLMs.
Student LLM use will likely continue to rise as LLM
quality improves and their use becomes more ubiq-
uitous. LLMs are a valuable tool, but they can cause
their own set of problems. Furthermore, some stu-
dents may spend more time prompt engineering an
LLM to solve the challenge instead of learning the
material. Organizers should provide guidance on
LLM use, describe their strengths, and raise aware-
ness of potential hallucinations. Future research
should investigate how VDE organizers can imple-
ment local custom instances of LLMs designed to
help guide beginners through easier challenges.
Provide common utilities internally. In the Provide
payload step, participants frequently turned to on-
line tools to help convert hex strings to ascii. We
saw numerous mistakes both in using these tools
and interpreting their results. If VDE organizers in-
ternally provide these utilities, they will be easier
for students to find and for organizers to provide
tailored support for students who make mistakes.

5.2 Suggestions for Resource Creators

Our results also provide insights valuable for re-
source creators producing content for beginners.
While not all resources are developed for beginners,
we provide recommendations for people targeting
novices. Specifically, we identified that participants
struggled to interpret webpages due to a lack of
knowledge or missing context in existing resources.
Provide additional means for beginners to evalu-
ate webpage relevance. We noticed many of our
participants struggled to determine if a webpage
had useful, quality information. However, websites

like Stack Overflow provided participants with ad-
ditional information about the relevance of a par-
ticular response with a vote count and informa-
tion about the response author with their reputa-
tion score [58]. We recommend that other platforms
that host resources for beginners adopt these crowd-
based metrics or embed additional information to
give beginners more information when they search
for relevant webpages. For example, CTFTime is
a platform that hosts CTF competitions and hun-
dreds of writeups provided by competitors to pre-
vious challenges. Their writeups have tags such as
"pwn" or "forensics" as well as rating scores, which
can help users find relevant writeups [4]. Although
these metrics exist on CTFTime, many writeup au-
thors do not apply tags, and many writeups do not
have a rating score. Further research is needed to
determine why authors don’t add this information
and how to make it easier for them to do.

Do not assume beginners know how to use vari-
ous tools. Often, participants did not realize a web-
page was relevant or could not use it because it
lacked details about the mentioned commands. De-
spite cyclic being a standard binary exploitation
tool, our participants visited very few webpages
that explained how to use the tool. Beginners need
more specific details about using different tools and
how they relate to exploiting the vulnerability.

Discuss the implementation details of the exploit
design. Resources that included examples or de-
scribed specific steps were helpful for participants.
However, if the details of these examples were not
given, beginners could not intuit them. Also, if the
resource context differed from the challenge’s (e.g.,
with endianness or offset value), students struggled
to make the necessary changes on their own. How-
ever, resource creators should be wary about filling
the webpage with excessive detail, as participants
tend to disregard webpages with a massive wall of
text. A balance in the amount of detail to ground
each step without overloading beginners is essen-
tial for a high-quality resource, and how to find the
sweet spot of this tradeoff needs further research.
Websites like PicoCTF combat this issue by pro-
viding numerous educational resources in varying
lengths and mediums [65]. Their supplied materi-
als include in-depth tutorial videos, brief writeups
and command sheets, and free online courses more
curious students can participate in on their own
time.

Acknowledgements

We thank the anonymous reviewers who provided
helpful comments on drafts of this paper. We
also thank the organizers of PicoCTF, Pwn.College,
Kelsey Fulton, Hanan Hibshi, Michelle Mazurek,
Kirill Levchenko, and Marshini Chetty for their help
with recruitment and Yan Shoshitaishvili for pro-
viding valuable insights into the study design and
beginner CTF timings. This project was supported
by NSF grant CNS-2247959 and a gift from Google.

Ethics Considerations

Our study was reviewed and approved by the Tufts
University Institutional Review Board. Participants
were given and agreed to the full informed consent
document when they initially filled out the screen-
ing survey. Once the participants joined the Zoom
meeting, they were again explained the contents
of the informed consent document, the data that
would be collected, and their rights as participants
before the recording started. Participants did not
need to have their webcam on during the interview
and were instructed that they could withdraw from
the study at any point. Similarly, participants could
request their data be withdrawn from our data set
at any moment, even retroactively. Repeat partici-
pants were paid less for the second study as they
did not need to do the tutorial challenge or hear the
study fully described again; on average, this saved
30 minutes. Tufts University’s Institutional Review
Board approved our study design.

Additionally, we do not envision significant po-
tential harm from publishing this work. In theory,
after learning common beginner misunderstand-
ings, attackers could seed intentionally misleading
resources online to frustrate beginners. However,
because beginners’ information searches are often
mediated by suggestions from the community in
forums and Q&A sites, this would require co-opting
a segment of the population of trained vulnerability
discovery experts. Further, because these recom-
mendations would not work properly, beginners
would likely quickly stop following the suggestions
from these malicious providers, limiting the impact
of any attacker effort.

Open Science

To support transparency, replication, further re-
search, and compliance with the open science policy,
we will provide our interview materials, interview
problem code and solutions, pre-screening ques-
tions, codebook, and timestamped segments where
we applied our codebook to each interview.

We will not share the raw interview data, includ-
ing interview video, audio, or transcripts, as they
would de-anonymize our participants. By doing
this, we minimize the risk of accidentally revealing
any other information that could be used to identify
our participants through contextual and meta infor-
mation embedded in the raw data. Due to the ex-
tensive nature of our codebook, one can effectively
reconstruct participant behaviors by analyzing the
sequence of the different coded events. Therefore,
we can adequately share the parts of our data that
capture participant behaviors while maintaining
privacy and confidentiality.

References

[1] Anonymous github of all challenge soruce
code, and hint descriptions. https://gith
ub.com/Anonymous-Giraffe/Just-Google-I
t-Challenges.

[2] Black hat usa 2022 | briefing schedule. (Ac-
cessed 09-20-2022).

[3] Bsides las vegas 2022 | schedule. (Accessed
09-20-2022).

[4] Ctftime writeup database. https://ctftime.
org/writeups.

[5] Defcon 30 hacking conference schedule. (Ac-
cessed 09-20-2022).

[6] Osf container with supplemental materials for
jgi. https://osf.io/y6xew/.

[7] Owasp homepage about format string vulner-
ability. https://owasp.org/www-community/
attacks/Format_string_attack.

[8] Picotctf binary exploitation reference sheet. ht
tps://picoctf.org/learning_guides/Book
-5-Binary-Exploitation.pdf.

[9] Picotctf general reference sheet. https://pico
ctf.org/learning_guides/Book-1-General
-Skills.pdf.

https://github.com/Anonymous-Giraffe/Just-Google-It-Challenges
https://github.com/Anonymous-Giraffe/Just-Google-It-Challenges
https://github.com/Anonymous-Giraffe/Just-Google-It-Challenges
https://ctftime.org/writeups
https://ctftime.org/writeups
https://osf.io/y6xew/
https://owasp.org/www-community/attacks/Format_string_attack
https://owasp.org/www-community/attacks/Format_string_attack
https://picoctf.org/learning_guides/Book-5-Binary-Exploitation.pdf
https://picoctf.org/learning_guides/Book-5-Binary-Exploitation.pdf
https://picoctf.org/learning_guides/Book-5-Binary-Exploitation.pdf
https://picoctf.org/learning_guides/Book-1-General-Skills.pdf
https://picoctf.org/learning_guides/Book-1-General-Skills.pdf
https://picoctf.org/learning_guides/Book-1-General-Skills.pdf

[10] Omer Akgul, Taha Eghtesad, Amit Elazari, Om-
prakash Gnawali, Jens Grossklags, Michelle L.
Mazurek, Aron Laszka, and Daniel Votipka.
Bug hunters’ perspectives on the challenges
and benefits of the bug bounty ecosystem. In
32nd USENIX Security Symposium, USENIX Sec
’23.

[11] Susan A Ambrose, Michael W Bridges, Michele
DiPietro, Marsha C Lovett, and Marie K Nor-
man. How learning works: Seven research-based
principles for smart teaching. John Wiley & Sons,
2010.

[12] Computing Research Association. Generation
cs: Computer science undergraduate enroll-
ments surge since 2006. https://cra.org/
data/Generation-CS/, 2017. Accessed: 2024-
06-06.

[13] Nathan Backman. Facilitating a battle be-
tween hackers: Computer security outside of
the classroom. In In Proc. of the 47th ACM Tech-
nical Symposium on Computing Science Educa-
tion, SIGCSE ’16, pages 603–608, New York, NY,
USA, 2016. ACM.

[14] K. Baclawski. The observer effect. In 2018 IEEE
Conference on Cognitive and Computational As-
pects of Situation Management (CogSIMA), pages
83–89, 2018.

[15] Lisa Feldman Barrett and Daniel J. Barrett. An
introduction to computerized experience sam-
pling in psychology. Social Science Computer
Review, 19(2):175–185, 2001.

[16] Betsy Bevilacqua. How facebook’s annual
“hacktober” campaign promotes cybersecurity
to employees. https://hbr.org/2017/11/
how-facebooks-annual-hacktober-campaig
n-promotes-cybersecurity-to-employees,
2017. (Accessed 05-02-2018).

[17] Raghav Bhat. Wip: Understanding vulnera-
bility discovery in expert and novice binary
analysts’ behavior. In Proceedings of the 2024
Symposium on the Science of Security, HoTSoS
’24, Virtual, 2024. National Security Agency.

[18] Joseph Biden. Executive order on improv-
ing the nation’s cybersecurity, May 2021. (Ac-
cessed 07-21-2021).

[19] Jorge Blasco and Elizabeth A. Quaglia. Infosec
cinema: Using films for information security
teaching. In 2018 USENIX Workshop on Ad-
vances in Security Education, ASE ’18, Baltimore,
MD, 2018. USENIX Association.

[20] Kevin Bock, George Hughey, and Dave Levin.
King of the hill: A novel cybersecurity compe-
tition for teaching penetration testing. In 2018
USENIX Workshop on Advances in Security Edu-
cation (ASE 18), Baltimore, MD, August 2018.
USENIX Association.

[21] John D. Bransford, Ann L. Brown, and Rod-
ney R. Cocking. How people learn: Brain, mind,
experience, and school: Expanded edition. National
Academies Press, 2000.

[22] Chuck Brooks. Alarming cyber statistics for
mid-year 2022 that you need to know, June
2022. (Accessed 09-19-2022).

[23] Adam Bryant. Understanding How Reverse En-
gineers Make Sense of Programs from Assembly
Language Representations. PhD thesis, US Air
Force Institute of Technology, 01 2012.

[24] BugCrowd. Diversity and inclusion |
bugcrowd, 2022. (Accessed 09-20-2022).

[25] Kevin Burk, Fabio Pagani, Christopher
Kruegel, and Giovanni Vigna. Decomperson:
How humans decompile and what we can
learn from it. In 31st USENIX Security
Symposium (USENIX Security 22), pages
2765–2782, Boston, MA, August 2022. USENIX
Association.

[26] Tanner J. Burns, Samuel C. Rios, Thomas K. Jor-
dan, Qijun Gu, and Trevor Underwood. Anal-
ysis and exercises for engaging beginners in
online CTF competitions for security educa-
tion. In 2017 USENIX Workshop on Advances
in Security Education (ASE 17), Vancouver, BC,
August 2017. USENIX Association.

[27] Martin Carlisle, Michael Chiaramonte, and
David Caswell. Using CTFs for an undergrad-
uate cyber education. In 2015 USENIX Summit
on Gaming, Games, and Gamification in Security
Education (3GSE 15), Washington, D.C., August
2015. USENIX Association.

[28] Mariano Ceccato, Paolo Tonella, Cataldo Basile,
Bart Coppens, Bjorn De Sutter, Paolo Falcarin,

https://cra.org/data/Generation-CS/
https://cra.org/data/Generation-CS/
https://hbr.org/2017/11/how-facebooks-annual-hacktober-campaign-promotes-cybersecurity-to-employees
https://hbr.org/2017/11/how-facebooks-annual-hacktober-campaign-promotes-cybersecurity-to-employees
https://hbr.org/2017/11/how-facebooks-annual-hacktober-campaign-promotes-cybersecurity-to-employees

and Marco Torchiano. How professional hack-
ers understand protected code while perform-
ing attack tasks. In 2017 International Conference
on Program Comprehension, ICPC ’17, pages 154–
164, Piscataway, NJ, USA, 2017. IEEE Press.

[29] Kathy Charmaz. Constructing Grounded Theory:
A Practical Guide Through Qualitative Analysis.
SagePublication Ltd, London, 2006.

[30] William G Chase and Herbert A Simon. Percep-
tion in chess. Cognitive psychology, 4(1):55–81,
1973.

[31] Kevin Chung and Julian Cohen. Learning ob-
stacles in the capture the flag model. In 2014
USENIX Summit on Gaming, Games, and Gam-
ification in Security Education (3GSE 14), San
Diego, CA, August 2014. USENIX Association.

[32] Gregory Conti and James Caroland. Embrac-
ing the kobayashi maru: Why you should teach
your students to cheat. IEEE Security & Privacy,
9(4):48–51, 2011.

[33] Anastasia Danilova, Alena Naiakshina, Stefan
Horstmann, and Matthew Smith. Do you re-
ally code? designing and evaluating screening
questions for online surveys with program-
mers. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), pages
537–548, 2021.

[34] Tamara Denning, Adam Shostack, and Ta-
dayoshi Kohno. Practical lessons from cre-
ating the control-alt-hack card game and re-
search challenges for games in education and
research. In 2014 USENIX Summit on Gaming,
Games, and Gamification in Security Education,
3GSE ’14.

[35] Debora Di Caprio, Francisco J Santos-Arteaga,
and Madjid Tavana. An information retrieval
benchmarking model of satisficing and im-
patient users’ behavior in online search en-
vironments. Expert Systems with Applications,
191:116352, 2022.

[36] Adam Doupé, Manuel Egele, Benjamin Caillat,
Gianluca Stringhini, Gorkem Yakin, Ali Zand,
Ludovico Cavedon, and Giovanni Vigna. Hit
’em where it hurts: A live security exercise on
cyber situational awareness. In Proceedings of
the 27th Annual Computer Security Applications

Conference, ACSAC ’11, page 51?61, New York,
NY, USA, 2011. Association for Computing Ma-
chinery.

[37] W. Du. Seed: Hands-on lab exercises for com-
puter security education. IEEE Security Privacy,
9(5):70–73, 2011.

[38] Wenliang Du. Seed: Hands-on lab exercises for
computer security education. IEEE Security &
Privacy, 9(5):70–73, 2011.

[39] Olive Jean Dunn. Multiple comparisons
among means. Journal of the American Statistical
Association, 56(293):52–64, 1961.

[40] Eldad Eilam. Reversing: secrets of reverse engi-
neering. John Wiley & Sons, 2011.

[41] Margaret Ellis, Liesl Baum, Kimberly Filer, and
Stephen H. Edwards. Experience report: Ex-
ploring the use of ctf-based co-curricular in-
struction to increase student comfort and suc-
cess in computing. In Proceedings of the 26th
ACM Conference on Innovation and Technology
in Computer Science Education V. 1, ITiCSE ’21,
page 303–309, New York, NY, USA, 2021. As-
sociation for Computing Machinery.

[42] Ryan Ellis and Yuan Stevens. Bounty every-
thing: Hackers and the making of the global
bug marketplace. Available at SSRN 4009275,
2022.

[43] Irina Ford, Ananta Soneji, Faris Bugra Kokulu,
Jayakrishna Vadayath, Zion Leonahenahe
Basque, Gaurav Vipat, Adam Doupé, Ruoyu
Wang, Gail-Joon Ahn, Tiffany Bao, and Yan
Shoshitaishvili. "Watching over the shoulder of
a professional": Why Hackers Make Mistakes
and How They Fix Them. In Proceedings of the
IEEE Symposium on Security and Privacy, May
2024.

[44] Sylvain Frey, Awais Rashid, Pauline An-
thonysamy, Maria Pinto-Albuquerque, and
Syed Asad Naqvi. The good, the bad and the
ugly: A study of security decisions in a cyber-
physical systems game. IEEE Transactions on
Software Engineering, 45(5):521–536, 2019.

[45] Karl Pearson F.R.S. On the criterion that a
given system of deviations from the probable
in the case of a correlated system of variables
is such that it can be reasonably supposed to

have arisen from random sampling. Philosoph-
ical Magazine, 50(302):157–175, 1900.

[46] Kelsey R Fulton, Samantha Katcher, Kevin
Song, Marshini Chetty, Michelle L Mazurek,
Chloé Messdaghi, and Daniel Votipka. Vul-
nerability discovery for all: Experiences of
marginalization in vulnerability discovery.
Proc. of the IEEE, 2023.

[47] Kelsey R. Fulton, Samantha Katcher, Kevin
Song, Marshini Chetty, Michelle L. Mazurek,
Chloé Messdaghi, and Daniel Votipka. Vul-
nerability discovery for all: Experiences of
marginalization in vulnerability discovery. In
Proceedings of the 44th IEEE Symposium on Secu-
rity and Privacy, IEEE S&P ’23, 2023.

[48] GDB: The gnu project debugger. https://www.
gnu.org/software/gdb/, 2020.

[49] Google. Learn cybersecurity. https://learnc
ybersecurity.withgoogle.com/. (Accessed
06-05-2024).

[50] Google. Google ctf 2019. https://g.co/ctf,
2019. (Accessed 05-27-2020).

[51] HackerOne. Home | hacker 101. (Accessed
05-21-2020).

[52] Andrew F Hayes and Klaus Krippendorff. An-
swering the call for a standard reliability mea-
sure for coding data. Communication methods
and measures, 1(1):77–89, 2007.

[53] Samantha Katcher, Liana Wang, Caroline
Yang, Chloé Messdaghi, Michelle L. Mazurek,
Marshini Chetty, Kelsey R. Fulton, and Daniel
Votipka. A survey of cybersecurity Profession-
als’ perceptions and experiences of safety and
belonging in the community. In Twentieth Sym-
posium on Usable Privacy and Security (SOUPS
2024), pages 1–20, Philadelphia, PA, August
2024. USENIX Association.

[54] Henry A Landsberger. Hawthorne revisited:
Management and the worker, its critics, and
developments in human relations in industry.
1958.

[55] Kees Leune and Salvatore J. Petrilli. Using
capture-the-flag to enhance the effectiveness
of cybersecurity education. Proceedings of the
18th Annual Conference on Information Technol-
ogy Education, 2017.

[56] Shu-Sheng Liaw and Hsiu-Mei Huang. Infor-
mation retrieval from the world wide web: a
user-focused approach based on individual ex-
perience with search engines. Computers in
human behavior, 22(3):501–517, 2006.

[57] Kuang-Chen Lu and Shriram Krishnamurthi.
Identifying and correcting programming lan-
guage behavior misconceptions. Proc. ACM
Program. Lang., 8(OOPSLA1), apr 2024.

[58] Lena Mamykina, Bella Manoim, Manas Mittal,
George Hripcsak, and Björn Hartmann. De-
sign lessons from the fastest q and a site in the
west. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI
’11, page 2857–2866, New York, NY, USA, 2011.
Association for Computing Machinery.

[59] Alessandro Mantovani, Simone Aonzo, Yan-
ick Fratantonio, and Davide Balzarotti. RE-
Mind: a first look inside the mind of a reverse
engineer. In 31st USENIX Security Symposium
(USENIX Security 22), pages 2727–2745, Boston,
MA, August 2022. USENIX Association.

[60] Nora McDonald, Sarita Schoenebeck, and An-
drea Forte. Reliability and inter-rater reliabil-
ity in qualitative research: Norms and guide-
lines for cscw and hci practice. Proceedings
of the ACM on Human-Computer Interaction,
3(CSCW):1–23, 2019.

[61] Jelena Mirkovic and Peter A. H. Peterson.
Class capture-the-flag exercises. In 2014
USENIX Summit on Gaming, Games, and Gam-
ification in Security Education (3GSE 14), San
Diego, CA, August 2014. USENIX Association.

[62] Jelena Mirkovic, Aimee Tabor, Simon Woo, and
Portia Pusey. Engaging novices in cybersecu-
rity competitions: A vision and lessons learned
at ACM tapia 2015. In 2015 USENIX Summit
on Gaming, Games, and Gamification in Security
Education (3GSE 15), Washington, D.C., August
2015. USENIX Association.

[63] NetDiligence. Netdiligence ransomware 2022
spotlight report. Technical report, NetDili-
gence, Gladwyne, Pennsylvania, 2022.

[64] Government of Canada. National cyber se-
curity strategy: Canada’s vision for security
and prosperity in the digital age. https:

https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
https://learncybersecurity.withgoogle.com/
https://learncybersecurity.withgoogle.com/
https://g.co/ctf
https://www.publicsafety.gc.ca/cnt/rsrcs/pblctns/ntnl-cbr-scrt-strtg/index-en.aspx

//www.publicsafety.gc.ca/cnt/rsrcs/pbl
ctns/ntnl-cbr-scrt-strtg/index-en.aspx,
2022. (Accessed 06-05-2024).

[65] Plaid Parliament of Pwning. picoctf. (Accessed
05-27-2020).

[66] Plaid Parliament of Pwning. picoctfresources.
(Accessed 01-05-2025).

[67] Kentrell Owens, Alexander Fulton, Luke Jones,
and Martin Carlisle. pico-boo!: How to avoid
scaring students away in a ctf competition.
2019.

[68] Annemarie Sullivan Palincsar and Ann L
Brown. Reciprocal teaching of comprehension-
monitoring activities. Center for the Study of
Reading Technical Report; no. 269, 1983.

[69] Andreas Poller, Laura Kocksch, Sven Türpe,
Felix Anand Epp, and Katharina Kinder-
Kurlanda. Can security become a routine? a
study of organizational change in an agile soft-
ware development group. In Proceedings of the
2017 ACM Conference on Computer Supported
Cooperative Work and Social Computing, CSCW
’17, pages 2489–2503, New York, NY, USA, 2017.
Association for Computing Machinery.

[70] P. Pusey, M. Gondree, and Z. Peterson. The out-
comes of cybersecurity competitions and im-
plications for underrepresented populations.
IEEE Security Privacy, 14(6):90–95, 2016.

[71] Portia Pusey, Sr. David Tobey, and Ralph Soule.
An argument for game balance: Improving stu-
dent engagement by matching difficulty level
with learner readiness. In 2014 USENIX Sum-
mit on Gaming, Games, and Gamification in Secu-
rity Education (3GSE 14), San Diego, CA, Au-
gust 2014. USENIX Association.

[72] pwntools. https://docs.pwntools.com/en/s
table/, 2000.

[73] Aunshul Rege and Rachel Bleiman. Collegiate
social engineering capture the flag competition.
In 2021 APWG Symposium on Electronic Crime
Research (eCrime), pages 1–11, 2021.

[74] Dale C. Rowe, Barry M. Lunt, and Joseph J.
Ekstrom. The role of cyber-security in informa-
tion technology education. In Proceedings of the

2011 Conference on Information Technology Edu-
cation, SIGITE ’11, pages 113–122, New York,
NY, USA, 2011. Association for Computing Ma-
chinery.

[75] Alan T. Sherman, David DeLatte, Michael
Neary, Linda Oliva, Dhananjay Phatak, Travis
Scheponik, Geoffrey L. Herman, and Julia
Thompson. Cybersecurity: Exploring core
concepts through six scenarios. Cryptologia,
42(4):337–377, 2018.

[76] Yan Shoshitaishvili and Connor) Nelson.
pwn.college. (Accessed 05-27-2020).

[77] Ambareen Siraj, Sheikh Ghafoor, Joshua Tower,
and Ada Haynes. Empowering faculty to
embed security topics into computer science
courses. In Proceedings of the 2014 Conference
on Innovation & Technology in Computer Science
Education, ITiCSE ’14, page 99–104, New York,
NY, USA, 2014. Association for Computing Ma-
chinery.

[78] Anselm Strauss and Juliet Corbin. Basics of
qualitative research, volume 15. Newbury Park,
CA: Sage, 1990.

[79] Thomas K. Jordan Qijun Gu Trevor Under-
wood Tanner J. Burns, Samuel C. Rios. Anal-
ysis and exercises for engaging beginners in
online CTF competitions for security educa-
tion. In 2017 USENIX Workshop on Advances in
Security Education. USENIX Association, 2017.

[80] Clark Taylor, Pablo Arias, Jim Klopchic, Celeste
Matarazzo, and Evi Dube. CTF: State-of-the-
Art and building the next generation. In 2017
USENIX Workshop on Advances in Security Ed-
ucation (ASE 17), Vancouver, BC, August 2017.
USENIX Association.

[81] David H. Tobey, Portia Pusey, and Diana L.
Burley. Engaging learners in cybersecurity ca-
reers: Lessons from the launch of the national
cyber league. ACM Inroads, 5(1):53–56, March
2014.

[82] Sherry Turkle. The Second Self: Computers and
the Human Spirit. Mit Press, 1984.

[83] Valgrind. https://valgrind.org/, 2000.

[84] Jeroen J. G. Van Merrienboer and John Sweller.
Cognitive load theory and complex learning:

https://www.publicsafety.gc.ca/cnt/rsrcs/pblctns/ntnl-cbr-scrt-strtg/index-en.aspx
https://www.publicsafety.gc.ca/cnt/rsrcs/pblctns/ntnl-cbr-scrt-strtg/index-en.aspx
https://docs.pwntools.com/en/stable/
https://docs.pwntools.com/en/stable/
https://valgrind.org/

Recent developments and future directions.
Educational Psychology Review, 17:147–177, 06
2005.

[85] Sofia Villegas. Uk government ramps up ef-
forts to bridge cybersecurity skills gap. https:
//www.holyrood.com/news/view/uk-govern
ment-ramps-up-efforts-to-bridge-cybers
ecurity-skills-gap, 2024. (Accessed 06-05-
2024).

[86] D. Votipka, E. Zhang, and M. Mazurek.
Hacked: A pedagogical analysis of online vul-
nerability discovery exercises. In 2021 IEEE
Symposium on Security and Privacy (SP), pages
1589–1606, Los Alamitos, CA, USA, may 2021.
IEEE Computer Society.

[87] Daniel Votipka, Desiree Abrokwa, and
Michelle L. Mazurek. Building and validating
a scale for secure software development
self-efficacy. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing
Systems, CHI ’20, page 1–20, New York,
NY, USA, 2020. Association for Computing
Machinery.

[88] Daniel Votipka, Mary Nicole Punzalan, Seth M.
Rabin, Yla Tausczik, and Michelle L. Mazurek.
An investigation of online reverse engineer-
ing community discussions in the context of
ghidra. In 2021 IEEE European Symposium on
Security and Privacy, EuroS&P ’21, 2021.

[89] Daniel Votipka, Seth Rabin, Kristopher Micin-
ski, Jeffrey S. Foster, and Michelle L. Mazurek.
An observational investigation of reverse en-
gineers’ processes. In 29th USENIX Security
Symposium (USENIX Security 20), Boston, MA,
August 2020. USENIX Association.

[90] Daniel Votipka, Rock Stevens, Elissa M Red-
miles, Jeremy Hu, and Michelle L Mazurek.
Hackers vs. testers: A comparison of software
vulnerability discovery processes. Proc. of the
IEEE, 2018.

[91] Jan Vykopal and Miloš Barták. On the design
of security games: From frustrating to engag-
ing learning. In 2016 USENIX Workshop on
Advances in Security Education (ASE 16), Austin,
TX, August 2016. USENIX Association.

[92] C. Weir, L. Blair, I. Becker, A. Sasse, and J. No-
ble. Light-touch interventions to improve soft-
ware development security. In 2018 IEEE Cy-
bersecurity Development (SecDev), pages 85–93,
2018.

[93] Michael Whitney, Heather Lipford-Richter, Bill
Chu, and Jun Zhu. Embedding secure coding
instruction into the ide: A field study in an
advanced cs course. In Proceedings of the 46th
ACM Technical Symposium on Computer Science
Education, SIGCSE ’15, pages 60–65, New York,
NY, USA, 2015. Association for Computing Ma-
chinery.

[94] Miuyin Yong Wong, Matthew Landen, Manos
Antonakakis, Douglas M. Blough, Elissa M.
Redmiles, and Mustaque Ahamad. An inside
look into the practice of malware analysis. In
Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, CCS
’21, page 3053–3069, New York, NY, USA, 2021.
Association for Computing Machinery.

https://www.holyrood.com/news/view/uk-government-ramps-up-efforts-to-bridge-cybersecurity-skills-gap
https://www.holyrood.com/news/view/uk-government-ramps-up-efforts-to-bridge-cybersecurity-skills-gap
https://www.holyrood.com/news/view/uk-government-ramps-up-efforts-to-bridge-cybersecurity-skills-gap
https://www.holyrood.com/news/view/uk-government-ramps-up-efforts-to-bridge-cybersecurity-skills-gap

	Introduction
	Related works
	Methods
	Interview Structure
	Types of Vulnerabilities
	Hints
	Recruitment
	Participant screening (Figure 1.A)
	Data analysis
	Limitations

	Results
	Participants
	Where Beginners Struggled (RQ1)
	Most Common Resources (RQ2)
	Struggles Using Resources (RQ3)
	Search paralysis
	Divergence in page utility
	Other struggles engaging with websites

	Discussion and Recommendations
	Suggestions for VDE Organizers
	Suggestions for Resource Creators

