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ABSTRACT
Reverse engineering unknown binary message formats is an im-
portant part of security research. Error detecting codes such as
checksums and Cyclic Redundancy Check codes (CRCs) are com-
monly added to messages as a guard against corrupt or untrusted
input. Before an analyst can manufacture input for software which
uses checksums they must discover the algorithm to calculate a
valid checksum. To address this need, we have developed a program
synthesis-based approach for detecting and reverse-engineering
checksum algorithms automatically. Our approach takes a small
set of binary messages as input and automatically returns a Python
implementation of the checksum algorithm if one can be found.

Our approach first performs a search over the message space
to identify the location of the checksum and then uses program
synthesis to identify the operations performed on the message to
compute the checksum. We return to the user runnable code to
both calculate a checksum from a message and to validate a mes-
sage according to the checksum algorithm. We generate unit tests,
allowing the user to validate the synthesized checksum algorithm
is correct with regard to the input messages.

We created the Tufts Checksum Corpus comprised of 12 check-
sum inference questions collected from posts on reverse engineer-
ing question and answer sites and 2 instances of common internet
protocol checksums.

Our approach successfully synthesized the underlying checksum
algorithms for 12 out of 14 cases in our test suite.
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1 INTRODUCTION AND BACKGROUND
Checksum inference is the task of recovering a checksum algorithm
specification from example messages or a binary program. This task
is performed by software developers, reverse engineers, and cyber-
security analysts. These users perform checksum inference while
trying to understand proprietary data formats and legacy software,
reverse engineering malware, and identifying unknown traffic on
computer networks. A key motivation for checksum inference is the
desire to manufacture messages acceptable to a system under test
that uses a checksum as a method of input validation. By inferring
a valid checksum, security tools like fuzzers [20] can increase the
likelihood that the target program will accept the generated input.

Consider an analyst working on a black box system. Her goal is
to explore the system for security weaknesses. She has been given
a set of messages that have been observed being transmitted to the
system. While her focus is vulnerabilities, she first has to learn how
to construct messages the system will accept. For the analyst, then,
checksum inference is an obstacle which she must overcome on
the path to a larger goal. Specifically, she would like to know (1)
is there is a checksum in the collection of messages, if so, (2) over
what portion of the message is it calculated and (3) what algorithm
is used to calculate it. An automated solution to this problem would
allow her to focus on the more important work of exploring the
system for vulnerabilities rather than trying to find relationships
between bytes of different messages.

Checksums are one type of error detecting code [9]. Other types
include cyclic redundancy check codes (CRCs) [14] and hash func-
tions. Each type is distinct even if the terms are often conflated. A
checksum algorithm repeatedly applies a binary operation across
all the bytes being checked. In contrast, CRC algorithms are more
complex and based on polynomial division. These algorithms treat
the message as a large binary number, and divide it by a poly-
nomial constant. The remainder of the division forms the check
value. Although both checksums and CRCs provide error-detecting
functionality, they are different approaches. In this work, we focus
specifically on checksums.

The underlying checksum specification may be unavailable to
the analyst for a number of reasons. The specification may have
become lost in the case of a legacy system. The specification may
be proprietary or incomplete.

Without a specification the analyst could perform static [21]
and/or dynamic analysis [18] of the black box system to gain in-
sight into the operation of the checksum algorithm, assuming she
has access to the underlying program. She could attempt to induce
the program to generate useful messages by making small alter-
ations to input or system memory and looking for corresponding
changes in output messages. As a last resort she can examine the
messages themselves in hopes of gaining insight into the algorithm
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producing the checksum. This manual approach can prove even
more difficult if the presence and position of the checksum is un-
known as well as which portions of the message are included in
the checksum calculation. All of these steps are time consuming
and labor intensive.

In this work, we present an automated approach to checksum
inference which requires no input from the user beyond providing
a set of binary messages. We decompose checksum inference into
two sub-problems. First, there is the problem of identifying the
contiguous portions of the message which comprise the checksum
and the payload from which the checksum is calculated. Second,
there is the problem of synthesizing the algorithm used to gen-
erate the checksum from the payload. Our approach searches for
regions of messages and synthesizes concrete checksum algorithms
consistent with the data. Our approach takes binary messages as
input (Listing 1) and automatically produces runnable checksum
algorithm code (Listing 2). We focus specifically on the problem
of inferring checksum algorithms and assume only a set of binary
messages from the same protocol using a common algorithm to
calculate the checksum.

Listing 1: Example input messages provided by analyst
1 08009654A41700005EAB245C00044F8508090A0B0C0D0E0F101112131

415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F30

31323334353637

2 00009E54A41700005EAB245C00044F8508090A0B0C0D0E0F101112131

415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F30

31323334353637

3 08008239A41700015EAB245D0004639E08090A0B0C0D0E0F101112131

415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F30

31323334353637

Listing 2: Example synthesized function output to analyst
1 def calculate_checksum(payload):

2 mask = 0xFFFF

3 checksum = 0

4 for element in payload:

5 checksum = onesComp(checksum ,element)

6 checksum = operator.invert(checksum)

7 return checksum & mask

The rest of the paper is structured as follows. In Section 2, we
describe howwe created the Tufts Checksum Corpus. We started by
creating a corpus of 37 error detecting code inference problems from
Reverse Engineering Stack Exchange [5] and Stack Overflow [13],
each of which provided a set of binary messages. Of these 37 prob-
lems, we classified 12 as checksum algorithms and the rest as CRC
algorithms, hash algorithms or unanswered problems. We also gath-
ered an IPv4 [17] Header capture and an ICMP [16] capture, both
of which use checksums. In total, we assembled a test suite of 14
checksum inference problem instances.

In Section 3, we describe our approach using a combination of
search and program synthesis [8, 11]. Using insights gained from
the examples in our test suite, we developed a parameterized model
of the payload location, checksum location, and the checksum al-
gorithm as well as an approach to search for checksum algorithms
given a set of binary messages. We first perform a guided search
for parameters describing payload and checksum location. Given
a candidate payload and checksum we then attempt to synthesize
a checksum algorithm using the payload as our desired input and

the checksum as our desired output. Our approach exhaustively
tests all parameterizations of the model and reports algorithms for
which it correctly computes the checksum values for all messages.

In Section 4, we evaluate our approach on our test suite consist-
ing of problem instances from the forums, an IPv4 protocol header
capture, and an ICMP protocol capture. Out of these 14 problem
instances, we found meaningful results for 12 of them. In addition,
we report micro-benchmark data characterizing the performance
of our approach for problem instances of various sizes.

In Section 4.1, we discuss our results. We discuss the two check-
sum algorithms which our algorithm was unable to synthesize as
well as why our approach may find multiple valid parameteriza-
tions for a single problem instance, requiring the help of an analyst
to sort through the results.

In Section 5, we describe other efforts to reverse engineer er-
ror detecting codes. These efforts are divided into two general
approaches. First, approaches which assume access to the binary
program calculating a checksum. Our program does not require a
binary and instead requires only messages captured during trans-
mission. Second, approaches which require only example messages
containing an error detecting code somewhere within the message.
Our approach differs from these in that we focus specifically on the
general space of checksum algorithms and return runnable code
rather than searching for a message format description among a
small set of known checksum implementations.

Our technique shows promise on the small number of samples
we found and we hope to improve and extend it as we collect more
samples. We explore the next steps of this work in section 6.

We summarize the contribution of our work as follows:
• We create a test suite of checksum/CRC reverse engineering
problem instances from internet forums and existing internet
protocols.

• We develop a program synthesis approach which takes bi-
nary messages as input and automatically produces runnable
checksum algorithm code as output to the analyst.

• We evaluate our approach on our test suite and synthetic
micro-benchmark data, showing that we correctly infer the
checksum in 12 out of 14 cases.

We plan on releasing both our implementation and the Tufts
Checksum Corpus online in the near future 1.

2 THE TUFTS CHECKSUM CORPUS
To construct the Tufts Checksum Corpus, we first found error
detecting code reverse engineering problem instances posted on
the question and answer internet sites Reverse Engineering Stack
Exchange [5] and Stack Overflow [13]. To find relevant posts we
searched the sites using the keywords "CRC" and "checksum". We
collected problem instances in which users provided a set of bi-
nary messages along with varying degrees of background informa-
tion such as the type of program generating the messages, error-
detecting code location and width, and information about other
fields in the packet. We collected a total of 37 problem instances
and classified each according to the algorithm used to calculate
the error-detecting code. Table 1 shows the results: 14 used CRC

1https://github.com/laurenlabell/checksum_finder
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Table 1: Frequency of Error Detecting Algorithms

Type of Algorithm Number of Samples

CRC 14
Checksum 12

Hash 1
Unknown 10

algorithms, 12 used checksum algorithms, 1 used a hash code, and
10 were unknown.

Out of these different classes of algorithms, we chose to focus
specifically on checksums because many people on the question
and answer sites were trying to solve checksum problems manually.
While the reverse engineers on these websites frequently used tools
such as CRC RevEng to reverse CRC algorithms, no similar tool
was used to reverse engineer checksum algorithms, problems that
made up a significant number of posts on the forums.

Checksum function inference is often a secondary aspect of the
more general problem of message format inference [10, 12]. Mes-
sage reverse engineers are primarily concerned with other aspects
of the message format, but they hit a roadblock when required
to produce a correct checksum. For example, when they inject
messages protected by a checksum into a system under test, they
must correctly calculate the checksum. Messages without a valid
checksum won’t be accepted, thus producing a bottleneck and pre-
venting progress in the inference of other fields. The people posting
queries to the forums were not checksum experts, but sought expert
understanding to overcome this challenge.

From these posts, we identified four challenges in reverse engi-
neering checksums:

(1) Identifying the portion of the message protected by the
checksum, i.e., the payload portion of the message.

(2) Identifying the portion of the message comprising the check-
sum itself.

(3) Discovering the specifics of the checksum algorithm that
takes the payload as input and returns the checksum as
output.

(4) Reporting these findings to the user in a way that does not
assume extensive background knowledge.

Many of the checksum examples employed similar design patterns
that we generalize into a formal model.

To form the Tufts Checksum Corpus, which we summarize in
Table 2, we started with the 12 checksum problem instances from
the two reverse engineering forums. We then added two more
problem instances that contain 16-bit checksums: IPv4 message
headers and ICMP messages. The complete test suite can be found
in the appendix.

3 APPROACH
Our approach to the problem of inferring checksums uses a combi-
nation of search and program synthesis. Figure 1 shows an overview
of the algorithm. We first perform a guided search for parameters
describing the payload (the subsection of the message used to cal-
culate the checksum) and checksum locations. Given a candidate

Table 2: The Tufts Checksum Corpus

Source Number of Examples

Reverse Engineering Site Posts 12
IPv4 Header 1

ICMP 1

payload and checksum we perform an enumerative search to syn-
thesize a checksum algorithm using the payload as input and the
checksum as output. This approach reflects the assumption that
checksum algorithms are agnostic to the size and location of the
payload and the checksum.

Our approach uses a parameterized model with required param-
etersWidth, mStart, mEnd, mCheck, and FOLDOP, and with optional
parameters UFINOP, BFINOP, and MAGIC. Parameters in italics char-
acterize the location of the payload and checksum in the message.
Parameters in teletype characterize the checksum algorithm. Re-
verse engineering a checksum algorithm involves searching for
parameters such that for all messages in a problem instance, the
“sum” of the subarray delineated bymStart andmEnd is equal to the
message at the indexmCheck, where the operation used to calculate
the “sum” is determined by the parameter FOLDOP and can be a func-
tion drawn from addition, xor, subtraction or onesComplement.
The finalizing operation can be either a unary operation UFINOP
or a binary operation BFINOP that combines the sum with a magic
value MAGIC. The parameter Width controls whether the indexing
is based on 8- or 16-bit quantities. For the case of a FOLDOP of
addition and a binary finalizer:

∃𝑚𝑆𝑡𝑎𝑟𝑡,𝑚𝐶ℎ𝑒𝑐𝑘,𝑚𝐸𝑛𝑑 ∈ 𝑣𝑎𝑙𝑖𝑑𝐼𝑛𝑑𝑖𝑐𝑒𝑠 such that:
∀𝑚 ∈𝑚𝑠𝑔𝑠,

BFINOP
((∑𝑚𝐸𝑛𝑑

𝑖=𝑚𝑆𝑡𝑎𝑟𝑡
𝑚[𝑖]

)
, MAGIC

)
=𝑚[𝑚𝐶ℎ𝑒𝑐𝑘]

We divide our approach into two phases: (1) a search over the
message space in which we explore all combinations of mStart,
mCheck and mEnd parameters and (2) the synthesis of a checksum
algorithm that identifies the fold and final operations. We assume
the user has specified the value of the Width parameter.

As a running example we consider messages from the Tufts
Checksum Corpus problem 4, shown in Listing 3.

Listing 3: Example messages from the Tufts Checksum Cor-
pus problem instance 4

1 806FA30102B00818

2 806FA30112800878

3 1003A30001004006729E99940012120B

4 1003A30001003007709C98940012121F

5 1003A30001003806739C9B9400121202

3.1 Message Region Search
Developers use checksums in packets being transmitted through
noisy channels, in which bit errors are relatively likely to occur.
Therefore, a checksum algorithm cannot rely on the correctness
of the message itself. Instead, the algorithm must operate at some
known offset from the start or end of the message, independent of
the data being transmitted. Additionally, assuming all messages use
the same algorithm, the algorithm must be valid for every message
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Payload
( Input )
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 (lambda (xs) (xor (fold addition xs 0 ) 0x55)) 55

 (xor (fold addition                                                         0 )           )=5580 6F A3 01 02 B0 08
CHECKSUM_ALGORITHM ::=       
  (lambda (xs) (fold FOLDOP xs 0))
| (lambda (xs) (UFINOP (fold FOLDOP xs 0)))
| (lambda (xs) (BFINOP (fold FOLDOP xs 0) INTLIT ))

FOLDOP ::= addition|xor|subtraction|onesComplement
BFINOP ::= addition|xor 
UFINOP ::= invert|twosComplement
INTLIT ::= Non-negative Integer Literal

Verification of Algorithm on Input Output Pairs

Candidate Input Output PairsEnumerative Search for Input Output Pairs

Candidate Checksum AlgorithmEnumerative Search over Algorithm Grammar

02 18                                       = 

18Result After 
Masking 

= 18Candidate 
Checksum

80 6F A3 01 12 80 08 78Message 2

Input Output Pair for Message 1 

Evaluation of Candidate Algorithm on 
Input Output Pair for Message 1

80 6F A3 01 02 B0Message 3 mCheck (-1)
Checksum

✅

mEnd  = -1mStart = 0 mCheck = -1

806FA30102B00818
806FA30112800878
1003A30001004006729E99940012120B
1003A30001003007709C98940012121F
1003A30001003806739C9B9400121202

Input Grouped by Candidate Checksum Bit Width

Width = 8 bits

foldOp = addition finalOp = xor magicValue =  0x55

Figure 1: Overview of our combined search and program synthesis approach.

regardless of length. We use these intuitions to develop a method
of searching the message space for the mStart, mEnd, and mCheck
parameters.

We begin by dividing each message into an array ofWidth-sized
integers. If a message cannot be divided evenly into Width-sized
integers, we pad with zeros. The parameters mStart and mEnd de-
limit the payload, which we define as the subarray used as input to
the checksum algorithm. In most problem instances, the payload
forms a contiguous set of bytes; however, we found examples in
which the checksum was located within the payload. Our approach
handles this case by zeroing out the bits in the checksum location
before computing the checksum. Zero is an identity for the fold
operations (addition, xor, subtraction, and onesComplement)
so by replacing the checksum with zero we remove it from the cal-
culation. One limitation of our work is that we cannot find disjoint
payload regions separated by anything other than the checksum
field. The parameter mCheck represents the index of the checksum
in the array. The checksum has a size of Width bits.

The set validIndices captures our rules for legal values for param-
eters mStart, mEnd, and mCheck. Indices that are valid for longer
messages may be invalid for shorter ones because they exceed the
bounds of the shorter messages. Therefore, we use the intersection
of valid indices across all messages. Because valid indices for the
shortest message will be valid for all other messages but not vice
versa, we only explore valid indices of the shortest message. For
example, the Tufts Checksum Corpus problem 4 has 8- and 16-byte
messages. Therefore, mStart = 0, mEnd = -1 and mCheck = 0 is
a valid parameterization for both message lengths. However, al-
though mStart = 10, mEnd = -1 and mCheck = 0 is valid for 16-byte
messages, it is not valid for 8-byte ones because mStart is out of
range.

IndexmStart begins relative to the start of every message and has
the range [0, minLen), where minLen is the length of the shortest
message. The payload subarray extends up to but does not include
mEnd, which we calculate relative to the end of each message. We
use the Python convention of negative indexing for mEnd and
define a mEnd value of 0 to signify the end of the array. For each
value ofmStart, we calculate a range ofmEnd values to try: [mStart
- minLen + 1, 1). Figure 2 shows a solution for problem 4 from

Forward Index 0 1 2 3 4 5 6 7

80 6F A3 01 02 B0 08 18

Backward Index -8 -7 -6 -5 -4 -3 -2 -1

Payload

Checksum

Message 1 

Figure 2: The Tufts Checksum Corpus problem 4 has the so-
lution: Width = 8, mStart = 0, mEnd = -1, and mCheck = -
1. Payload bytes are shown in blue, while the checksum is
shown in red.

Forward Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10 03 A3 00 01 00 38 06 73 9C 9B 94 00 12 12 02

Backward Index -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

mEnd

Forward Index 0 1 2 3 4 5 6 7 8

80 6F A3 01 02 B0 08 18

Backward Index -8 -7 -6 -5 -4 -3 -2 -1 0

mStart

mEnd

Message 1

Message 5

Caption: Valid values for mEnd (shown in green) of variable-length messages given a particular mStart value (shown in purple). 
For problem 4, minLength is 8 so if we let mStart = 3, mEnd values are in the range [3 - 8 + 1, 1) = [-4, 1).

Possible update to Figure 3.

mStart

Figure 3: Valid values formEnd (shown in green) of variable-
length messages, given a particular mStart value (shown in
purple). For problem 4, minLen is 8 so if we let mStart = 3,
mEnd values are in the range [3 - 8 + 1, 1) = [-4, 1).

the Tufts Checksum Corpus, while Figure 3 shows valid values for
mEnd given a particular mStart value.

To determine valid values for mCheck we consider the lengths
of the messages. If all of the messages are the same length, we
calculate mCheck relative to the beginning of the messages: [0,
minLen). However, if the set includes messages of different lengths,
we must also check indices relative to the end of the array: [-minLen,
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Table 3: Message Space Parameters

Parameter Description

Width The width of the algorithm stride expressed in bits.
We divide the messages into units of Width bits
and the checksum is Width bits.

mStart An index relative to the start of a message indicat-
ing the start of the payload.

mEnd An index relative to the end of the message indi-
cating the end of the payload. The payload extends
up to but does not include mEnd.

mCheck Index of the checksum relative either to the start
(positive number) or the end of the message (nega-
tive number).

minLen). Because problem 4 includes messages of different lengths,
we use the range [-8, 8).

We summarize the message space parameters in Table 3.

3.2 Checksum Algorithm Synthesis
Given a candidate payload and checksum described by the parame-
ters mStart, mEnd and mCheck, we perform an enumerative search
to synthesize a checksum algorithm using the payload as our input
and the checksum as our output. In this section, we describe the
grammar we use to model a checksum algorithm and provide an
example demonstrating the verification of a checksum algorithm
on a message.

CHECKSUM_ALGORITHM ::=
(lambda (xs) (fold FOLDOP xs 0))

| (lambda (xs) (UFINOP (fold FOLDOP xs 0)))
| (lambda (xs) (BFINOP (fold FOLDOP xs 0) MAGIC))

FOLDOP ::= addition|xor|subtraction|onesComplement
UFINOP ::= invert|twosComplement
BFINOP ::= addition|xor
MAGIC ::= Non-negative Integer Literal

Figure 4: Formal model of checksum algorithms.

We perform enumerative search bounded by the algorithm gram-
mar shown in Figure 4 to synthesize checksum algorithms. We base
the design of this grammar on the problem instances collected from
Reverse Engineering Stack Exchange and Stack Overflow. Check-
sum algorithms consist of a fold operation FOLDOP singularly or
in combination with either a binary final operation BFINOP and
magic value MAGIC or a unary final operation UFINOP. For each pay-
load input and checksum output, we perform a brute force search
over all checksum algorithms. We verify a checksum algorithm by
checking if the synthesized algorithm produces the checksum as
output given the payload as input.

For the Tufts Checksum Corpus problem instance 4, we infer the
following checksum algorithm:

Table 4: Derived parameterization for problem 4

Parameter Value

Width 8
mStart 0
mEnd -1
mCheck -1
algorithm (lambda (xs)

(xor (fold addition xs 0) 0x55))

(lambda(xs)
(xor (fold addition xs 0 ) 0x55))

which we call checkSumA4.
While the values of mStart, mEnd, and mCheck describe the

location of the payload, the checksum algorithm indicates the op-
erations performed on the payload to calculate the checksum. We
refer to the combination of the description of the message space
and a synthesized algorithm as the parameterization for a problem
instance. Table 4 shows the parameterization for problem instance
4.

As an example of the application of checksum4A to message 1
from problem 4 (806FA30102B00818), we first apply the fold oper-
ation of addition over the payload.
foldResult = 0x80 + 0x6F + 0xA3 + 0x01 +

0x02 + 0xB0 + 0x08 = 0x24D

We perform an optional final operation at the end, which may
either be a unary operation or a binary operation requiring a non-
negative integer known as a magic value. Although our approach is
based on exhaustively testing all parameterizations of the model, we
do not need to search for the magic value because we can calculate
it in constant time. Specifically, we use known inverse functions to
checksum algorithm final operations to identify a magic value for
the first message and then verify that this magic value holds for all
messages. We can therefore avoid searching for magic values in the
range [0, 2𝑊𝑖𝑑𝑡ℎ) and the runtime will not grow with the Width.
This method allows our approach to be extended to larger widths
(such as 32 bits) without compromising runtime. For problem 4, we
xor the foldResult with a magic value of 0x55.

finalResult = 0x24D ^ 0x55 = 0x218

Finally, we discard all but the least significant Width bits:
m[mCheck] = 0x218 & 0xFF = 0x18

3.3 Design Choices and Optimizations
In this section, we describe steps we take to present better inferred
descriptions to the user, which involves prioritizing results that
are most relevant to the user. We also discuss ways we optimize
performance on long messages, including the use of dynamic pro-
gramming.

We use a number of heuristics to present better inferred descrip-
tions to the user. First, we expect checksums to exhibit a high degree
of Shannon entropy [19] as we expect good checksum algorithms
to distribute the checksum values over the entire expressive space
of the checksum field. Therefore, to prevent extraneous results,
our approach skips parameterizations in which the value at the
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checksum index is constant for all messages. In addition, we sort
the candidate checksum indices by Shannon entropy and explore
indices with the highest Shannon entropy first, thus exploring pa-
rameterizations which are most likely to yield meaningful results
first.

Additionally, the payload usually includes most if not all of the
bytes in themessage. ParametermStart counts up from 0 and param-
eter mEnd counts down from 0, allowing our method to prioritize
exploring payloads which include the entire message before explor-
ing smaller portions iteratively.

We have also taken a number of measures to ensure that our
approach runs efficiently on average data. First, if messages in
a problem instance are of variable lengths, our approach checks
the shortest messages first. Because the synthesis portion prunes
algorithms by finding contradictions, not all messages need to be
checked to prove that a certain parameterization does not work. If
a parameterization does not work on one of the messages, then it
is not valid. Checking the shorter messages first allows us to find
these contradictions quicker.

Finally, while we use the simple search described above for short
messages, we shift to a dynamic programming approach for mes-
sages over 50 bytes to speed up the runtime. The dynamic program-
ming approach helps reduce the work involved in searching over
the message space for parameters mStart and mEnd, enabling us
to quickly verify a synthesized algorithm for many different candi-
date payloads. Using this approach, we compute the result of a fold
operation for a candidate payload by utilizing the stored result for
a smaller subsection of the payload. For example, to compute the
result of a fold operation for a parameterization in which mStart =
0 and mEnd = 4, we could naively apply the operation across each
index in the payload. However, if instead we stored the result of
the same operation applied to the subproblem where mStart = 0
and mEnd = 3, we can apply the operation once to the result of
this subproblem and the value at index 4 to compute the desired
value. Overall, this approach saves us from performing unnecessary
repetitive work.

4 EVALUATION
We evaluated our approach on the problems in the Tufts Checksum
Corpus. The problems in the corpus from the Reverse Engineering
forum allowed us to see if we could produce the same answer as a
human. The IPV4 and ICMPmessage headers allowed us to evaluate
our approach on instances in the wild. Finally, we also evaluated
our approach on micro-benchmark data to let us characterize per-
formance for conditions of message size and checksum width. We
evaluated these micro-benchmarks using both the original and the
dynamic programming approach to understand their impact on
performance.

We ran our experiments on a Dell PowerEdge R815 server with
4 16-core 2.4 gigahertz AMD Opteron 6278 processors giving 64
cores total and 128 gigabytes of physical memory. Each experiment
was run single threaded limiting the program to a single core.

Currently, we have evaluated our approach only on algorithms
withWidth values of 8 and 16 bits. We plan to extend our approach
to larger widths in future work.

4.1 Discussion of Results: What did our
method do?

We ran our approach on the 14 problems in the Tufts Checksum
Corpus and compared the output of our approach with ground
truth, obtained either from a forum posting or from a formal speci-
fication. For the examples from IPv4 headers and ICMP messages,
our approach reported checksum algorithms consistent with the
formal specification for each protocol. For the forum examples, our
approach synthesized the ground truth checksum in 10 out of the 12
cases. Table 7 in Appendix A provides the ground-truth checksum
algorithm, parameter values and total number of inferred checksum
algorithms for each problem instance in the corpus. We note that
the checksum problem instances from the forums lack formal spec-
ifications. Therefore, the algorithms communicated in the answers
are not authoritative. Humans inferred solutions consistent with
the data, but other solutions could exist. Samples messages for each
problem instance are included in Appendix A.1.

We failed to find the checksum for the first of the remaining two
examples because it computed the checksum modulo 257 instead
of 256. Usually, developers use the modulo operator to ensure that
the checksum fits in the correct number of bits; computing the sum
modulo 257 does not guarantee that the checksum fits in a byte.
We failed to find the checksum for the second example because it
performed three final operations: ((sum(messageBytes) - 0x58)
% 0xFF) + 1. We can express nearly all of the checksum samples
collected in terms of a single final operation so we chose not to
support so many final operations. Nevertheless, our approach can
be helpful even in these degenerate examples. Because we formally
describe the scope of our approach, even if we do not find any
results, we have ruled out the parameterizations explored in the
search.

Our approach often finds many results for a single problem
instance, obscuring the task of analyzing the output. Therefore, an
analyst may be required to sort through the results, all of which
are consistent with the data. For the 12 problem instances in our
corpus, the number of results varied from 2 to 161. We attribute
this result to two basic causes. First, a single checksum location
may have multiple equivalent parameterizations. These multiple
parameterizations are possible for the following reasons:

(1) Multiple algorithms are mathematically equivalent:
• A final operation of addition or xor with a magic value
of 0 is equivalent to no final operation.

• A fold operation of addition with a final operation of
twosComplement is equivalent to a fold operation of
subtract with no final operation.

• A final operation of xor with a magic value of all 1 bits is
equivalent to a final operation of invert.

(2) We replace the checksum with zero in order to handle the
case in which the checksum is located inside the payload.
However, because we replace it with zero, we find two solu-
tions for examples in which the checksum is located outside,
but directly adjacent to the payload. The solutions will share
the same parameters except that one includes the checksum
in the payload as either the first or last index and the other
does not.
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Table 5: Derived Parameterization for 0x01 0x02 0x03 0xFA

Parameter Value

Width 8
mStart 0
mEnd 0
mCheck 3
algorithm (lambda (xs) (fold subtraction xs 0))

(3) Multiple valid parameterizations for a given checksum index
exist and depend on which bytes they include or exclude.
For example, if all messages have regions of constant bytes
we can only speculate whether or not to include those bytes
in the calculation. Including or excluding them may only
change the final operation’s magic value.

Second, certain checksum algorithms exhibit mathematical prop-
erties which lead our approach to find checksums in many locations,
despite the existence of only one designated checksum field. We
observe this situation in the following algorithms:

• (lambda (xs) (fold subtraction xs 0 ))
• (lambda (xs) (invert (fold onesComplement xs 0))

In both these cases, the checksum can be verified with a simple
calculation over both the payload and the checksum. For example,
the checksum algorithm (lambda (xs) (fold subtraction xs
0 )) can be verified by taking the sum of the payload and the
checksum. If this calculation adds up to 0 after discarding all but
the least significant Width bits, the check succeeds. For example,
consider the parameterization for example message 0x01 0x02
0x03 0xFA shown in Table 5:

We can first verify the parameterization as written:
mCheck = 3: (-0x01 -0x02 -0x03 -0x00) & 0xFF =

-0x06 & 0xFF =
0xFA = m[3]

However, we also note that mCheck can take on any valid index
and we still obtain a valid parameterization:
mCheck = 2: (-0x01 -0x02 -0x00 -0xFA) & 0xFF =

-0xFD & 0xFF =
0x03 = m[2]

mCheck = 1: (-0x01 -0x00 -0x03 -0xFA) & 0xFF =
-0xFE & 0xFF =

0x02 = m[1]

mCheck = 0: (-0x00 -0x02 -0x03 -0xFA) & 0xFF =
-0xFF & 0xFF =

0x01 = m[0]

Because our approach finds checksums at many indices in these
cases, we can infer the true checksum index by considering the
Shannon entropies of each index.

4.2 Discussion: Micro-benchmarks
We also evaluated our approach on synthetic examples of varying
lengths and both 8- and 16- bit checksums to report a set of micro-
benchmark performance results.

Table 6: Comparison of mean run time in seconds for enu-
merative and dynamic programming search strategies ap-
plied to 10 problem instances of equal message length.

8-bit Checksum Single Index Full Search

Length (bytes) Dyn. Enum. Dyn. Enum.

10 0.12 0.15 0.26 0.25
50 0.49 0.55 15.54 20.77
100 1.41 2.72 125.34 231.45
150 3.24 6.76 412.61 975.29
200 5.85 13.37 1014.77 2845.92
250 8.50 24.59 1942.27 5880.57
300 12.11 37.74 3108.07 11211.78
16-bit Checksum Single Index Full Search

Length (bytes) Dyn. Enum. Dyn. Enum.

10 0.11 0.14 0.14 0.13
50 0.24 0.69 2.38 2.33
100 0.48 0.58 15.78 19.91
150 0.94 1.63 54.01 84.15
200 1.49 2.67 122.27 214.53
250 2.29 4.45 240.86 490.03
300 3.39 6.71 426.80 949.37

The search space for our problem is large. Because we do not
assume that the user knows the location of the checksum and
the payload bounds we must search for these values over a large
number of possibilities. For example, if all messages are n bytes,
an 8-byte search involves searching n possible checksum locations.
Additionally, we define a payload in terms of a start and end index,
meaning that for each checksum location we must check O(𝑛2)
trimmed payloads.

The examples in the test suite consisted of relatively short mes-
sages ranging in length from 7 to 64 bytes. Therefore, we wanted
to evaluate the performance of our approach on longer messages.

Each problem instance in our micro-benchmark consists of 5
randomly generated messages, each with a checksum calculated
using the algorithm (fold addition xs 0) at the end of the mes-
sage. We encoded value payloads by generating values randomly
distributed over the byte range (0 - 255 for 8-bit sets and 0 - 65535
for 16-bit sets). We report characteristics for search restricted to
only one index, simulating a search if the location of the checksum
is already known and characteristics for a full search where the
checksum location is unknown in Table 6.

4.3 Discussion: Corrupted Messages
Checksums are designed to detect errors, so it is reasonable to as-
sume that messages in the data may be corrupted. Therefore, we
suggest running the approach on small subsets of the messages,
reducing the likelihood of noise and corruption in the data interfer-
ing in the results. A parameterization must correctly compute the
checksum for every message in the set so if any message has been
corrupted, the parameterization will not be found. By running our
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approach on subsets of the sample messages our approach can be
utilized even if some of the messages in the set have been corrupted.

5 RELATEDWORK
Work related to checksum identification and inference ranges from
manual methods to methods of varying degrees of automation. Au-
tomated methods include techniques for fuzzing unknown binaries
as well as automatic methods of generalized protocol reverse engi-
neering. We note that question and answer sites devoted to reverse
engineering often included information about tactics and methods
individuals have used when trying to solve checksum inference
instances.

5.1 Ad hoc Manual Techniques
One manual technique discussed on Q&A sites relies on finding
samples that differ only in a small number of bits or on a certain
byte [4]. By observing the changes these differences have on the
message’s check bytes, an analyst may gain insight into which
operation is being performed by the checksum algorithm.

If the analyst has access to the binary program used to generate
messages, she can use it to probe the algorithm. Specifically, she can
manufacture related samples by repeatedly incrementing a single
element of program input or portion of program memory prior to
the checksum calculation. She can also employ these techniques
to help identify the location of the check bytes by observing what
portions of the message change in relation to the altered field.

Another technique differentiates between types of error detec-
tion codes using Shannon entropy [3]. This technique leverages
the observation that checksum algorithms using sum or xor op-
erations generally produce the least amount of Shannon entropy.
In contrast, CRC algorithms produce more entropy, while hashes
create maximum entropy. From this knowledge, developers can
gauge the most likely type of algorithm by observing the degree
of randomness in the check bytes of similar messages. It is notable
that subject matter experts often have insights into solving such
problems that we have not found in the academic literature.

Our approach to solving the problem of checksum identification
and inference does not rely on these manual methods. Instead, our
approach uses differences in messages to eliminate synthesized
candidate algorithms through differences between expected and
produced output. While our approach does not tackle CRCs or hash
functions, we do use Shannon entropy as a method identifying
candidate checksum regions.

5.2 Automated and Semi-Automated
Techniques

Checksum inference is generally considered to be a component of
protocol reverse engineering [10, 12] or of program fuzzing [20].We
divide these approaches into two categories: first, those that assume
access to a binary program that calculates the error detecting code,
and second, those that assume only that they are given example
messages that contain an error detecting code.

Wang et al. describe TaintScope [22], a directed fuzzing tool fo-
cused on automatic software vulnerability detecting. TaintScope
strives to allow fuzzers to get past the gatekeeping aspect of a check-
sum. By correctly computing a checksum on some input, a fuzzer

is able to ensure that a target program will operate on the input,
rather than rejecting the majority of fuzzed cases for checksum
errors. TaintScope analyzes the binary program to detect the pres-
ence of checksums and the code responsible for their calculation
on file format inputs. Our approach assumes that the binary pro-
gram is unavailable or would be to difficult or time consuming to
instrument. Instead, our approach requires only messages captured
during transmission.

Cui et al. introduce Tupni [2] which focuses on message format
inference from both file formats and network applications. Similar
to TaintScope, Tupni relies on the availability of a binary and a
method to examine memory while the program is executing. Our
approach does not rely on access to a running instance of the binary
program.

Two works closely related to our approach are Pohl’s Automatic
Wireless Protocol Reverse Engineering [15] and the open source
program CRC RevEng [1].

Pohl’s approach focuses on general message format inference
solely from network message samples assumed to originate from
wireless radio protocols. Pohl’s work supports the identification of
message regions consistent with payload and calculated CRCs for
a small set of common CRC algorithms and three wireless radio
checksums. Our approach differs in two main ways. First, we focus
specifically on a search space of checksums rather than specific
CRCs. Second, our goal is to synthesize and return to the user
runnable code for calculating a checksum rather than a message
format description. Pohl’s work inspired us to adopt dynamic pro-
gramming to improve our performance.

CRC RevEng operates on user-specified pairs of payload and
check bytes, checking 107 preset CRC algorithms as well as user-
specified CRC algorithms. Our approach differs by focusing on
checksums instead of CRCs. Our approach searches over the range
of message indices to locate payload bounds and candidate check-
sum location. CRC RevEng assumes that the user has correctly
provided the payload and CRC check bytes for the CRC parameter
search. We note that CRC RevEng could be easily integrated into
our approach. We describe this integration in the next section.

6 FUTUREWORK
With our formal model of checksum algorithms, our approach found
the location and algorithm for 12 of the 14 checksum examples in
our test suite. We describe several directions for future work which
would expand on our results.

First, we would like to extend our model to incorporate addi-
tional operations and to allow the synthesis of more complicated
checksum algorithms, such as the two instances in our testbed for
which our approach was unable to produce a result.

Second, we note that in cases where our approach returns mul-
tiple solutions, an analyst needs help deciding which of these is
most likely even though all are consistent with the message data.
For example, an analyst may prefer a model where the payload
contains as much of the original message as possible combined
with checksum algorithms which are simpler. This would maximize
the utility of the checksum, while minimizing the computational
expense incurred. Another avenue for future work, then, is devel-
oping and improving heuristics to address this issue. We believe
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application of the minimum description length principle [7] to our
search results would be beneficial in this area.

While we focus on checksums in this work, it can be difficult for
users to differentiate messages using checksums from those using
CRCs. We would like to integrate the CRC RevEng program as a
component of our search. This extension would provide a unified
approach for detecting, locating and synthesizing both checksum
and CRC algorithms from example messages.

At present our approach returns Python code to an analyst.
Another avenue we intend to pursue is adding output for data
description languages such as PADS [6].

Finally, we observe that the possibility of bit errors in messages
poses a challenge to our approach. Engineers design checksums to
detect errors, so it is reasonable to assume that a corrupt message
may occur in a sample set. For our approach to find an algorithm, it
must correctly compute the checksum for every message in the set.
In the future, we would like to add an option for a lower bound for
the percentage of messages that an algorithm must work for. We
could then report algorithms that may not work for all messages
but work for a percentage of messages above this threshold.

In summary, our approach shows promise in inferring simple
checksum algorithms. Our approach produced meaningful results
in the majority of cases and would significantly reduce the amount
of time and effort required to manually reverse engineer the binary
data.
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A TUFTS CHECKSUM CORPUS EXAMPLE
MESSAGES AND PARAMETERS

A.1 Example Messages

Listing 4: Example 1
1 FC62013010030000140000BD00000000000000000089

2 FC62013010030000150000BE00000000000000000087

3 FC62013010030000160000C000000000000000000084

4 FC620130100300001C0000D00000000000000000006E

Listing 5: Example 2
1 AA1C010100E7000000000000000002A600001429000025CAFF0000008

2000000

2 AA1C01010201000000000000000002A600001429000025CAFF0000009

E000000

3 AA1C0101095F000000000000000002A600001429000025CAFF0000000

3000000

Listing 6: Example 3
1 E1C00A4EAA6038349484271330

2 E1C00A1E0F249101848001B0B2

3 E1C00A5E2F34910186810130A5

4 E1C00A1F8E6431159E890333CE

Listing 7: Example 4
1 806FA30102B00818

2 806FA30112800878

3 1003A30001004006729E99940012120B

4 1003A30001003007709C98940012121F

5 1003A30001003806739C9B9400121202

6 806FA30200800041

Listing 8: Example 5
1 040000000000000000000000000000A9

2 060000000000000000000000000000AB

3 800024F4671EA3000000003F00FBE6F981BB17D1

4 88020202020202020200000000299EEA45767821
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Table 7: Tufts Checksum Corpus Example Parameters. For example 10 two solutions were reported by forum posters.

ID mStart mEnd mCheck foldOp finalOp Width Checksum Algorithm Samples Results

1 1 -1 21 sub None 8 (lambda (xs) (fold subtraction xs 0)) 25 104
2 0 -4 28 add None 8 (lambda (xs) (fold addition xs 0)) 252 161
3 3 -1 12 add (add, 0x1a) 8 (lambda (xs) (addition (fold addition xs 0) 0x1a)) 75 8
4 0 -1 -1 add (xor, 0x55) 8 (lambda (xs) (xor (fold addition xs 0) 0x55)) 32 2
5 0 -1 -1 add (add, 0xa5) 8 (lambda (xs) (addition (fold addition xs 0) 0xa5)) 8 2
6 2 -1 10 add None 8 (lambda (xs) (fold addition xs 0)) 25 22
7 0 -1 -1 sub None 8 (lambda (xs) (fold subtraction xs 0)) 38 64
8 0 -1 12 add (xor, 0x55) 8 (lambda (xs) (xor (fold addition xs 0) 0x55)) 12 6
9 0 0 1 Ones Comp invert 16 (lambda (xs) (invert (fold onesComplement xs 0))) 7 20
10 (a) 0 -2 14 add None 16 (lambda (xs) (fold addition xs 0)) 14 13
10 (b) 14 -1 15 sub (add,0xFFF2) 16 (lambda (xs) (addition (fold subtraction xs 0) 0xFFF2)) - -
11 (IPv4 Header) 0 0 5 Ones Comp Invert 16 (lambda (xs) (invert (fold onesComplement xs 0))) 7 24
12 (ICMP) 0 0 1 Ones Comp Invert 16 (lambda (xs) (invert (fold onesComplement xs 0))) 10 48

Listing 9: Example 6
1 55549D1748C2AA148102FF

2 55549D1748C2AA1D8E0417

3 55549D1748C2AA286502F7

Listing 10: Example 7
1 00010302D20226

2 2001030A4100000024A0030895BA73

3 20010312D140200100002101000022010000230100002F

4 20010302D240C8

Listing 11: Example 8
1 A802000000001E5D0000000070

2 A80300000004055D0000000044

3 A81200004004159A00000000F8

4 A85200084000149C00000000A7

Listing 12: Example 9
1 D00771BCBE3B0000

2 0B00396CBE3B05007E5246436172644F6E

3 D0073532BE3B07007E4465766963654E616D653D544138313000

4 D0074ED4E1230000

Listing 13: Example 10
1 FFFFFFFF01671F8400000000000000000000000000000000000101002

1EADE08

2 3065C0000000000000000000000000000000000000006F85000101006

0EB9F07

3 FFFFFFFF01671F8C00000000000000000000000000000000000101002

1F2DE00

Listing 14: Example 11
1 4500002894D00000710654CC0D6B8809C0A80A17

2 450000282BA700007106BDF50D6B8809C0A80A17

3 45000028BD27000071062C750D6B8809C0A80A17

4 4500012C000040004006D998C0A80A170D6B8809

5 45000052000040004006DA72C0A80A170D6B8809

Listing 15: Example 12
1 08009654A41700005EAB245C00044F8508090A0B0C0D0E0F101112131

415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F30

31323334353637

2 00009E54A41700005EAB245C00044F8508090A0B0C0D0E0F101112131

415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F30

31323334353637

3 08008239A41700015EAB245D0004639E08090A0B0C0D0E0F101112131

415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F30

31323334353637
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