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Abstract

In this paper, we provide the initial steps towards
a botnet deception mechanism, which we call 2face.
2face provides deception capabilities in both directions
– upward, to the command and control (CnC) server,
and downward, towards the botnet nodes – to provide
administrators with the tools they need to discover
and eradicate an infestation within their network
without alerting the botnet owner that they have been
discovered. The key to 2face is a set of mechanisms for
rapidly reverse engineering the protocols used within a
botnet. The resulting protocol descriptions can then be
used with the 2face network deception tool to generate
high-quality deceptive messaging, against the attacker.
As context for our work, we show how 2face can be used
to help reverse engineer and then generate deceptive
traffic for the Mirai protocol. We also discuss how this
work could be extended to address future threats.

1. Introduction
Botnet detection is a popular field of inquiry, but

often leaves open the question of what an administrator
should do once they have discovered a botnet on their
network. Eradication of a botnet can be difficult a priori,
because bots can live in difficult-to-access devices on the
network, or in devices whose function is critical enough
that downtime is difficult to schedule. Indeed, it may
do no good to eradicate a botnet from a device if the
manufacturer has not yet (or never will) release a patch
to protect it from re-infection in the future. Further,
the mere act of attempting eradication sends a signal to
the adversary that they have been discovered, causing
them to adjust their botnet to thwart the administrator’s
mitigations.

We suggest using cyberdeception as an alternate
or extension to direct botnet eradication: we first
use human-supervised machine learning techniques to
infer descriptions of the command and control (CnC)
protocols at work. We then use the resulting protocol
descriptions to synthesize highly realistic fake traffic.

This fake traffic can be used for multiple deceptive
purposes: to deceive the botnet controller that their
infection is proceeding undetected and to trick botnet
instances into exposing themselves to the administrator.
In addition, the inferred information could be combined
with honey data to help trace infections to their
controllers.

In this paper, we use Mirai[1, 2] as a case study for
early work in this effort. We provide a quick overview
of Mirai in Section 3, but assume a basic understanding
of its functioning and impact. Section 3 also sketches
our goals and the threat model we adopt. In Section 4,
we show how users can use 2face’s inference assistance
tooling to help understand the structure of Mirai CnC
packets, to the point where they can generate a formal
description of the packet syntax. We then discuss traffic
generation in Section 5, and the operation and potential
use of our 2face network deception system in Section 6.
Finally, we discuss future work for 2face in Section 7
and conclude in Section 8. First, however, we provide
an overview of existing work in the areas of deception
and protocol reverse engineering in Section 2.

2. Related Work
The relatively wide adoption of network flow

data [3] in large-scale networks has made it relatively
easy for administrators to discover (either manually [4]
or using machine learning [5]) anomalous flows within
their networks. Often, however, it can be difficult
to distinguish an anomalous flow caused by a user
using a new application or device versus an anomalous
flow caused by malware. Distinguishing between these
two situations is particularly difficult in organizations
that perform research and development tasks, such
as government labs, large engineering organizations,
and universities. In those organizations, identifying
such flows requires an administrator with the time
and professional network experience to hunt down
possible sources for the anomalous flows[4]. While
there have been some efforts to automate the process
of sharing information amongst peers [6], such efforts
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have not seen wide deployment. Another use for the
work described in this paper would be to help system
administrators understand what kinds of data are flowing
across their network on suspicious channels, which may
help them make decisions about the severity of threats
more quickly.

The use of cyberdeception to detect adversaries
within a network is not new [7], although much of
this work focuses on heavyweight [8], virtual [9]
or lightweight [10, 11] honeypots. Heavier-weight
honeypots typically serve two roles: one in which
they serve as detection systems on a network, and
another in which they serve as an observational
platform to understand the goals and techniques of
an adversary. Some of the observations gained from
such platforms have led to deeper manipulation of the
adversary’s view of a system or network, with research
connecting deceptive techniques to attack graphs [12]
or the use of inverted human factors engineering to
distract attackers [13]. Several of these ideas have
been connected to game-theoretic models of adversarial
behavior to model how defenders might choose to
deploy deceptions against an attacker to achieve a
result [14]. The work in this paper extends this existing
body of work by providing another mechanism that can
be used to deceive an adversary by generating realistic
traffic that can be used to inject false data into the
system, by triggering malware in a controlled way, or
by masking the remediation state post compromise. In
particular, previous efforts in traffic generation (e.g.,
[15]) have been focused on generating traffic that can
be used to effectively test and benchmark network
equipment or networking algorithms. Our work is
instead focused on generating traffic that is realistic to
human operators, either directly or via their interactions
with botnet nodes.

Protocol reverse engineering is broadly divided
into two approaches [16]. One approach relies on
interacting with a binary program capable of consuming
or producing network messages. This binary program
may be subject to methods derived from static analysis
or interactive fuzzing to gain information about the
message formats comprising the protocol and the state
machine describing their use [17]. This approach
requires the analyst to have some manner of interactive
access to the binary program. An alternative approach
relies only on captured data from a network trace [18,
19]. These efforts utilize a variety of information
theoretic and machine learning techniques. A further
distinction in protocol reverse engineering is made
between human readable and binary format protocols.
Human readable protocols are protocols which are
transmitted as a string and are unambiguous in their

interpretation at the character level. Binary format
protocols transmit the compact binary representation of
data and are ambiguous in their interpretation at the
byte level. In this work, we adopt the second approach
and assume the data is in binary, which is the most
challenging combination.

3. Mirai & Experimental Setup
The Mirai botnet first appeared in 2016, and was

characterized by rapid growth through infection of
Internet-connected devices: digital video recorders,
network attached video cameras, etc. At its peak the
botnet exhibited a steady state of over 200,000 infected
systems [20] and was used in several high-profile
DDoS attacks. One of Mirai’s more pernicious
properties was the wide range of devices that it could
affect, which made identifying all infections particularly
time-consuming. One goal of our work is to facilitate the
discovery of latent botnet infections by using deception
to safely trigger them, thus disclosing their location.

The Mirai botnet is comprised of three types of
systems: CnC servers which issue commands to bots;
bots which attack victims and scan for new hosts to
infect; and drop systems which perform infection of
new, vulnerable hosts. The drop system uses brute force
login to perform its attack, choosing from several known
default user name and password combinations. Once
infected, Mirai disguises its presence on a system by
deleting its binary and using a pseudorandom string as
its process name; it then fortifies the system by killing
competing processes (other botnets, for example).

The Mirai botnet uses a binary format protocol for
CnC communication [2]. This practice makes Mirai
more difficult to reverse engineer from network traces
than malware categories using human readable protocols
such as XML or JSON. It was thus a particularly
good target for 2face. Many traditional malware CnC
systems use simple ASCII strings for control, which an
administrator with a packet sniffer can easily reverse
engineer.

3.1. Threat Model & Case Study Outline
In this case study we assume the following threat

model. First we assume that a network we are
responsible for has been infected by an unknown
number of instances of botnet malware (for the purposes
of this case study we use the Mirai botnet); the primary
intended user of 2face is a network administrator at
a university or other institution, managing a series
of machines connected to the Internet via one or
more firewalls. We assume that botnet instances
are communicating with an outside CnC server under
the command of an adversary who is actively using
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the botnet for ongoing attacks. We assume that the
adversary will alter their behavior and exact reprisals
should they detect any effort to remove or interfere with
the operation of the botnet. We further assume that we
have identified an instance of a bot on our network, but
that there may be others. In addition, we assume that it
will take additional time to locate other bots, to develop
patches for the infected machines, and to deploy these
patches to the systems once located. We further assume
that we are able to intercept the botnet CnC traffic on our
network, but that we do not have access to the binary of
the malware itself. In this case study, we do not address
the mechanics of further system infection or scanning by
bots.

For our protocol inference objective, we assume that
we can intercept the traffic between the CnC server
and some infected bots. Similarly, for our deception
objective, we assume we have a firewall or router under
our control between the CnC server and the infected
hosts. Both of these objectives should be easily achieved
by our target user – an academic, governmental, or
corporate network administrator – through the injection
of 2face at local network ingress/egress points.

Given these assumptions, our goal is to bring our
system into a patched and uninfected state without
arousing the adversary’s suspicion. We broadly group
our objectives into three phases:

• Phase 1: Reverse-engineer the CnC protocol from
static network traces;

• Phase 2: Generate decoy systems which implement
the Mirai CnC protocol; and

• Phase 3: Infiltrate and neutralize the botnet.

3.2. Generating Sample Data
Reverse engineering a network protocol from

network traces assumes that we have a representative
sample of messages in that protocol. The Mirai CnC
protocol presents a substantial obstacle in this regard.
First, these messages are not common, and they can
only be collected on a path between a CnC server
and a bot. Second, these messages reflect sensitive
information that administrators may be loathe to release:
the existence and address of the bot being the most
critical. As such there are no public captures of Mirai
CnC messages of more than a few messages.

To address this lack, we generated our own
representative network traffic by creating a sandboxed
Mirai Botnet comprised of a single CnC server and a
single bot. We utilized publicly available source code
for the various Mirai components and instantiated them
as virtual machines connected on an isolated network

http 10.10.0.27 7 domain=ACM.ORG conns=77

http 10.10.0.27 10.10.1.7 7 domain=X.EDU
conns=600

Figure 1. Sample Mirai attack commands provided

by the operator to the CnC server.

segment from which we could record network traces.
Mirai operators control a Mirai CnC server via a telnet
interface through which they submit plain-text attack
comments. The server subsequently disseminates binary
versions of those commands to the connected bots. Each
bot is connected to and takes orders from a single CnC
server.

3.3. Traffic Generation
When a Mirai bot comes online, it initiates a

connection to a CnC server automatically. After
successfully creating a connection, the bot and the CnC
server send heartbeat messages periodically. To capture
a network trace of these protocol messages requires no
action beyond running the CnC server and the bot.

To generate messages from the CnC server
instructing the bot to attack a victim, we developed a
script which connects to the telnet interface and issues
plain-text attack commands. We parameterized our
script by generating pseudo-realistic IP addresses as
targets for the attack and domain names as parameters
for the HTTP flood attack command we utilized. The
CnC server distributes commands to the bots in a custom
binary message format. It is this binary message format
on which the bulk of our reverse engineering efforts
were focused. We collected a network trace of these
messages using an open source packet capture tool
running on the same network as the bot and the CnC
server.

4. Phase I: Automated
Reverse-Engineering of Mirai CnC

Reverse engineering a network protocol from a
network trace has two objectives. First, we recover
the quantity and structure of discrete message formats
for the protocol. Second, we infer a state machine
describing the observed sequence of messages from
various formats.

We use a human-machine centaur approach as the
basis for these two objectives as illustrated in Figure 2.
The centaur of Greek myth had human reasoning, but
the strength and speed of a horse. In this domain, a
centaur refers to a system designed to combine human
reasoning with algorithms and computation such that
when taken together, the combination exceeds what
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Figure 2. The 2face approach to reverse engineering.

either the human or the computer can do individually.
A common example of a centaur system is active
machine learning, in which a classifier can call out to
a human expert for judgement when it needs additional
information.

4.1. Reverse Engineering Message Formats
We conducted our case study reverse engineering

the Mirai CnC protocol to make explicit the steps an
analyst would perform to understand binary message
formats. While previous work presents individual
automatic techniques for reverse engineering from
network traces [16, 18], there is a lack of step-by-step
descriptions of the process an analyst would perform;
we hypothesize that this lack stems from the unique
nature of each reverse engineering task. We hope that by
enumerating these steps, we can better understand where
common reverse engineering tasks can be automated
or improved. Previous work on reverse engineering
the Mirai CnC protocol utilized the malware source
code [2]. We utilize only network traces to investigate
whether we can arrive at a similar format when source
code or a binary is unavailable.

We define the successful reverse engineering of
a message format as producing a description of the
ordered field boundaries and their types (syntactic and
semantic) that matches the original message format
specification defined by the source generating the
messages. We focus only on formats at the byte level
as our base unit; formats that include fields that are not
multiples of one byte are left for future work.

In this case study, we assume our sample contains
only messages generated by the CnC protocol. We feel
this assumption is reasonable given the wide availability
of traffic filtering rules in packet capture tools and the
fact that an administrator would likely limit their packet
captures to a single (or small set) of UDP or TCP ports as
part of their normal operation. We also assume that we
are aware of some of the IP addresses at which the botnet
attacks are directed. This assumption is consistent with a
scenario in which a Mirai bot is discovered on a network
and both the CnC traffic as well as the attack traffic
generated by it are observed and captured as it passes
through a switch or router. On the other hand, we do

not assume that we know the plaintext commands that
generated the binary packet data (a la Figure 1).

To reverse engineer message formats, the analyst
first extracts the messages sampled from the network
trace and performs a manual analysis of the distribution
of message lengths by source. For example, the
messages produced by a Mirai bot are of 1, 2 and 4
bytes in length, while the messages from the Mirai CnC
server are either 2 bytes long or of variable lengths
greater than 20 bytes. Based on observations of the data
similar to our generated data, the analyst would observe
the relative frequencies of message lengths, and form
a reasonable hypothesis that the Mirai botnet protocol
has some message formats which are fixed length and
some message formats which are of variable length.
They could then group messages by the combination of
source (bot vs. CnC) and length, placing all messages
greater than 20 bytes into a single “longer” message
group. Here the analyst employs Shannon entropy to
gain insight [21]. Shannon entropy can be described as
a measure of diversity over a set of information [22]. It is
a useful measure when reverse engineering as it does not
make any assumption about the semantic characteristics
of the data, only the quantity of information, and is a
direct measure of how well one model (or subset of
messages) predicts another. By calculating the Shannon
entropy and number of distinct values for each group,
the analyst would discover that the groups of messages
of 1, 2, and 4 bytes in length all have both a single
distinct value and a Shannon entropy of 0; these facts
indicate they are constant within the group, and we
can begin to generate theories that these messages are
heartbeats and acknowledgements where the existence
and length of the message encode all the necessary
information. For each group with a single distinct value,
the analyst would likely perform no further analysis,
under the assumption that the message format and the
value are equivalent. Note that a limitation of reverse
engineering is that a format can only be inferred with
respect to the sample captured by the network trace.
A different or larger sample could contain information
which would result in inferring a different format.

4.2. Attack Message Format Inference
Having reverse-engineered the simple message

formats, the analyst can next concentrate on the
remaining group of messages: the ones that are larger
and of varying length. Figure 3 provides examples
of simplified Mirai attack command binary messages
from Figure 1 and summarizes how toolinng supports
the steps of our methodology. In general, our tools
and methods are designed to come up with reasonable
theories regarding the structure of a message, and then

Page 1858



0 7 10 0 2 7 C . R 2 1 7721 1 10 27 1 A M O G

0 7 10 0 10 1 2 5 . D U 2 2 1 8824 2 10 27 10 7 1 X E

0 7 10 1 2 8 E E O G 2 1 9922 1 10 18 1 I E . R

0 2 4 6 8 10 12 14 16 18 19 20 21 22 231 3 5 7 9 11 13 15 17BYTE INDEX

Msg 1

Msg 2

Msg 3

Simplified Examples of Mirai Attack Command Messages
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QUANTITY
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MSG
 LE

NGTH

CONSTA
NT

Identify Constant Bytes

NMI Length Byte Identification

Entropy Comparison by Human

Fixed Length Rep. Var. Length (TLV) Rep.

Structural Models

IP Bigram Other

Canonical Models

Step 1

Step 2

Step 3

Step 4

Step 5

Figure 3. Sample Mirai attack commands and the

corresponding message format inference methodology.

Message bytes are color-coded by corresponding

inference step.

validate that each candidate structure is valid against all
incoming data. If, for example, a proposed definition of
the message leads to lengths before or after the actual
end of a message, or includes a checksum that fails on
some of the input data, then we dismiss that candidate
definition and seek another explanation.1

Step 1. Our approach first helps the analyst
extract a structural description of the message format
before trying to identify individual field boundaries and
semantic types. In this stage, the analyst first uses
2face’s automated tooling to discover byte positions
relative to the message start where the corresponding
payload takes on constant values across all messages.
In particular, we pay attention to byte positions which
contain the value 0, as these positions are likely an

1One issue that we do not address in this work is the issue of dirty
data; we assume, for this section, that all of the input data is valid and
unmodified. In the case of errors in the analyzed data stream, then we
change our heuristic to check for consistency with known error rates
for the underlying channel.

unused portion of a field spanning multiple bytes.
For example, the most significant byte of a two-byte
unsigned integer field. We suggest the analyst return
to these constants later, as well, as they may indicate
that the sample set is not fully descriptive of the packet
format. For example, in reverse engineering DHCP
messages to/from a single DHCP server, the analyst
may find constant sections corresponding to the server’s
MAC and IP addresses. At this point in the process,
when the entirety of the message (and even its kind) are
unknown, determining that these values are a MAC and
IP address may be difficult; but later, once the analyst
has learned more about the structure of the message and
found a variety of other networking artifacts, identifying
such constants will likely be easier.

Step 2. As the messages for Mirai CnC are of
varying length, the analyst’s next goal will be to seek
regions in each message that share high normalized
mutual information (NMI) [23, 24, 25] with the
length of the message. NMI describes the mutual
dependence between two variables, and thus the amount
of information that can be obtained about one such
variable by observing the other. Since lengths can vary,
as well as byte ordering, we normally suggest starting
from small, unsigned, network-order numeric types and
then expanding from there when trying to find such
regions. For instance, in Mirai, we would suggest
starting by calculating the NMI for each unsigned
byte in the message; this calculation is an example of
leveraging the machine portion of the centaur approach.

In Mirai, the analyst uses 2face’s automated tooling
to find that the byte values at index 1 shows NMI of 1.0,
indicating high explanatory power for the total length
of the message. We note that the byte at index 0 is a
constant value of 0 across all messages. We might then
infer that together these two bytes form a length field.
We note that leading with the length is very consistent
with other protocol message formats where the total
length of the message is present early in the message to
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allow a receiving system to know when to stop reading
bytes for a discrete message unit.

Step 3. The analyst then calculates the entropy at
a particular (k) position relative to the message start for
each message (m) in the sample (M ). This calculation is
defined as−Σi∈Mk

PilogPi where Mk is the bag formed
by the kth byte of each message m in the sample M , and
Pi is the probability of value i in Mk.

The analyst uses automated tooling which first
calculates the entropy of the values of the first byte of
each message. This value is compared with the entropy
of the values of the second byte of each message.
Continuing in this manner allows the comparison of
the amount of information contained at each byte
position relative to the start of the messages. Through
numerical comparison and visualization similar to the
approach described in Kleber [26], the analyst will note
regions of differing entropy. From this pattern, they
might hypothesize that the messages are comprised of
a mixture of different repeated field formats. If it
were a single field format, for example, they would
expect repeated regions to have consistent entropy. The
analyst’s next goal would then be to determine what kind
of repeated format they are dealing with. If there is a
consistent step size between discrete message lengths,
for example, all the message lengths could be described
as a header of size n plus some number of s-byte chunks,
and thus all the messages had a size of x ∗ s + n, then
the analyst could assume that there was a single repeated
field with a width of the step size s. In this case there is
not, but we have found this pattern to be common in
other protocols, and a relatively easy property to check
for at this stage.

Step 4. Discovering the syntax of repeated fields
is one of the more difficult tasks for the analyst.
Other work on protocol reverse engineering has relied
on string alignment algorithms from bioinformatics to
address this problem [27, 28, 29]. We instead use a
“guess, then validate” approach, by drawing candidate
hypotheses from common data serialization techniques,
deserializing the sample data accordingly, and then
determining whether or not the result passes simple
sanity checks.

Prominent among these techniques are length
value (LV) encoding and type length value (TLV)
encoding. These encodings are used in the ASN.1
BER [30] specification and the Google Protocol Buffers
(ProtoBuf) library [31].

With TLV encoding a field is first encoded with
its field type, followed by a description of the field
length, followed by its value as consecutive bytes. This
encoding is popular with designers because it affords a
certain level of forward- and backwards-compatibility,

as implementations that are not capable of parsing a
certain type value can easily jump past it using the
length information. In other cases, some portion of
the repetition (either the number of repetitions or the
size of the structure being replicated) is fixed, and as
a result less information need be provided: a count field
suggesting the number of elements, for example, or just
a type value for each repetition.

Mirai attack messages include two examples of
repeated fields, as our analyst will shortly discover.
First, since TLV encoding is so common, the analyst
performs a brute force search across the captured pattern
data, looking for possible sections of the data that match
that pattern. To do so, the brute force algorithm starts
at a given offset of the message, and then attempts to
overlay a TLV encoding at a variety of normal sizes
(1 byte type / 1 byte length, 2/2, 1/2, etc.). For each
of the assumed encodings, we can then determine if
the encoding makes sense by seeing how each assumed
encoding aligns with the end of the packet data; in cases
in which a boundary consistently occurs at the end of the
packet, when computed across all of our captured packet
data, the encoding should be considered a candidate by
the analyst.2 At this point, a certain level of interaction
with the human is required, as intuition is likely to be
the best guide as to whether one TLV candidate makes
more or less sense than its peers.

For Mirai, it becomes clear that there is likely a
TLV encoding at the end of a message. With this
information, the analyst now holds a hypothesis that the
Mirai message contains, in order: a 2-byte length field,
a 4-byte fixed-width field, a section of unknown bytes,
and a set of TLV-encoded repetitions. A quick check,
similar to the length check described earlier, can easily
determine that the last of the unknown bytes exactly
corresponds to the number of TLV-encoded items. By
applying a process similar to the automated search
used for TLV-encoded data, the analyst discovers the
unknown bytes consist of 5-byte fixed length repetitions
with a quantity given by the first unknown byte. At this
point, the analyst has completely parsed the structure of
the data, and can switch to analyzing the frequency of
the values contained within this structure.

Step 5. In this particular case, the fixed 5-byte
quantity is consistent with 5-byte CIDR IP address
ranges [32]; contextual clues, like NetFlow records
associated with attacks seen from compromised nodes,
would help in this determination. We also note that
the subsequent variable length repetition contains two
types of values by decoding them as TLV groups. One

2Similarly, if the encoding ends at a consistent point before the end
of the packet, this may indicate that we have correctly identified a TLV
structure, but that there is additionally a trailer structure in the syntax.
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group is uniform in length, and is a numeric parameter.
The other is varying in length, but consistent with
bi-gram probabilities [21, 33] associated with an ASCII
representation of English text. Manual examination is
used to determine that the values of this group are ASCII
domain names.

We note that, for many fields, there are other
heuristics that we can use to aid the analyst in generating
strong guesses regarding the semantic content of a field.
In this case, we have used bi-gram probabilities that
heuristically suggests ASCII data, which the analyst
then validated. Similar heuristics exist for determining,
for example, time stamps in various resolutions,
positional coordinates, angles, IP addresses/netmasks,
etc. One aspect of our future work is to build a library of
these distributions, which can be automatically applied
to the data.

00 0

0 2 4 61 3 5 7BYTE INDEX

Bot à CnC: Handshake 1

Bot à CnC: Heartbeat

F1 F2 QCnC à Bot: Attack Msg LEN

00   00    00    01

00   00

CnC à Bot: Heartbeat 00   00

Bot à CnC : Handshake 2 00

Q LTCIDR IP

V

0x00000001

0x00

0x0000

0x0000

Attack

Bot CnC

Handshake 
Phase

Heartbeat
Phase

Attack
Phase

Figure 4. The format and sequence of messages in

the Mirai state machine.

4.3. Reverse engineering state machines
Having developed message format descriptions for

each type of CnC message observed in the network
trace, the analyst now turns their attention to developing

state machines which describe the exchange of message
between bot and CnC server. In general, the problem
of automaton inference can be difficult and is well
studied [34, 35]. However, Mirai, like many botnet
protocols, exhibits a very simple sequence of message
exchanges that is readily apparent through manual
examination. Specifically, the Mirai bot first sends a
pair of handshake messages, followed by a heartbeat
message approximately 60 seconds later. The Mirai
CnC server responds to the heartbeat message with a
reply. Heartbeat messages are exchanged in this fashion
every 60 seconds. The Mirai CnC server can at any point
after the handshake send an attack message to the bot
initiating an attack. The discovered message formats
and sequencing of message types are shown in Figure 4.

5. Phase II: Synthesizing Realistic Mirai
CnC Traffic and Behaviors

In the second phase of our case study we show how
an analyst can create decoy systems that emulate the
traffic and behavior of real Mirai bots and CnC servers.

Of the protocol message formats inferred in the
previous phase, only the attack message exhibits
variation. The handshake, heartbeat and heartbeat reply
are all statically-valued messages. For our goal of
maintaining the illusion of a functioning Mirai botnet,
it is sufficient to simply identify an attack message
rather than synthesize one. That being said, Mirai
is a particularly pernicious bot, so generating attack
commands may also be useful to flush out latent bots in
the network. Specifically, it may be useful to send attack
commands to all potentially-infected devices – targeting
an administrator-controlled, sacrificial node – to trigger
latent botnets into exposing themselves.

5.1. Decoy CnC Server

We implement a decoy CnC server which has the
following three operations: accept handshake messages,
accept heartbeat message, and reply to heartbeat
message. The decoy CnC server has two modes: cold
and warm. In the cold mode, the decoy CnC server
only performs the accept handshake message operation.
Once this task has been completed the decoy transitions
to the warm mode, where it will accept and reply to
heartbeat messages. These two modes allow a CnC
decoy to be created in whichever state would match what
a specific real Mirai bot expects.

Given the understanding of the packet formats
developed in the previous section, creating this decoy
server is a relatively trivial development exercise. We
will discuss future integration plans that make this
exercise even easier in Section 7.
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5.2. Decoy Bot
Similar to the decoy CnC server, we implement

a decoy Mirai bot with four operations: generate
handshake messages, generate heartbeat message,
accept heartbeat message reply, and finally, accept attack
message. The decoy bot has two modes, cold and warm,
mirroring those of the decoy CnC server. In the cold
mode, the decoy bot will generate handshake messages
and then transition to the warm mode, where it will
generate heartbeat messages and accept replies every
60 seconds. The decoy bot will also accept an attack
message at any time in either mode, but takes no action
in response.

6. Phase III: Botnet Deception

PASSTHRO
U

G
H

PROXY

BOT

CnC

DECOY
BOT

DECOY
CnC

DECOY
BOT

DECOY
CnC

2face Deception Tool

Real Bots can talk to 
Real CnC via Proxy

Proxy can be split
into pair of Decoys

Real Bots can automatically 
be assigned Decoy CnCs

Real CnC sees 
3 Active Bots

BOT BOT

2face automatically 
creates Decoy Bots

Figure 5. The organization of the 2face network

deception tool.
The final phase of our case study tackles deception

of the adversary controlling a botnet. It is important to
note that the goal of this effort is to delay the adversary’s
awareness of botnet mitigation for as long as possible.
That being said, the owner of a Mirai network, for
example, may become aware that their botnet has been
corrupted should they launch an attack against a target.
At this point, if the botnet is mostly (but not entirely)
mitigated, they may (rightly) conclude that their botnet
has been discovered because of the unexpectedly low
resulting attack volume. Still, any confusion we can
create through having their botnet appearing to be alive
by sending heartbeats can only be positive.

With this goal in mind, we have created the 2face
network deception tool. The 2face network deception
tool is designed to facilitate deception operations against
an adversary in control of a botnet on our network. We

illustrate the organization of the tool with regard to these
capabilities in Figure 5. A network operator controls
the 2face network deception tool in real time through
a telnet interface, or they can observe the state of the
ongoing deception operation through a visual interface.
The key requirements for the tool are as follows:

1. The ability to act as a transparent proxy between a
real Mirai bot and a real Mirai CnC server.

2. The ability to transition from using a passthrough
proxy (shown on the left of Figure 5) for a particular
CnC / bot connection, to using a twinned pair of
decoys. As a result of this transition, the CnC will
now be talking to a decoy bot under 2face’s control,
and the real bot will be talking a decoy CnC. This is
shown in Figure 5 in the center section.

3. The ability to create rules which govern the behavior
of existing or newly discovered Mirai bots when they
communicate with the 2face network deception tool.
This allows us to detect and manage new infections
as they try to reach the CnC, and allows us to provide
the illusion of a steady growth rate to the CnC during
mitigation.

The first step in the deceptive use of the 2face
network deception tool is to install it as a proxy at
relevant connection points: upstream connections to the
ISP, intersections between major network segments, etc.
In its initial use, the tool serves as a transparent proxy
for traffic routed to it. Because the analyst has already
determined the structure of the underlying data, they can
initially use this proxy to simply gather statistics about
the botnet’s current presence on the network, as well as
patterns of attacks. As an example, for Mirai, which
signals back to the CnC quite often, the operator can
quickly gather a good estimate on the number of devices
infected on their network as well as the growth rate of
the infection; this information can be useful later in the
deception campaign. Additionally, information about
the targets for attacks can provide insight into who the
adversary is and the reason or goals for the attacks being
launched.

Once botnet mitigation begins, connections between
the CnC network and each individual bot can be severed,
with the upstream (to CnC) link transferred to a decoy
CnC, and the downstream (from CnC) link transferred
to a decoy bot; we show this pattern in Figure 5.
This severing has the immediate effect of disabling the
adversary from launching attacks using the bot, although
it does not remove the underlying infection.3 To the
botnet operator, the quantity of bots appears unchanged.

3One concern with more advanced bot software is that individual
bots might use a loss of signal from the CnC node as a signal to shift
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During the mitigation process, decoy CnCs can be
shut down as their associated bot is disabled. At
this point, the administrator may wish to use any
information gathered about the botnet growth rate to
provide a consistent vision to the adversary through the
appropriate creation of additional decoy bots. For more
quiet botnets, in which there is not a consistent heartbeat
message sent to the CnC server, administrators can set
up a sacrificial server and then use the 2face network
deception tool to generate attack messages targeting
it. These messages can then be broadcast across the
network with the goal of causing any latent infected
nodes to break cover and attack the sacrificial machine.

We imagine the 2face network deception tool
continuing to operate until the botnet infection has been
cleaned. In many cases, it may be useful to leave
the tool running until it is clear that the deception has
been discovered, as it is possible that previously-clean
systems may be infected or reinfected over time.

7. Discussion & Future Work
A critical factor in the 2face network deception

tool is its ability to generate deceptive network traffic
that is indistinguishable from real network traffic.
Our technique of using human-machine teaming to
discover the structure of network traffic aids in this,
as the workflow we have suggested includes several
opportunities to cross-check decisions against gathered
network data. In the context of a real botnet, new
traffic should also be generated and collected at regular
intervals, providing even more testing and training data.
Once the format has been inferred, we can guarantee that
generated traffic conforms to the computed format and
varies according to observed probability distributions.

While we are confident in the syntactic correctness
of our approach, several concerns for a 2face-like system
remain. For example, we assume we have access to the
plaintext structure of all messages, either because the
adversary does not use encryption (the common case in
botnet engineering), or uses encryption incorrectly in a
way that allows easy decryption. In addition, several
aspects of this case study involved manual tooling to
go from an inferred format to a message generation
mechanism. We have experimented using the PADS
data description language [36] to automate this process,
integrating an ability to specify generation routines
within a PADS description. In future work, we plan
to integrate this generation mechanism more fully, and
then integrate the whole framework into an existing
network cyberdeception tool. [37]

into a different phase of operation. The use of the 2face network
deception tool can help mitigate this risk by deceiving the bot into
believing that its CnC system is still alive and aware.

On the analysis side, we have found that the tools
described in this paper are sufficient for understanding
and analyzing relatively straightforward packet formats
that use common networking techniques such as
TLV encoding. One area in which our current
system is lacking is a library for detecting common
data distributions associated with various data types:
distributions for time values, angle values, positions,
common private IP subnets, etc. Such recognizers will
be useful to analysts a priori, but are also likely to be
useful as part of a feedback loop in working through
various hypotheses associated with packet data.

8. Conclusion
In this paper we have presented 2face, a set of tools

for helping discover botnet infections within a network
and for fooling the adversary into believing a cleaned
network is still compromised. The key capabilities of
2face are its ability to help an administrator quickly
decipher CnC protocols, including previously-unknown
protocols. Once the structure has been identified, we
have shown how the 2face network deception tool
can be used to hide the administrator’s discovery of
the problem for as long as possible, and to perform
controlled triggering of latent infections within the
network. As an example, we have shown how we
can use 2face’s automated protocol reverse engineering
tooling to decipher the Mirai protocol, and then generate
deceptive traffic based on this information.

While we believe 2face shows great promise, we
note that our work opens up questions regarding more
complicated interactions. For example, we have not
directly addressed the use of more complex protocols,
or protocols that use contextual information (timing, for
example) as part of their structure. One critical need
is the ability to better judge what forms of information
could be used to distinguish real from deceptive traffic,
and discover metrics for determining the effectiveness
of the latter. Still, for simple CnC algorithms, 2face
represents an interesting new capability for system
administrators to use in decreasing the threat of botnet
infections in their networks.
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