+ Graphs, Trees, and How +. to Visualize Them

November $16^{\text {th }}, 2021$

Ashley Suh - PhD Candidate - Tufts University - Ashley.Suh@Tufts.edu

Outline for today

Graphs? Graphs!

- Clarification \& motivation

Establishing common graph vocabulary

- Definitions, formalisms

A tour through the Tree \& Graph Visualization Zoo

- Examples

Effective graph drawing

- Common graph visualization problems
- Common graph visualization solutions
(B) etiquette

Feel free to walk around during lecture, we'll break to stretch + drink water

Interrupt me or use 'raise hand' to ask questions and/or answer questions

Use chat for discussion and asking each other questions

In-class activity \& goodbyes

Who I am

- CS undergrad at USF, MS at Tufts
- Started working on graph research as an undergrad
- PhD candidate in the visual analytics lab at Tufts
- Lover of graphs \& visualization

- Graphs: what are they, what aren't they?

Graphs

Common charts that represent data are often referred to as "graphs", or "graph visualizations"

- Bar charts
- Line charts
- Pie charts
- Etc.

Clarification: for this lecture, when I refer to graphs, I do not mean the type of charts shown on the left.

Graphs

Let's instead talk about graphs, networks, \& trees in the mathematical sense: a model for representing items and the relationships between those items

- Social / friendship networks
- Computer networks
- Energy or transportation grids
- Organizational structures
- Etc.

KAILIE PARRISH

There are many graph visualization techniques

Which graph visualization is best?

O

Establishing common graph vocabulary

Graph G = $\{\mathbf{V}, \mathrm{E}\}$

V => collection of vertices

E => set of edges
consisting of vertex pairs

$$
\begin{aligned}
& \mathbf{G}=\{\mathbf{V}, \mathbf{E}\} \\
& \mathbf{V}=\{1,2,3,4,5,6\} \\
& \mathbf{E}=\{(1,2),(1,3),(2,4),(3,4),(4,5),(5,6)\}
\end{aligned}
$$

Graph (network)

Graphs

Vertices

+ Attributes / characteristics

Edges

Vertex id	Name	Favorite color	Popularity
1	Sam	Blue	6
2	Sebastian	Green	7
3	Abigail	Purple	8
4	Haley	Pink	2
5	Shane	Orange	4
6	Leah	Purple	7

Graphs

Vertices

+ Attributes / characteristics

Edges

Vertex id	Name	Favorite color	Popularity
1	Sam	Blue	6
2	Sebastian	Green	7
3	Abigail	Purple	9
4	Haley	Pink	2
5	Shane	Orange	4
6	Leah	Purple	7

Graphs

Vertices

+ Attributes / characteristics

Edges

Vertex id	Name	Favorite color	Popularity
1	Sam	Blue	6
2	Sebastian	Green	7
3	Abigail	Purple	9
4	Haley	Pink	2
5	Shane	Orange	4
6	Leah	Purple	7

How do trees differ from graphs?

Properties of trees

- Connected
- Hierarchical structure
- One path between any pair of vertices
- No cycles in the graph
- Removing an edge would create a disconnected graph

Every tree is a graph but not every graph is a tree!

Graphs

Is this graph a tree?

Is this graph a tree? No

Adjacency Matrix

Rows / columns	$2\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right]$
Represent vertices	4
Rell values	

Properties of adjacency matrices

- Another graph representation
- Symmetrical along the diagonal
- Can read from top or bottom half
- Typically, all 0's on the diagonal (unless self-loops)
- Non-zero cell value means an edge exists between that pair
- Zero cell value means no edge exists
- Cell values can also be edge 'weights' (so not just 0/1)

Directed graph

Undirected graph
Acyclic graph

Weighted graph

Connected acyclic graph, a.k.a. tree

Unconnected graph

Rooted tree or hierarchy

Node degrees

Node depths

Sanity / Attention check!

GRAPHS VS. NODES VS. NETWORKS?

VERTICES?

LINKS VS. EDGES?

GRAPHS VS. ADJACENCY TREES? MATRICES?

- Visualizing graphs
 - Visualizing graphs

Many ways to visualize, encode, and lay out the same graph data

Vertex id	Name	Favorite color	Popularity
1	Sam	Blue	6
2	Sebastian	Green	7
3	Abigail	Purple	9
4	Haley	Pink	2
5	Shane	Orange	4
6	Leah	Purple	7
Edge id	Source	Target	Friend value
1	Sam	Sebastian	10
2	Sam	Abigail	6
3	Sebastian	Haley	1
4	Abigail	Haley	2
5	Haley	Shane	1
6	Shane	Leah	2

Question: what if our graph has no innate attributes?

Graph drawing exercise

create an aesthetically-pleasing node-link diagram from this simple adjacency matrix

	1	2	3	4	5	6	7	8	9	10
1	0	0	$\mathbf{1}$	0	0	$\mathbf{1}$	$\mathbf{1}$	0	0	0
2	0	0	$\mathbf{1}$	0	0	$\mathbf{1}$	0	$\mathbf{1}$	$\mathbf{1}$	0
3	$\mathbf{1}$	$\mathbf{1}$	0	0	0	0	0	0	0	$\mathbf{1}$
4	0	0	0	0	$\mathbf{1}$	0	$\mathbf{1}$	0	$\mathbf{1}$	0
5	0	0	0	1	0	0	0	$\mathbf{1}$	0	0
6	$\mathbf{1}$	$\mathbf{1}$	0	0	0	0	0	0	$\mathbf{1}$	$\mathbf{1}$
7	$\mathbf{1}$	0	0	$\mathbf{1}$	0	0	0	$\mathbf{1}$	0	0
8	0	$\mathbf{1}$	0	0	$\mathbf{1}$	0	$\mathbf{1}$	0	0	0
9	0	$\mathbf{1}$	0	1	0	$\mathbf{1}$	0	0	0	0
${ }^{2}$	0	0	$\mathbf{1}$	0	0	$\mathbf{1}$	0	0	0	0

Graph drawing exercise

create an aesthetically-pleasing node-link diagram from this simple adjacency matrix

	1	2	3	4	5	6	7	8	9	10
1	0	0	$\mathbf{1}$	0	0	$\mathbf{1}$	$\mathbf{1}$	0	0	0
2	0	0	$\mathbf{1}$	0	0	$\mathbf{1}$	0	$\mathbf{1}$	$\mathbf{1}$	0
3	$\mathbf{1}$	$\mathbf{1}$	0	0	0	0	0	0	0	$\mathbf{1}$
4	0	0	0	0	$\mathbf{1}$	0	$\mathbf{1}$	0	$\mathbf{1}$	0
5	0	0	0	1	0	0	0	$\mathbf{1}$	0	0
6	$\mathbf{1}$	$\mathbf{1}$	0	0	0	0	0	0	$\mathbf{1}$	$\mathbf{1}$
7	$\mathbf{1}$	0	0	$\mathbf{1}$	0	0	0	$\mathbf{1}$	0	0
8	0	$\mathbf{1}$	0	0	$\mathbf{1}$	0	$\mathbf{1}$	0	0	0
9	0	$\mathbf{1}$	0	1	0	$\mathbf{1}$	0	0	0	0
10	0	0	$\mathbf{1}$	0	0	$\mathbf{1}$	0	0	0	0

All

A Tour through the Tree Visualization Zoo

+ node-link diagram
+ layered
+ indentation
+ enclosure

Node-link tree diagrams

- Nodes are distributed in space, connected by straight or curved lines
- Typical approach is to use 2D space to break apart breadth and depth
- Often, space is used to communicate hierarchical orientation

Radial Tidy Tree
https://bl.ocks.org/mbostock/4063550

Reingold-Tilford algorithm for drawing node-link diagrams

- Bottom-up recursive approach
- Repeatedly divide space by leaf count
- For each parent, make sure subtrees are drawn
- Make smarter use of space
+ Maximize density and symmetry
+ Clearly encode depth level
+ No edge crossings
+ Pack subtrees as closely as possible
+ Centers parent over subtrees

Layered (adjacency) diagrams

- Space-filling variant of node-link diagrams
- Nodes drawn as solid areas (arcs or bars)
- Placement relative to adjacent nodes reveals place in hierarchy
- Root node at top / center
- Leaf nodes at bottom

Indentation

- Used to show parent / child relationships
- Potentially a lot of scrolling!

Enclosure (treemap) diagrams

- Encodes tree structure using spatial enclosure
- Enclosure indicates hierarchy
- Benefits:
- Provides single view of entire tree
- Easier to spot small / large nodes

The treemap was introduced by Ben Shneiderman in 1991.

It uses containment, rather than adjacency, to represent the hierarchy.

Enclosure diagrams

Enclosure diagram (treemap)

Potential problem: is it easy for you to visually discern the depth of the tree?

'What Do You Think Is the Most Important Problem Facing This Country Today?'

By GREGOR AISCH and ALICIA PARLAPIANO FEB. 27, 2017
Since the presidency of Franklin D. Roosevelt, the Gallup polling organization has asked Americans an open-ended question: "What do you think is the most important problem facing this country today?"

As Donald J. Trump prepares for his first major address to the nation on Tuesday, he has a unique set of issues to tackle. But there is not one singular issue that is dominating the American consciousness.

January 2015
The biggest problems cited by Americans this month:

Effective Graph Drawing (return at 12:40p EST)

How do we deal with dense graphs?

How do we draw graphs in an aesthetically-pleasing way?

How do we deal with drawing big graphs?
$\Theta O \theta$ Gephi, an open source graph visualization and manipulation software
IV + Thnttp//gephiorgl

c) Q- hookes law

The Open Graph Viz Platform
Gephi is an interactive visualization and exploration plattorm for all kinds of networks and complex
graphs.
Runs on Windows, Linux and Mac os x . Gephi is open-source and free.

Learn More on

- Download FREE

Gephi 0.8 bera
Featurestark screenshots
applications

\checkmark Link Analysis: revealing the undertying
particurase in in scale fictioe networks.
V Social Network Analysis: easy creation of
social dotac connectors to map community Social data comnectors to map community
organizations ond small-world networks.
\checkmark Biological Network analvsis: representing
patterns of biological data.
$\checkmark \begin{aligned} & \text { Poster creation: sciensific } \\ & \text { hi-quality Printable maps. }\end{aligned}$

Gephi 0.8 beta has been released! Discover a new Preview and dynamic features, start building commercial applications with the

new open source license.
new dymict
66 Like Photoshop ${ }^{\text {m" }}$ for graphs.

Latest news■

aweekly news
Annual report 2011
Gephi:Neotid presentation at FOSDEM

- Gephi meet-up sa in Berifin
- Gephi meet-up 24 in Berlin

I Introducing the Gephi Pughns Bootcamp

PAPERS


```
+ node-link layouts
+ Reingold-Tilford (dis cussed previously)
```

+ force-directed layouts
+ adjacency diagrams
+ aggregate views
+ Motif glyphs
+PivotGraph

How do we draw graphs effectively?

Primary concern: the spatial layout of vertices and edges

Often (but not always) the goal is to effectively depict the graph structure

- Connectivity, path-following
- Network distance
- Clustering
- Ordering (e.g., hierarchy level)

Visualizing the Reliability and Security of the North American Power Grid System in 2050
Work done for the National Renewable Energy Laboratory

Node-link diagrams (again)

Reingold-Tilford algorithm
PROS:

- understandable visual mapping
- shows overall structure, clusters, paths
- flexible, many variations / layouts

CONS:

- most trivial algorithms are $>O\left(n^{2}\right)$
- not good for dense (very connected) graphs

Adjacency Diagram

PROS:

- great for dense graphs
- visually scalable
- can spot clusters

CONS:

- row order affects what you can see
- abstract visualization

- hard to follow paths

Force-directed graph drawing

Physical-based model (attractive \& repulsive forces)
PROS:

- aesthetically-pleasing layout
- interactive (pull \& drag!)
- automatic \& flexible layout

Interactive force-directed layouts (above) Les Mis dataset (below) Voting network

CONS:

- forces are computationally expensive $\sim O\left(n^{2}\right)$
- doesn't work well on dense graphs

Better* interactive force-directed layouts

* I'm biased because this is my own research project $)$

Clustering (attracting) nodes

Detangling (repulsing) nodes
we add additional interactive forces, based on the underlying structure of the graph (e.g., vertex distance), to cluster and/or detangle the layout

Better* interactive force-directed layouts

* I'm biased because this is my own research project \odot

Les Mis dataset

Voting network

Benefits seem clear
Any potential limitations or problems to this approach?

Some other graph drawing techniques

Recap: graph visualizations

Trees

- indentation
- simple, effective for small trees
- node link and layered
- looks good but needs space
- enclosure (treemaps)
- great for size related tasks but suffer in structure related tasks

Graphs / networks

- node link diagram
- familiar, but problematic for large /dense graphs
- adjacency matrix / diagram
- efficient but abstract
- aggregated views
- not always possible, not always appropriate

Closing remarks

No best graph visualization technique

- Need a good spatial layout for vertices / edges
- We like aesthetically-pleasing graphs!
- Maintain \& highlight the structure of the graph
- Good for analysis
- Reduce visual clutter (minimize overlapping edges)
- Computationally efficient / feasible

We didn't even cover analyzing graphs / networks!

- We like visualizing graphs so we can analyze them ©
- Lots of graph analysis techniques
- Complementary graph visualization + analysis systems / tools

In-class activity

Exercise: draw the following graph data as an adjacency matrix \& node-link diagram
$\mathbf{V}=\{1,2,3,4,5\}$
$\mathbf{E}=\{(1,2),(1,3),(2,3),(3,4),(4,1),(5,1)\}$
Edge weights = \{(1), (7), (4), (2), (2), (1)\}
Node Classes $=\{A, B, A, A, B\}$

- Draw an adjacency matrix with any appropriate visual encodings
- Draw a node-link diagram in two ways:

1. Bad layout
2. Aesthetically-pleasing layout

- Be creative with your attribute encodings!

Zoom instructions

- Take a screenshot of this slide!
- In breakout rooms, individually and/or collaboratively draw your graphs
- Answer the questions together for each person in the group
Think about the following questions:

1. What are the advantages / disadvantages to these methods? Which do you prefer?
2. Why is your bad layout 'bad', and your good layout 'good'?

Activity wrap-up

Activity wrap-up

$V_{\text {id }}$	$V_{\text {class }}$				
1	A		Edges Source	$E_{\text {Target }}$	$E_{\text {Weight }}$
2	B	1	2	1	
3	A	1	3	7	
4	A	2	3	4	
5	B	3	4	2	
		4	1	2	
		5	1	1	

7
6
5
4
3
1
1

Tools for graph analysis

Network Analysis Tools

- Gephi - an interactive graph analysis application
- NodeXL - a graph analysis plug-in for Excel
- GUESS - a combined visual/scripting interface for graph analysis
- Pajek - another popular network analysis tool
- NetworkX - graph analysis library for Python
- SNAP - graph analysis library for C++

Want to talk more about graphs, research, and/or graduate school?
Email me! Ashley.Suh@Tufts.edu

