SEARCHING IN GRAPHS

We already did the most basic form of search: (neighbor query)

In general, given a vertex \(s \),
we want to locate some vertex \(t \),
find a path in \(G \)
or we want to visit all vertices,
in a “local” organized manner.
BREADTH FIRST SEARCH (BFS) - The polite way to search

Start by checking if \(t \) is a neighbor of \(s \).

\[\Rightarrow \text{look one step away from } s. \]

If yes, done. If not, then check all neighbors-of-neighbors

\[\Rightarrow \text{one step from each.} \]

Either done, or repeat (dig deeper) ... only on unexplored neighbors!
Search follows a tree pattern.

BFS extends depth by 1 at all possible nodes

(always processing nodes closer to s first)

(each node is processed only once (e.g. u))
If s and t are in the same connected component, then the search will find t.

Even better, BFS will find the shortest path $s \rightarrow t$.
(prove by contradiction)

time? (supposing we can tell instantly whether a vertex is "new") $O(|V|)$ (in component of s)
Algorithm:

1. mark s

2. While Q not empty,
 - remove first vertex v_f in Q
 - check $\text{Adj}[v_f]$: $u_1, ..., u_p$
 - if $u_i \neq t$ & unmarked
 - put u_i in Q.
 - mark u_i
- mark s & put in Q.
- depth(s) = 0

While Q not empty,

 $x = \text{dequeue}(Q)$

 check Adj[x]: $u, ..., u_p$

 if u_i is unmarked
 mark u_i & put in Q
 depth(u_i) = 1 + depth(x)
 parent(u_i) = x; $u_i \rightarrow \text{child}(x)$

 if $v_i = t$ done
 if $v_i \neq t$
 mark as visited
 put in queue $: Q$

(0) mark s

(1) check Adj[s]: $v_1, ..., v_k$

 if $v_i = t$ done

 if $v_i \neq t$
 mark as visited
 put in queue $: Q$

(2) While Q not empty,

- remove first vertex v_f in Q
- check Adj[v_f]: $u_1, ..., u_p$

 if $u_i = t$ done

 if $u_i \neq t$ & unmarked
 put u_i in Q.