
Hook: An Embedded Domain-Specific Language for Fusing
Implicit Interactions to Explicit Event Handlers∗

TOMOKI SHIBATA, Tufts University, USA
MATTHEW AHRENS, Tufts University, USA
ROBERT J.K. JACOB, Tufts University, USA

Emerging physiological sensing technologies are leading to an interaction design paradigm—namely implicit
interactions—in which computers have the ability to implicitly perceive and respond to the physiological
understandings of their users. However, a noticeable challenge remains in integrating such implicit interactions
into a conventional event-based interactive system, which typically responds to the user’s explicit events.
(e.g., key presses, mouse clicks, etc.) The challenge is due to multiple input sources of different types, and, by
extension, demands programmers to be responsible for prescribing how interactions of the two different types,
implicit and explicit, interfere with each other. To address this challenge, we introduce a domain-specific
language (DSL), Hook, that allows programmers to declaratively express when to perform implicit interactions
with respect to desired explicit ones and how to fuse the computational effects of the interactions in a modular
way. The Hook language treats interactions as a first-class abstraction and provides three types of fusion
strategies, which assist programmers in gluing the two types of interactions together. This paper describes
an implementation of the Hook language as a DSL embedded in Haskell and formalizes the language as a
computational model for future replication and extension. We also demonstrate the utility of the language
through three case studies, each of which implements an implicit interaction that extends behaviors of a
published interactive system. Lastly, we discuss limitations of the language in its current state and how the
language could further aid programmers to achieve separation of concerns while maintaining algorithmic
precision in implementing a complex combination of different types of interactions.

CCS Concepts: • Human-centered computing → Human computer interaction (HCI); Systems and
tools for interaction design; • Software and its engineering→ Domain specific languages.

Additional KeyWords and Phrases: Implicit User Interfaces, Implicit Interactions, Explicit Interactions, Domain-
Specific Languages, Metaprogramming, Template Haskell, Haskell, Hook

1 INTRODUCTION
Emerging physiological sensing technologies provide a multitude of data about the user’s physi-
ological status. Such data combined with advanced computational capabilities, such as machine
learning techniques, opens up a door for designing interactive systems that are better aware of
their users. However, introducing an additional input source to an existing interactive system
often increases complexity. In particular, this is the case where the type of additional input is
heterogeneous, compared to other conventional input types. (For example, imagine user status as
an input in contrast to key press events.) As a result, the problem calls for programmers to take on
greater responsibility for managing this increased complexity in their implementation.
To illustrate this challenge concretely, let us consider the following scenario. Suppose a pro-

grammer is implementing a small Graphical User Interface (GUI) application that responds to two
different types of inputs: the user’s explicit mouse actions, namely events, and implicitly perceived
user’s busyness, namely user status information. This application displays a graphical object on
the screen. The object is initially painted in black; the object color changes to cyan when the user

∗(Draft version. 2020)

Authors’ addresses: Tomoki Shibata, Tufts University, Medford, MA, USA, tshibata@cs.tufts.edu; Matthew Ahrens, Tufts
University, Medford, MA, USA, mahrens@cs.tufts.edu; Robert J.K. Jacob, Tufts University, Medford, MA, USA, jacob@cs.
tufts.edu.

2 Shibata, Ahrens, and Jacob

presses the mouse; and it changes back to black when the user releases the mouse. Simultaneously,
the object color changes by increasing the value of the red channel and decreasing the value of the
green channel when the user is found to be busier.
While there are many ways to encode such interactive behaviors, this scenario introduces two

competing desires in the programmer’s mind. First, when managing multiple input sources, the
programmer wishes to write maintainable code by making it small and modular. Second, the
programmer must also ensure all computations responding to inputs result in the expected program
states. In other words, the programmer ends up needing to force themselves to choose one of the
following approaches: a) prioritizing “separation of concerns” [7] by putting a logical boundary
between how the application responds to user’s explicit events and how it does to implicitly
perceived user status information; or b) prioritizing the algorithmic precision of interactive behaviors
by employing compound conditionals to list procedures that cover all possible input combinations.

To expose the pros and cons of both approaches, Figure 1 implements the example GUI application
using JavaScript-like syntax, in which the interactive behaviors are represented as handler logic.
As for the approach a), the functions p and q define the event handler logic and user status handler
logic, respectively. It achieves separation of concerns, and its benefits include code reuse of the

const Events = [MouseDown, MouseUp, ...];

let world = {..., red : 0 , green : 0 , blue : 0, ..., x : 0, ...};

let user = {busy : true};

let p =

function(event){

if(event == MouseDown){

world.red = 0;

world.green = 255;

world.blue = 255;

}else if(event == MouseUp){

world.blue = 0;

world.green = 0;

world.red = 0;

}else{

... //for other events

}

};

let q =

function(user){

if(user.busy == true){

world.red = 255;

world.green = 0;

}

};

let r =

function(event, user){

if(event == MouseDown

&& user.busy == true){

world.red = 255;

world.green = 0;

world.blue = 255;

}else if(event == MouseDown

&& user.busy != true){

world.red = 0;

world.green = 255;

world.blue = 255;

}else if(event == MouseUp){

world.red = 0;

world.green = 0;

world.blue = 0;

}else{

... //for other events

}

};

Fig. 1. Interactions as handler logic written in a JavaScript-like syntax for the example GUI scenario. The

world captures the application state, and the (red, green, blue) represents the color of the object on the

screen. The user describes the user status information, which indicates whether the user is busy or not in

this example.

Hook: An Embedded Domain-Specific Language for Fusing Implicit Interactions to Explicit Event Handlers 3

handlers improving modularity. However, this approach does not explain how these handlers are
synchronized, which implies multiple possible results based on the application run-time. As for the
approach b), the function r precisely combines both handler logics into a single logic. This approach
ensures the algorithmic precision by specifying exactly when and how the two handler logics
interact to produce a single, final outcome. However, the procedure to respond to any particular
input event ends up being distributed over every possible user status. This distribution often forces
the programmer to implement boilerplate logic redundantly.

While common abstractions from general-purpose programming languages allow programmers
to choose a trade-off, we argue that there should exist a supportive tool for programmers to
achieve separation of concerns without giving up algorithmic precision when writing an inter-
active system that handles both explicit user events and implicitly perceived user status information.

To that end, we designed a domain-specific language (DSL), named Hook, that allows program-
mers to express event handler logic and user status handler logic separately and compose them to
produce the single handler that the application run-time can use. The Hook language comprises
the two key ideas: (1) the abstraction layer to enclose the handler logics in the concept of explicit
and implicit interaction, and (2) the fusion strategies to precisely glue the results of computations
expressed as explicit and implicit interactions.
Figure 2 illustrates how the programmer would implement the same example GUI application

using the Hook language. The code in the quasi-quotes, [hook| ... |], encodes the interactive
behaviors using the primitives of the language. The expression bound to the variable e uses the

data Event = MouseDown | MouseUp | ...

data World = World { ..., red :: Int, green :: Int, blue :: Int

, ..., x :: Int, ...}

data User = User { busy :: Bool }

[hook|

e = explicit world where

MouseDown -> do { returnIO world { red = 0, green = 255, blue = 255 } }

| MouseUp -> do { returnIO world { red = 0, green = 0, blue = 0 } }

| _ -> do { returnIO world } --for other events

i = implicit world where

User { busy = True } -> do { returnIO world { red = 255, green = 0 } }

| _ -> do-nothing

c = (after e

handles MouseDown

do i

then merge)

|]

Fig. 2. Interactions expressed with the Hook language for the same example GUI scenario. The explicit

interaction, bound to e, encloses the event handler logic. The implicit interaction, bound to i, encloses the

user status handler logic. The composed interaction, bound to c, is the handler that will be registered to the

eco-system that the GUI application runs on.

4 Shibata, Ahrens, and Jacob

explicit keyword to enclose the event handler logic in the concept of explicit interaction, and
it modifies the application state, world, based on explicit user input events. (e.g., mouse events
produced by the user.) Similarly, the expression bound to i uses the implicit keyword to enclose
the user status handler logic in the concept of implicit interaction, and it modifies world based on
implicitly perceived user status information. (e.g., the user’s current busyness.) Together, these
primitives e and i achieve the separation of concerns that the functions p and q achieved in Figure 1.

To also achieve algorithmic precision, the expression bound to c is composed of e and i, in which
when and how i runs with respect to e are precisely declared by the keywords after, handles,
and merge. First, the after keyword specifies that the implicit interaction, i, modifies world after
the explicit interaction, e, does. Then, the handles keyword followed by the MouseDown specifies
that i modifies world only when e handles MouseDown events. Lastly, the merge keyword specifies
that the modifications made by e and i are glued together using the merge strategy—one of the
three fusion strategies that the Hook language provides. The later sections cover this composition
process in more detail and show additional variations.

This paper contributes to methods of integrating implicit interactions into conventional interac-
tive systems by providing: 1) A set of abstractions that help programmers to describe explicit and
implicit interactions as parameterized “world transformation” [9] functions; 2) An implementation
of the Hook language, as an embedded DSL in Haskell, that allows programmers to express explicit
and implicit interactions independently and specify their compositions declaratively; 3) The com-
putational model of the Hook language compiler for future language replication and extension;
and 4) The case studies that demonstrate how the Hook language assists programmers in achieving
both separation of concerns and algorithmic precision.

2 RELATEDWORK
2.1 Explicit and Implicit Interactions
Referring to the field of Human-Computer Interaction (HCI), Hornbæk and Oulasvirta [20] state
that “the term interaction is field-defining, . . .” There is a substantial body of work on the design
of explicit interactions. This work includes Direct Manipulation [55], and, for example, Graphical
User Interfaces (GUI) appear widely in our daily life. Meanwhile, researchers explore other forms
of interactions beyond Direct Manipulation as more sensing technologies become available. One of
the forms is an interaction design that concerns environmental contexts as a source of input. For
example, a location-aware computer system, discussed in the context of ubiquitous computing [60],
and context-enabled applications [47] are such examples. By extension, Schmidt [48] introduces
the term “implicit human-computer interaction” for such the design and defines it as “an action
performed by the user that is not primarily aimed to interact with a computerised system but which
such a system understands as input.”
Aligning with recent works providing an overview [13], introducing a framework [27], and

discussing challenges [50] in the design of implicit interactions, we echo that implicit and explicit
interactions are different in nature. We consider that explicit interaction involves a process where a
human explicitly sends a command (or equivalents) to a computer and then the computer responds
to it. Meanwhile, implicit interaction involves a process where, while a human and computer are in
an interactive relationship, the computer implicitly perceives thing related to the human, treats it as
input, and then responds to it. The word “implicitly perceive,” which we will use through this paper,
implies that the computer ideally demands no effort from the human when understanding the thing
as input and that the human is unconscious of producing the input. In this sense, cognition-aware
computing [3] and some Brain-Computer Interfaces (BCI) works would be user interface designs
that involve implicit interactions. For example, Brainput [57] implicitly measures the user’s “brain

Hook: An Embedded Domain-Specific Language for Fusing Implicit Interactions to Explicit Event Handlers 5

activity patterns,” utilizes them as input to a human-robot interactive system, and then controls the
autonomy level of robots. Similarly, BACh [62] implicitly measures the user’s “cognitive workload,”
leverages it as input, and then controls the difficulty levels of tasks in learning contexts. On the
other hand, if a BCI translates brain activities that the user intentionally created to commands
for performing computer tasks (e.g., typing [41]), then it would be a design involving explicit
interactions.
While Schmidt [48] generalizes the contexts and proposes the “situational context,” our work

further expands it to include implicitly perceived user status information—in particular physiological
understandings of the user—and treats it as a viable input for an interactive system.

2.2 Formal Specifications
In the field of HCI, formal specification becomes increasingly important as novel user interface
designs emerge. There is considerable work on the methods for formally describing behaviors of
interactive systems. This work includes state diagram based approaches, such as network definition
language [37], terminal state transition diagram [42], a language for visual programming [24],
statecharts [15], and grammar based approaches, such as action languages [46], SYNGRAPH
system [40], BNF-based notations [23], and so on.
Besides, with abstraction techniques seen in software engineering, the formal specification

research in HCI introduces User Interface Management System (UIMS) [28], many of which provide
higher-level abstractions specific to definite purposes and aim to facilitate software developments.
For example, ALGAE [12] is a UIMS that abstracts and specifies events and event handlers for
dialogues, and Sassafras [18] comes with a language for specifying concurrent dialogues. MIKE [39]
is also a UIMS that describes “interactive interface” using data types of the application. Meanwhile,
UIMS is not limited to dialogue-style interfaces. For example, some work introduces the concept of
constraints to specify relationships among data and views [2, 19]. Garnet [35] has its own constraint
system and uses one-way constraints to specify relationships among objects and their interactive
behaviors. Also, UAN [16] concerns “the behavioral aspects” of interactive systems and provides
notations to describe a series of user actions.

The formal specification research also extends to non-WIMP user interface designs as hardware
and software architectures advance. Some work aims to capture characteristics of non-WIMP
including “continuous interaction between user and computer via several parallel, asynchronous
channels or devices” [25]. For example, PMIW [26] combines “data-flow” and “token-based event
handlers” to describe interactions found in a virtual environment. HephaisTK [8] concerns the
synchronization issue in a combination of Tangible User Interfaces and other modalities and
discusses fusion techniques. Hasselt UIMS [5] concerns multimodal interactions and provides an
integrated system that combines events from multiple input modalities and specifies handlers for
“composite events.”

Past work suggests that providing abstractions that suit specific interaction types facilitates user
interface design, while the level of abstraction is often a trade-off with the level of expressiveness.
Our work considers “interaction” as the highest level of abstraction and utilizes it as the lens to
capture interactive behaviors involved in user interface designs. In particular, our work defines
“interaction” as a first-class primitive in the proposed language and studies a method to compose
two types of interactions (explicit and implicit) derived from the “interaction” abstraction.

2.3 Domain-Specific Language (DSL)
In the field of HCI, the term DSL covers the concept of User Interface Description Language (UIDL).
The foundation of UIDL lies within the development of UIMS; therefore, some work on the designs
of UIDL shares parts of the aims UIMS sets forth. This work includes model-based user interface

6 Shibata, Ahrens, and Jacob

designs, some ofwhich aim to copewith the increasing diversity in input/outputmodalities and often
leverage the form of XML to describe specifications and constructs of user interfaces. For example,
USIXML [30] describes models related to various levels of user interface design processes and
makes user interface designs “device-, platform-, modality-, and context-independent.” MARIA [43]
covers the domain of web services, whereas PUC [38] covers interfaces for remotely controlling
devices. Not limited to XML-based techniques, ICOs [36] provides “Petri-net-based” notations. In
addition, other forms of modeling include such as: Interactors in Garnet [34] model input event
handling using Lisp-family syntax; Schwarz et al. [49] model “probabilistic events”; Proton [29]
uses regular expressions for touch gestures; and ProbUI [4] defines declarative expressions along
with “probabilistic gesture models.”

UIDLs in HCI offer various levels of formalism in modeling user interfaces, yet it does not
necessarily imply they are programmable per se. Meanwhile, in the area of Programming Language
research, a DSL is often designed to be more restrictive than general-purpose programming lan-
guages but better to optimize, formalize, and prove properties of programs written in that DSL.
For example, PADS [11] is a DSL for specifying, parsing, and pretty-printing ad-hoc file formats.
Forest [10] is also a DSL for specifying and traversing ad-hoc file systems. Moreover, DSL could
be stand-alone. For example, Elm [6] is a programming language that is domain-specific to inter-
active web applications and provides an eco-system including design patterns, syntax, compiler
(transpiler to JavaScript code), and run-time. Djnn/Smala [31] proposes “Interaction-Oriented
Programming” and provides syntax and semantics to express relationships between “events and
reactions.” Flapjax [33] provides a compiler (transpiler to JavaScript code) and adds “reactive se-
mantics” to JavaScript. Similarly, Mobl [17] provides syntax and a compiler to unify “design, styling,
data modeling, querying and application logic” in mobile web application developments.

While the Functional Reactive Programming (FRP) paradigm (e.g., “signal” in Elm, “event stream”
in Scala.React [32], etc.) captures discrete events coming from multiple input sources and allows
programmers to merge them, our proposed language captures handler logics using the “interaction”
abstraction and helps programmers to glue the computational effects of the two types of interactions,
each of which responds to a different type of input.

3 THE HOOK LANGUAGE
The Hook language is a programming language for expressing explicit and implicit interactions
and their compositions; it consists of a surface syntax, run-time libraries, and a compiler. In this
section, we focus on the surface syntax of the language and describe our implementation1 of the
Hook language as an embedded DSL in Haskell.

3.1 Abstracting Interactions as World Transformation Functions
The benefit of using the Hook language is that programmers can express two types of interactions,
explicit and implicit, independently and can compose them declaratively. For this, the Hook
language provides the abstraction layer where programmers can extract interactions as a data type
and compose them via a higher-order function. In other words, interaction is a first-class citizen
in the Hook language, and is the unit of programmers’ interest. The following code fragment is
the declaration of Interaction type in our host language, Haskell, and is provided as a part of the
Hook language run-time libraries.

data Interaction kind user event m world

The Interaction type makes it possible to represent interactive behaviors of arbitrary applica-
tions by exposing application-specific information as type variables. This means that when using
1The code for this implementation is provided at (URL).

Hook: An Embedded Domain-Specific Language for Fusing Implicit Interactions to Explicit Event Handlers 7

the Hook language, the programmer will be responsible for implementing a concrete type for
each of the five type variables per application. For example, the kind type variable specifies the
kind of this interaction, and it will be either Explicit or Implicit in this research. The event

and user type variables parameterize the explicit user events and implicitly perceived user status
information, respectively, that this interaction responds to. The m type variable exposes application-
specific contexts that could involve side-effects. For instance, m may be IO, State, or even their
combination, for monadic (e.g., sequence-dependent) computations, or it may be Identity for pure
computations. Lastly, the world type variable parameterizes the application state. For example,
suppose a programmer is implementing a GUI application involving a counter. Then, world for
this application will include fields for the current count, the appearance of the counter, and so on.

The Interaction type also helps us to formally define the terms “explicit interaction” and “im-
plicit interaction” in the context of this research. As the foundation, we first argue that “interaction”
can be explained as a process that takes input and the current (application) state and then modi-
fies the (application) state based on the given input within a specific context. Needless to say, it
assumes humans will be a source of inputs and perceive the updated state. To be specific, using the
vocabularies from the Interaction type, we define “interaction” as an anonymous function of type
(input -> world -> m world). This type signature discloses that it is a function taking input and
the (current) world and then returning m world, in which the resulting world may include some
modifications made in the context m. Using the “interaction” as the umbrella term, we then define
that “explicit interaction” is an “interaction” where input ∈ event and that “implicit interaction” is
an “interaction” where input ∈ user.

Lastly, we refer to the modification of the application state—represented as (world -> m world)
in the “interaction”—as world transformation function, whose idea stems from the functional IO
programming [9]. Leveraging this set of abstractions, programmers now can describe explicit
interactions as world transformation functions parameterized over explicit user events and implicit
interactions as ones parameterized over implicitly perceived user status information. Next, we
present how programmers would express the two types of interactions using the syntax of the
Hook language.

3.2 Expressing Interactions
As stated, explicit and implicit interactions are parameterized world transformation functions in
the Hook language. Hence, expressing an explicit interaction is to describe how explicit user events
change the current application state; similarly, expressing an implicit interaction is to describe how
implicitly perceived user status information change the current application state.

Figure 3 shows the grammar of the Hook language, and the following example implements one
explicit and one implicit interaction using the syntax of the Hook language. In this example, the
explicit interaction is bound to the variable e and the implicit one is bound to the variable i.

e = explicit (World color text) where

MouseDown -> do { returnIO (World Red text) }

| MouseUp -> do { returnIO (World Black text) }

| (StdIn words) -> do { returnIO (World color (text ++ words)) }

i = implicit (World color text) where

(Happy True) -> do { returnIO (World color (text ++ ":)")) }

| (Happy False) -> do { returnIO (World color (text ++ ":(")) }

The definition of the explicit and implicit interaction begins with the keyword, explicit and
implicit, respectively. Then, the keyword is followed by the pattern expressing the application

8 Shibata, Ahrens, and Jacob

Exp ::= When Exp Condition do Exp How
| 𝑥
| explicit 𝑝 where {𝑝 -> 𝑒 |}+
| implicit 𝑝 where {𝑝 -> 𝑒 |}+
| Exp and Exp
| Exp or Exp
| it

𝑝 ::= <HOST LANGUAGE PATTERN>
𝑒 ::= <HOST LANGUAGE EXPRESSION>

| do-nothing

Decl ::= 𝑥 = Exp

When ::= before | after

Condition ::= handles 𝑝 | 𝜖

How ::= then merge

| then overwrite

| then tweak

| 𝜖

Fig. 3. The grammar describing well-formed programs written in the Hook language. The programs are

a collection of type level declarations (Decl), each of which could be bound to an identifier 𝑥 . Patters 𝑝

and expressions 𝑒 are provided by the host language Haskell and defined by the Template Haskell [52]

metaprogramming library.

state, namely world patterns. In this example, (World color text) is the one, and it reveals that
the world has two fields, color and text, and brings those variables into scope.

The where keyword, following the world pattern, indicates the beginning of the pattern matching,
and each case match is a pair of pattern and world transformer delimited by the right arrow, ->. In
the explicit interaction, the pattern ought to express explicit user events, namely event patterns.
In this example, each of MouseDown, MouseUp, and (StdIn words) is an event pattern. Similarly, in
the implicit interaction, the pattern ought to express implicitly perceived user status information,
namely user status patterns. In this example, each of (Happy True) and (Happy False) is a user
status pattern. Lastly, the world transformer, following the ->, describes how the given world will
be modified. For instance, in e, the color part of the world will change to Redwhen the user presses
the mouse. For instance, in i, the text part of the world will change by appending a smiley face to
the text when the user is happy.

3.3 Composing Interactions
In the Hook language, composing interactions refers to producing a new interaction based on
two other interactions. (See also implications in Discussion section.) For this, the Hook language
provides a special syntax—in fact the namesake of the language—that guides programmers to hook
an implicit interaction into an explicit one, which results in producing a new explicit interaction.
The syntax is designed to express the internal behavior of the newly composed interaction and
requires programmers to declare when to perform the given implicit interaction concerning the
given explicit one and how to fuse the computational effects of the two interactions.

The following example exhibits two composed interactions, c1 and c2, where the variable e and
i refers to the explicit and implicit interaction presented above.

c1 = (before e do i)

c2 = (after e do i)

The definition of the composed interaction begins with either the before or after keyword.
Then, the keyword is followed by the explicit interaction, the do keyword, and then the implicit
interaction. As it sounds, the before and after keyword declare when to perform the implicit
interaction with respect to the explicit interaction. For example, c1 is a composed interaction that
behaves in the way that “before running e, (do) run i.” This means that given the current world,

Hook: An Embedded Domain-Specific Language for Fusing Implicit Interactions to Explicit Event Handlers 9

i will first modify the given world, and then e will modify the world modified by i. Similarly, c2
is a composed interaction that behaves in the way that “after running e, (do) run i.” This means
that given the current world, e will first modify the given world, and then i will modify the world
modified by e. Recall that one explicit interaction can handle more than one event pattern. For
instance, e will respond to the three events, MouseDown, MouseUp, and (StdIn words). As a result,
in c1 and c2, whenever e runs on any of the three events, i also runs.

The Hook language has the handles keyword for narrowing down when to perform the implicit
interaction based on event patterns of the explicit interaction. In the syntax, the handles keyword
is always followed by one event pattern, and those are placed between the explicit interaction and
the do keyword, when used. The following example exhibits three composed interactions, c3, c4
and c5, using the keyword; therefore, i runs only when does e run on the specified event.

c3 = (after e handles MouseDown do i)

c4 = (after e handles (StdIn words) do i)

c5 = (after e handles (StdIn "\n") do i)

As in, c3 is a composed interaction, where i runs after e handles MouseDown but doesn’t when
e handles any other events. In c4, i runs only when does e respond to (StdIn words), which
represents key press events and words captures characters typed. In addition, the event pattern,
following the handles keyword, can be more specific than ones from the explicit interaction. For
instance, c5 is still well-formed and is more specific than c4 because "\n" (a newline) is more
specific than words, referring to any characters. Note that when the character typed is not "\n", c5
can still respond to (StdIn words) events in the same way how e does.
So far, the syntax explains when to run the implicit interaction concerning the explicit one.

Meanwhile, the following example exhibits three composed interactions, c6, c7 and c8, that declare
not only the application order of the two interactions but also how to fuse the effects of the two
interactions.

c6 = (after e handles MouseDown do i then merge)

c7 = (after e handles MouseDown do i then overwrite)

c8 = (after e handles MouseDown do i then tweak)

To glue the two interactions together, the Hook language provides the three types of fusion
strategies—merge, overwrite, and tweak. (See the details below.) As seen in this example, each of
the merge, overwrite, and tweak keywords directly corresponds to the name of fusion strategies
and declares which one to use. In the syntax, all the three follow the then keyword, which follows
the implicit interaction. As a side note, if no fusion strategy is specified, then the Hook language
compiler chooses the merge strategy as the default behavior. That is, the composed interaction c3

and c6 behave in the same way.

Fusion strategy details. The fusion strategies are methods to conclude the final outcome of the
composed interaction based on the computational results of the two interactions ran internally. The
fusion strategies recognize which interaction changed which fields of the world and then decide
which of the changes, the two interactions made, will persist in the final outcome.

There are three types of fusion strategies and each of them employs a unique way to produce its
outcome. The merge strategy keeps all changes made by the first and second interactions. (Recall
that the two interactions run in the specified order.) This strategy is the most general form of fusion
and is equivalent to function composition. On the other hand, the overwrite strategy keeps only
changes made cooperatively by the first and second interactions and ones made solely by the second
interaction, yet it throws away changes made solely by the first interaction. The intuition behind
this strategy is that the second interaction overwrites the effects of the first interaction. Similarly,

10 Shibata, Ahrens, and Jacob

Fig. 4. Venn diagrams illustrating the fusion strate-

gies. Left: The fields of the “world” are categorized

into four groups. Right: Shaded groups include the

effects that persist in the resulting world when using

that particular fusion strategy.

Table 1. The possible outcomes from using the

three fusion strategies in Figure 2.

Fusion
Strategy

channel

red green blue (color)

merge 255 0 255 magenta
overwrite 255 0 0 red
tweak 0 0 255 blue

(do-nothing) 0 255 255 cyan
Note: do-nothing case is for when the user
is not busy; thus, no fusion strategy is applied.

the tweak strategy keeps only changes made cooperatively by the first and second interactions
and ones made solely by the first interaction, yet it throws away changes made solely by the second
interaction. The intuition behind this strategy is that the second interaction tweaks the effects
of the first interaction. Note that in all the three fusion strategies, changes made by the second
interaction may depend on changes made by the first interaction, regardless of whether they persist
in the final outcome.
To make the descriptions transparent, Figure 4 uses Venn diagrams to visualize the notion of

“which changes will persist.” First of all, Figure 4 (Left) shows the premise that after running the
two interactions in the specified order, each field of the world will always belong to one of the
following four groups: G1 if the field was changed only by the first interaction; G2 if the field was
changed by the first interaction and then by the second interaction; G3 if the field was changed
only by the second interaction; and G4 if the field was changed by none of the first and second
interactions. Using this grouping, Figure 4 (Right) illustrates the possible outcomes when applying
the three fusion strategies. In short, applying each of the merge, overwrite, and tweak strategies
results in producing the world that preserves effects made to fields belonging to (G1, G2, and G3),
(G2 and G3), and (G1 and G2), respectively.

The fusion strategies empower programmers to take control of the field-level changes made
to the world. To illustrate the benefit of using the fusion strategies, let us consider the example
scenario presented in Introduction section once again. Recall the functions p, q, and r shown in
Figure 1. Because the value of the green channel in r corresponds to the result from q and not p, we
could guess that the programmer subtly implied that the user status information is handled after
the event is done and merged their outcomes. However, this intention is only clear in the mind
of the programmer and is not always apparent in the implementation. Furthermore, in case the
programmer needed to change the logic that r currently employs, the programmer would probably
need to re-implemented r from scratch. In contrast, recall the implementations of e, i, and c shown
in Figure 2. In the Hook language, the syntax of the composed interaction directly explains the
programmer’s intention on how the implicit and explicit interactions interfere with each other.
Moreover, changing the logic for composing interactions can be accomplished simply by choosing
one of the other fusion strategies.
To find the effects of changing the fusion strategy, Table 1 shows the possible outcomes when

c in Figure 2 employs each of the three fusion strategies, and it reveals that each case results in
producing a different outcome in this example scenario. Also, Figure 5 illustrates the run-time

Hook: An Embedded Domain-Specific Language for Fusing Implicit Interactions to Explicit Event Handlers 11

behavior of the composed interaction c that employs the overwrite strategy instead of the merge.
Assume that the user of the GUI application pressed the mouse while the user was busy. Assume
also that the initial world (w0), representing the current application state, contains the color black
with initial fields set to 0. Following the definition of c, e first receives w0 and changes the green
and blue fields to 255, which results in w1. Then, i receives w1 and changes the red field to 255 and
the green field to 0, which results in w2. Lastly, the overwrite strategy considers w0, w1, and w2 to
produce the resulting world, w3. By applying the overwrite strategy, w3 preserves the effects made
to the red and green fields but not ones made to the blue field; that is, i overwrites the effects of e.

Fig. 5. The run-time behavior of the composed interaction shown in Figure 2 that employs the overwrite

strategy instead of the merge.

3.4 Complex Compositions
All the composed interactions presented so far hook a single implicit interaction into a single
explicit one. Recall, meanwhile, that composed interactions are also explicit interactions at the type
level because a composed interaction responds to explicit user events, in which the computational
effects of implicit interaction are already fused into it. It means that programmers can further hook
another implicit interaction into a composed one, allowing them to express even more complex
compositions.
For facilitating this, the Hook language prepares the three keywords—and, it, and or. The

following code fragments exhibit example uses of the keywords. (As a side note, the do-nothing
keyword, replacing aworld transformer, is useful when programmers think of complex compositions.
Programmers can use the keyword when they want to make the pattern matching exhaustive, for
example, by adding a wildcard pattern, but do not want that case to be considered in the process of
applying the fusion strategy.)

12 Shibata, Ahrens, and Jacob

e1 = explicit w where

MouseDown -> do {...}

| MouseUp -> do {...}

e2 = explicit w where

(StdIn words) -> do {...}

i1 = implicit w where

(Happy True) -> do {...}

| _ -> do-nothing

i2 = implicit w) where

(Happy False) -> do {...}

| _ -> do-nothing

e3 = (e1 or e2)

c4 = ((after e3 handles MouseDown do i1 then merge)

and (after it handles MouseUp do i2 then tweak))

c5 = (((after (e1 or e2) handles MouseDown do i1 then merge)

and (after it handles MouseUp do i2 then tweak))

and (before it handles (StdIn words) do i1 then overwrite))

The or keyword combines two explicit interactions and produces a single explicit interaction
that unions all the case matches from the two interactions. For example, e3 is an explicit interaction
that has all the three case matches from e1 and e2. When using the or keyword, the programmer is
responsible for ensuring no patterns are redundant. Yet, the order of the case matches is taken care
of by the Hook language compiler so that a more specific pattern matches first.

The and and it keywords are always used together and declare when and how another implicit
interaction runs with the composed interaction. The and keyword follows the composed interaction
that is the base of the newly composed interaction, plus the it keyword refers to the base interaction.
At the same time, the and keyword is followed by the definition hooking another implicit interaction
into the interaction that the it keyword is referring to. For example, c4 is a newly composed
interaction hooking i2 into a composed interaction that hooks i1 into e3. Furthermore, because the
newly composed interaction is also explicit interaction at the type level, the programmer can further
hook another implicit interaction into it. For instance, c5 is another newly composed interaction
hooking i1 into a composed interaction, which is c4 equivalent, that hooks i2 into a composed
interaction that hooks i1 into (e1 or e2), which is e3 equivalent. In this manner, programmers
can continue hooking as many implicit interactions as needed.

3.5 Implementation Considerations
This section lists some implementation details of the current Hook language compiler, which will
be essential and particularly useful to programmers.

Capture-avoiding substitution for scoping. When bringing host language expressions and patterns
into the same scope, the Hook language compiler applies capture-avoiding substitution. The
algorithm walks over the pattern algebraic data type provided by Template Haskell to collect all
the variables bound by the pattern and then renames them in both the pattern and the expression,
except when sub-patterns shadow them.

Overlaps in patterns. As seen in Composing Interactions and Complex Compositions sections,
a composed interaction could involve cases where more strict matches are specified than any
matches available and cases where more than one implicit interactions are hooked with potential
overlaps in the patterns. To find whether a pattern shadows another, the Hook language compiler
checks the property using the syntactic structure of the pattern with no type information for most
cases. For example, a variable or a wildcard matches anything, a literal matches on Eq equality, and

Hook: An Embedded Domain-Specific Language for Fusing Implicit Interactions to Explicit Event Handlers 13

everything else matches on inductive structure or name equality. When finding overlaps, the Hook
language compiler sorts the patterns so that the most specific pattern matches first in the original
declaration order.

Retrieving user status information. Most modern eco-systems already provide high-level descrip-
tions for low-level hardware events, so that programmers can deal directly with events (e.g., mouse
clicks) instead of constantly checking a particular part of the computer memory to find the current
state of the hardware (e.g., a mouse). While the programmer can leverage the tokens of events
provided by the eco-system of their choice as the event patterns in the Hook language, the pro-
grammer is responsible for defining their own representation of the user status information and a
context-specific way to retrieve that information. To be specific, using the vocabularies from the
Interaction type, the Hook language compiler expects the programmer provides a function of
type m user, written in the host language, which returns a user status pattern of type user when
called. Note that m will involve IO in most cases to accommodate side-effects.

Trackable. The Interaction type makes the Hook language agnostic to the types of events, user
status, and worlds. At the same time, the Hook language compiler enforces the programmer to
make their world type to be an instance of the Trackable typeclass2, so it can computationally
keep track of the field-level changes made to any type of world. The following code fragment is the
declaration of the Trackable typeclass in the host language and is provided as a part of the Hook
language run-time libraries.

class Trackable world where

type Diff world

delta :: world -> world -> Diff world

appDiff :: Diff world -> world -> world

undoSubDiff :: Diff world -> Diff world -> world -> world

The Trackable typeclass will provide an interface to specify how a world can change. To make
a world type an instance of the Trackable typeclass, the programmer defines the representation
of the difference between two worlds, Diff world, and three methods: (1) delta for how to take
the difference between two worlds, (2) appDiff for how to apply a difference to a world, and (3)
undoSubDiff for how to undo the set subtraction of two differences on a world. In fact, the fusion
strategies are defined in terms of these three methods. (See Δ and fuse in Computational Model
section for details.) Note that Trackable allows the programmer to define whether a field of the
world is considered “changed” in case the field is overwritten with the same value. Note also that
effects made outside the world (e.g., writing logs to a file) cannot be undone by undoSubDiff.

4 COMPUTATIONAL MODEL
In this section, we formalize a high-level description of the Hook language as a computational
model. The model consists of mathematical notations, abstract syntax, and semantics, describing the
translation rules that the Hook language compiler employs. We aim the model to enable arbitrary
host languages, which meet some preconditions, to implement the Hook language compiler as well
as to be helpful means when extending the language in the future. Note that the computational
model itself does not specify variable scoping, side-effects, application context, nor run-time system
dependencies. Therefore, those details should be implemented based on idioms of the host language
chosen.

2Typeclasses are a mechanism in Haskell that enables ad-hoc polymorphism.

14 Shibata, Ahrens, and Jacob

4.1 Mathematical Notations
We shall begin by showing the mathematical notations of the computational model. Figure 7
summarizes the notations, and the details are as follows.

(pattern) 𝑝 ::= 𝑥 | _ | 𝑎𝑙𝑙 ®𝑝
(world transformer) 𝑡 ::= 𝜆𝑝𝑤 .𝑤 | 𝑓

(world)𝑤 ::= 𝑡 (𝑤) | Δ ·𝑤 | 𝑥𝑤
(delta) Δ ::=𝑤 −𝑤 | Δ − Δ | Δ∅

(associated transformer)𝑚 ::= (𝑝𝑒 , 𝑝𝑢) → 𝑡

(model)𝑀 ::= ®𝑚

Fig. 7. Mathematical notations of the computational model.

(1) (𝑤2 −𝑤1) ·𝑤1 = 𝑤2
(2) 𝑤 −𝑤 = Δ∅
(3) Δ − Δ = Δ∅
(4) Δ∅ ·𝑤 = 𝑤

(5) Δ · (Δ ·𝑤) = Δ ·𝑤

Fig. 8. The algebraic laws for Δ.

Patterns. Let 𝑝 represent a language of patterns that, at minimum, includes variable bindings
𝑥 , a wildcard pattern _ (underscore), and an inductively defined pattern 𝑎𝑙𝑙 ®𝑝 for matching the
same expression with multiple sub-patterns. As a convenience, subscripts indicate particular sets
of patterns, such that 𝑝𝑒 for events, 𝑝𝑢 for user status, and 𝑝𝑤 for world states.

World transformers. Let 𝑡 represent world transformers and have the abstraction form 𝜆𝑝𝑤 .𝑤 . 𝑡
may include other arbitrary host language functions, notated 𝑓 , that modify the world. While allow-
ing 𝑓 , 𝑡 abstracts all host language expressions—for example, arithmetic, if-then-else statements,
record operations, and so on—away from uses of events and user status information.

Worlds. Let𝑤 represent world expressions and have the following forms: world transformation
function application 𝑡 (𝑤), applying and undoing of changes Δ ·𝑤 , and variable references 𝑥𝑤 .

Deltas. Let Δ represent changes in the world state that can be applied or undone. In addition,
let them be constructed by taking the differences between two worlds or by removing changes
between two Δs via set subtraction. For example,𝑤1 −𝑤2 notates the difference between𝑤1 and
𝑤2. For example, Δ1 − Δ2 notates the parts of the world changed by Δ1 not also changed by Δ2.
Lastly, when given Δ ·𝑤1 = 𝑤2, we read this as “applying Δ to 𝑤1 gives us 𝑤2” and “undoing Δ
from𝑤2 gives us𝑤1.”

To restrict the use of Δ, the following algebraic laws describe how this abstraction behaves when
well-formed. Figure 8 lists the laws in a compact form, and the details are as follows.

(1) (𝑤2 −𝑤1) ·𝑤1 = 𝑤2: Applying the change between two worlds to the first world should
result in the second world.

(2) 𝑤 −𝑤 = Δ∅: Taking the difference between a world and itself should result in an empty
delta, Δ∅.

(3) Δ − Δ = Δ∅: Taking the difference between a Δ and itself should also result in an Δ∅.
(4) Δ∅ ·𝑤 = 𝑤 : Applying or undoing the Δ∅ with a world should result in that world.
(5) Δ · (Δ ·𝑤) = Δ ·𝑤 : Applying or undoing a Δ should be idempotent.

To illustrate the use of𝑤 and Δ, it may be helpful to imagine them as records. For example, if
𝑤1 = {red: 100, green: 50, blue: 0}, 𝑤2 = {red: 50, green: 100, blue: 0}, then 𝑤1 −𝑤2 = {red: (100,
50), green: (50, 100)}, which is a Δ. In this Δ, the value associated with each key of the world is
a pair of old and new values. Then, set subtraction on Δ would be performed over the keys. For
instance, if Δ1 = {red: (100, 50), green: (50, 100)}, Δ2 = {green: (100, 0)}, then Δ1 − Δ2 = {(red: (100,
50)}. We read this as “get the parts of the world changed via Δ1 and remove any that were also
changed via Δ2.”

Hook: An Embedded Domain-Specific Language for Fusing Implicit Interactions to Explicit Event Handlers 15

Associated world transformers and Model. Let𝑚 represent a match in a case statement that binds
event and user status patterns to a world transformer, (𝑝𝑒 , 𝑝𝑢) → 𝑡 . Then, the model comprises
an ordered collection of𝑚, represented as ®𝑚, in which the first match on an event and user status
pattern short-circuits the rest. Note that the model omits how to obtain the user status information
as a room to apply implementation specific optimizations.

4.2 Abstract Syntax and Semantics
Figure 9 shows the abstract syntax that describes the core expressions of programs written in
the Hook language. The abstract syntax boils the grammar, presented in Figure 3, down to the
three key expression forms: explicit expressions, implicit expressions, and hook expressions. The
three forms directly correspond to their counterparts in the concrete syntax. (i.e., explicit, implicit,
and composed interactions). Also, complex compositions and variable references can be statically
rewritten in the three expressions. Below we shall show the processes to translate given Hook
program code to the three key expressions and then to the computational model.

Exp ::= Explicit 𝑝𝑤 ExplMatch+
| Implicit 𝑝𝑤 ImplMatch+
| Hook Exp Exp When How

ExplMatch ::= MatchE 𝑝𝑒 (𝑤 | 𝜖)
ImplMatch ::= MatchI 𝑝𝑢 (𝑤 | 𝜖)

When ::= (Order, Condition)
Order ::= Before | After

Condition ::= Handles 𝑝𝑒 | All
How ::= Merge | Overwrite | Tweak

Fig. 9. The abstract syntax representing the core expressions for programs written in the Hook language.

4.2.1 Explicit Expressions. Let us consider the code fragment below, which is written using the
concrete syntax. The code fragment represents an explicit interaction, which, in this example, is
a handler responding to mouse events. The w next to the explicit keyword is the variable for
the world pattern introducing the identifier into scope. The ws in the do blocks are the forms of
record updates in the host language functions on worlds, 𝑓 (𝑤). Lastly, MouseDown and MouseUp are
members of the event patterns, 𝑝𝑒 .

explicit w where

MouseDown -> do { return w { color = Red } }

| MouseUp -> do { return w { color = Black } }

This code fragment is translated to the following explicit expression in the abstract syntax.
Explicit w [MatchE MouseDown (do { return w { color = Red } })

, MatchE MouseUp (do { return w { color = Black } })]
Then, this explicit expression is expectedly translated to the following ®𝑚.

{ (MouseDown, _)→ 𝜆 w . w{color = Red}

, (MouseUp, _) → 𝜆 w . w{color = Black}}
In this translation process, ®𝑚 preserves the order of the abstract matches, MatchE, shown in the

explicit expression. Plus, for every abstract match MatchE, a world transformer, given the world
pattern 𝑝𝑤 , is associated with the 𝑝𝑒 from the MatchE and the wildcard pattern (_) for 𝑝𝑢 , since this
expression does not depend on user status information. As in, this ®𝑚 represents a case statement
that will first match on the MouseDown event and any user status information to produce a world
transformer that sets the color to Red. If that pattern does not match, then it will try to match
the MouseUp event and any user status information to produce a world transformer that sets the

16 Shibata, Ahrens, and Jacob

color to Black. Note that the model leaves checking for exhaustive pattern matching as a host
language implementation detail. Lastly, Figure 10 includes this translation semantics, labeled as
explicit expression rule.

4.2.2 Implicit Expressions. Let us consider the code fragment below, which is written using the
concrete syntax. The code fragment represents an implicit interaction, which, in this example,
is a handler responding to the user status information that indicates whether the user is happy.
The wildcard pattern indicates any other user status, which implies the user is not happy in this
example. Lastly, User { happy = True } and the wildcard pattern are members of the user status
patterns, 𝑝𝑢 .

implicit w where

User { happy = True } -> do { return w { color = Green } }

| _ -> do { return w }

This code fragment is translated to the following implicit expression in the abstract syntax.
Implicit w [MatchI (User { happy = True }) (do { return w { color = Green } })

, MatchI _ (do { return w })]
Then, this implicit expression is translated to the following ®𝑚.

{ (_, User{happy = True})→ 𝜆 w . w{color = Green}

, (_, _) → 𝜆 w . w}
In this translation process, for every abstract match, MatchI, a world transformer, given the world

pattern 𝑝𝑤 , is associated with the 𝑝𝑢 from the MatchI and the wildcard pattern (_) for 𝑝𝑒 , since the
implicit interaction does not bind to any particular event. Recall that unlike explicit interactions,
implicit interactions by themselves do not specify when they will be triggered. However, the
computational model omits to restrict what kinds of interactions can be run as an implementation
specific detail. Lastly, Figure 10 includes this translation semantics, labeled as implicit expression
rule.

4.2.3 Hook Expressions. A hook expression is a composition of an explicit expression with an
implicit one, which results in a new explicit expression. Let us consider the code fragment below.
In this example, the code between after and do is the explicit interaction, and the one between
do and then is the implicit interaction. This code fragment discloses a composed interaction that
internally performs the following: “after running the explicit interaction, (do) run the implicit
interaction, and then apply the tweak fusion strategy to glue the results of computations.”

after (explicit w where

MouseDown -> do { return w { color = Red, brightness = Max } }

| MouseUp -> do { return w { color = Black } })

do (implicit w where

User { happy = False } -> do { return w { brightness = Min } }

| _ -> do { return w })

then tweak

The code fragment is translated to the following hook expression in the abstract syntax.
Hook (Explicit w [MatchE MouseDown (do{ return w{color = Red, brightness = Max} })

, MatchE MouseUp (do{ return w{color = Black} })])
(Implicit w [MatchI (User{happy = False}) (do{ return w{brightness = Min} })

, MatchI _ (do { return w })])
(After, All) Tweak

Hook: An Embedded Domain-Specific Language for Fusing Implicit Interactions to Explicit Event Handlers 17

Enforced by the concrete syntax, hook expression assumes the first sub-expression to be an
explicit expression and the second sub-expression to be an implicit expression. (After, All) is a
form of (Order, Condition), which declares when the implicit sub-expression should be evaluated
concerning the explicit sub-expression. The Order abstract syntax specifies whether the implicit
sub-expression happens Before or After the explicit sub-expression does whereas the Condition
abstract syntax narrows down the occurrence based on event patterns in the explicit sub-expression.
The Handles 𝑝𝑒 condition binds every user status pattern in the implicit sub-expression with all the
event patterns in the explicit one that match the specified 𝑝𝑒 . On the other hand, the All condition,
used in this example, binds every user status pattern with every event pattern (i.e., like a cross
product). Lastly, Tweak is a form of the How abstract syntax, which specifies what changes to the
world (application state) get persisted in terms of the Δ algebra.

Then, this hook expression is translated to the following ®𝑚. For readability, assume that the Δ
algebra includes a let form to enable undoing changes, meaning that w’ is the resulting world.
{ (MouseDown, User{happy = False}) → 𝜆 w . let ((𝑡3(𝑡1(w))-𝑡1(w))-(𝑡1(w)-w)) · w’ = 𝑡3(𝑡1(w)) in w’

, (MouseDown, _)→ 𝜆 w . let ((𝑡4(𝑡1(w))-𝑡1(w))-(𝑡1(w)-w)) · w’ = 𝑡4(𝑡1(w)) in w’

, (MouseUp, User{happy = False}) → 𝜆 w . let ((𝑡3(𝑡2(w))-𝑡2(w))-(𝑡2(w)-w)) · w’ = 𝑡3(𝑡2(w)) in w’

, (MouseUp, _)→ 𝜆 w . let ((𝑡4(𝑡2(w))-𝑡2(w))-(𝑡2(w)-w)) · w’ = 𝑡4(𝑡2(w)) in w’}
where

𝑡1: 𝜆 w . w{color = Red, brightness = Max}

𝑡2: 𝜆 w . w{color = Black}

𝑡3: 𝜆 w . w{brightness = Min}

𝑡4: 𝜆 w . w
In this translation process, each of the explicit and implicit sub-expressions first translates to their

respective model, ®𝑚𝑒𝑥𝑝𝑙 and ®𝑚𝑖𝑚𝑝𝑙 . Then, the translator would bind every match in ®𝑚𝑖𝑚𝑝𝑙 to every
match in ®𝑚𝑒𝑥𝑝𝑙 , which results in the final ®𝑚 that comprises four matches in this example. Note that
the matches are sorted, so the most specific matches apply first. As for the world transformation part,
in every Before composition, the world transformer from the implicit sub-expression 𝑡𝑖𝑚𝑝𝑙 runs on
the given world first. Similarly in every After composition, the world transformer from the explicit
sub-expression 𝑡𝑒𝑥𝑝𝑙 runs on the given world first. In both cases, the resulting world is then given
to the other sub-expression’s world transformer. In this example, the After abstract syntax enforced
that 𝑡3 and 𝑡4 from ®𝑚𝑖𝑚𝑝𝑙 always come after 𝑡1 and 𝑡2 from ®𝑚𝑒𝑥𝑝𝑙 . Note that in case𝑚 includes a
pair of 𝜖 , corresponding to the do-nothing keyword, and non-𝜖 , then the translator produces a
world transformer that simply passes through the result of the non-𝜖 world transformation. In case
𝑚 includes a pair of two 𝜖s, then the translator produces an identity world transformer. Lastly, the
composition using the Tweak fusion strategy applies the specified world transformers and then
undoes the difference.

18 Shibata, Ahrens, and Jacob

Figure 10 shows this translation semantics, labeled as hook expression rule, where the rule uses
the following three constructs: fuse, satisfy, and sort.

(Explicit expression rule)
Explicit 𝑝𝑤 [. . . , MatchE 𝑝𝑒 𝑤 , . . .] ⇒ {. . . , (𝑝𝑒 , _)→ 𝜆 𝑝𝑤 .𝑤 , . . . }

(Implicit expression rule)
Implicit 𝑝𝑤 [. . . , MatchI 𝑝𝑢 𝑤 , . . .] ⇒ {. . . , (_, 𝑝𝑢)→ 𝜆 𝑝𝑤 .𝑤 , . . . }

(Hook expression rule)
explE ⇒ ®𝑚𝑒𝑥𝑝𝑙

implE ⇒ ®𝑚𝑖𝑚𝑝𝑙 ∀ (𝑝𝑒𝑒 , 𝑝𝑢𝑒) → 𝑡𝑒𝑥𝑝𝑙 ∈ ®𝑚𝑒𝑥𝑝𝑙 , (_, 𝑝𝑢𝑖) → 𝑡𝑖𝑚𝑝𝑙 ∈ ®𝑚𝑖𝑚𝑝𝑙

Hook explE implE (order,condition) how ⇒
sort({(𝑝𝑒𝑒 , all [𝑝𝑢𝑒 , 𝑝𝑢𝑖])→ fuse(𝑡𝑒𝑥𝑝𝑙 , 𝑡𝑖𝑚𝑝𝑙 , order, how) | satisfy(𝑝𝑒𝑒 , condition)}

∪ {(𝑝𝑒𝑒 , 𝑝𝑢𝑒) → 𝑡𝑒𝑥𝑝𝑙 | ¬ satisfy(𝑝𝑒𝑒 , condition)})

Fig. 10. The translation semantics of the Hook language compiler.

Let fuse(𝑡𝑒𝑥𝑝𝑙, 𝑡𝑖𝑚𝑝𝑙, Order, How) be a syntactic translation that, ∀𝑡𝑒𝑥𝑝𝑙 , 𝑡𝑖𝑚𝑝𝑙 , it produces a 𝑡 ′
such that:

Order How 𝑡 ′ where
𝜆𝑥.𝑥 𝑡𝑒𝑥𝑝𝑙 = 𝜖, 𝑡𝑖𝑚𝑝𝑙 = 𝜖

any any 𝑡𝑒𝑥𝑝𝑙 𝑡𝑒𝑥𝑝𝑙 ≠ 𝜖, 𝑡𝑖𝑚𝑝𝑙 = 𝜖

𝑡𝑖𝑚𝑝𝑙 𝑡𝑒𝑥𝑝𝑙 = 𝜖, 𝑡𝑖𝑚𝑝𝑙 ≠ 𝜖

Before Merge 𝜆𝑥 .Δ2 · (Δ1 · 𝑥) Δ1 = 𝑡𝑖𝑚𝑝𝑙 (𝑥) − 𝑥 ;
Before Overwrite 𝜆𝑥.Δ2 · 𝑥 Δ2 = 𝑡𝑒𝑥𝑝𝑙 (𝑡𝑖𝑚𝑝𝑙 (𝑥)) − 𝑡𝑖𝑚𝑝𝑙 (𝑥);
Before Tweak 𝜆𝑥.𝑤 ′ (Δ2 − Δ1) ·𝑤 ′ = Δ2 · (Δ1 · 𝑥)
After Merge 𝜆𝑥 .Δ2 · (Δ1 · 𝑥) Δ1 = 𝑡𝑒𝑥𝑝𝑙 (𝑥) − 𝑥 ;
After Overwrite 𝜆𝑥.Δ2 · 𝑥 Δ2 = 𝑡𝑖𝑚𝑝𝑙 (𝑡𝑒𝑥𝑝𝑙 (𝑥)) − 𝑡𝑒𝑥𝑝𝑙 (𝑥);
After Tweak 𝜆𝑥.𝑤 ′ (Δ2 − Δ1) ·𝑤 ′ = Δ2 · (Δ1 · 𝑥)

Let satisfy(𝑝, Condition) be a predicate, such that it evaluates to true when Condition is All
and it tests 𝑝 ′ ⊆ 𝑝 when Condition is Handles 𝑝 ′. The pattern comparison operator ⊆ is defined as
∀𝑝1, 𝑝2.𝑝1 ⊆ 𝑝2 iff ∀𝑒.𝑝1 matches 𝑒 → 𝑝2 matches 𝑒 , and if two patterns are unrelated (i.e., the set
of expressions they match are disjoint) then both ¬𝑝1 ⊆ 𝑝2 and ¬𝑝2 ⊆ 𝑝1 will be true.
Lastly, assume that 𝑝 below is (𝑝𝑒 , 𝑝𝑢) from𝑚, and then let sort(®𝑚) be a function which sorts

®𝑚 and produces ®𝑚′ such that:

®𝑚 ®𝑚′ where
[] []
[𝑝] [𝑝]

[𝑝1, 𝑝2, . . .] [𝑝1, sort([𝑝2, . . .])] ¬(𝑝2 ⊆ 𝑝1)
[𝑝1, 𝑝2, . . .] sort([𝑝2, sort([𝑝1, . . .])]) 𝑝2 ⊆ 𝑝1

Hook: An Embedded Domain-Specific Language for Fusing Implicit Interactions to Explicit Event Handlers 19

5 EVALUATION
As a first suggestive form of validation, we present three case studies that demonstrate some of the
language features, usage, and capabilities. The goal of the case studies is twofold: (1) demonstrate
our ability to express explicit and implicit interactions and their compositions using the Hook
language; and (2) show that the current Hook language compiler, working together with the
host language compiler, can produce a runnable program. In each case study, we used the Hook
language to replicate a published interactive system and implement an implicit interaction that
extends its original behavior. To highlight our motivation for studying “Implicit Human-Computer
Interactions” [48] in our case studies, we designed the implicit interactions so that the resulting
interactive system—i.e., computer—ought to be more considerate of its user in each case.
To implement Graphical User Interface (GUI) applications in functional programming settings,

we leveraged the eco-system that the gloss Haskell library3 provides. In this eco-system, program-
mers are responsible for implementing how to render graphics on a screen and how to handle
conventional input events (e.g., keyboard, mouse events) in addition to periodic timer events. For
space, the following case studies will focus on presenting interactions handling events and user
status information.
To retrieve user status information, we implemented a backend server program that emulates

an oracle system providing the current status of the user at any moment. (e.g., How happy the
user is now, etc.) The backend server program ran as a different process from the frontend GUI
application written in the Hook language. When the frontend application needed to have access to
user status information, it communicated with the backend server by exchanging strings in the
JSON format over the TCP/IP connection. The procedure of these message exchanges follows the
form of “implicit dialogue” [53] and was implemented as a series of IO actions in the host language,
Haskell.

5.1 Case Study 1: Target Acquisitions
GUI applications contain many target acquisition tasks. People use a mouse cursor to select file
icons, to respond to a dialogue by selecting yes/no buttons, and so on. For efficiency, Grossman
and Balakrishnan invented Bubble Cursor [14], which is an advanced target acquisition technique
that updates the cursor’s selection area dynamically based on the arrangement of target objects.

We shall begin by implementing a version of Bubble Cursor as an explicit interaction. Figure 11
shows the code fragment for this case study, and the explicit interaction is bound to e. The World
data type contains two circle objects to be selected, and each of them consists of a set of x and y
coordinates on screen, a radius, and a flag indicating whether or not it is currently selected. As seen
in e, when the user moves the mouse, an EventMotion event is triggered, and the current selection
of target gets updated using the selectTarget function. (Note that in our simplified version, the
mouse cursor always selects the closest target.)
Next, we shall extend this behavior by taking user status information into account. Following

the idea presented by Afergan, et al. [1], let us assume a scenario where one of the target objects
has higher priority than another, and the programmer wants to make it easier for the user to select
the prioritized target based on the user’s current busyness. (Note that busyness is ranged from 0.0
to 100.0; higher is busier.) The implicit interaction bound to i encodes this behavior. As the user
becomes busier, the size of the prioritized target becomes at most twice as large as its original size.
Thus, the cursor is more likely to select the prioritized target when the user is busier, which could
appear to be more considerate, compared to the original behavior.

3https://hackage.haskell.org/package/gloss

https://hackage.haskell.org/package/gloss

20 Shibata, Ahrens, and Jacob

Suppose the programmer only wishes to apply the effects of the implicit interaction i during the
target selection procedure of the explicit interaction e but not during the rendering of the target
objects. The composed interaction c achieves this goal. c declares that 1) before running e which
handles EventMotion events, run i; and 2) the effects of e’s world transformation overwrite those
of i’s. Since i modifies r1, which is the radius of the prioritized target, e refers to the modified
target size when selecting a target. Then, the overwrite fusion strategy produces the resulting world
by taking the result of e, which only changed isSelected1 and isSelected2 but not r1. Therefore,
both targets are rendered in their original sizes. Figure 12 shows the composed interaction c in
action.
To sum up, this case study demonstrated a seamless integration between the Hook language

and host language code by calling the host language function from the explicit interaction. This
case study also demonstrated that a composed interaction can express a staging effect where an
implicit interaction prepares the world for the explicit interaction.

data World = World { x1 :: Float, y1 :: Float, r1 :: Float, isSelected1 :: Bool

, x2 :: Float, y2 :: Float, r2 :: Float, isSelected2 :: Bool

, ... }

data User = User { busyness :: Float }

[hook|

e = explicit world where

(EventMotion (x, y)) -> do { returnIO $ selectTarget x y world }

| _ -> do { returnIO world }

i = implicit world where

User { busyness = b } -> do { let r = (r1 world) * (1.0 + b / 100.0)

in returnIO world { r1 = r }

}

c = (before e

handles (EventMotion (x, y))

do i

then overwrite)

|]

selectTarget :: Float -> Float -> World -> World

selectTarget x y w =

let d1 = distance (x, y) (x1 w, y1 w) - r1 w

d2 = distance (x, y) (x2 w, y2 w) - r2 w

in if d1 < d2

then w { isSelected1 = True, isSelected2 = False }

else w { isSelected1 = False, isSelected2 = True }

--distance :: (Float, Float) -> (Float, Float) -> Float

--returnIO :: World -> IO World

Fig. 11. A version of Bubble Cursor + a staging effect written in the Hook language.

Hook: An Embedded Domain-Specific Language for Fusing Implicit Interactions to Explicit Event Handlers 21

Fig. 12. A version of Bubble Cursor + the staging effect in action. Assume the left circle is prioritized. When

selected, the target is rendered as a solid circle. Left: User busyness is 0.0, which resulted in keeping the

size of the prioritized target its original size. Thus, the cursor selects the right target which is closer. Middle:

User busyness is 100.0, which resulted in doubled the size of the higher priority target. Thus, the cursor now

selects the left target from the same location as before. Right: (supplemental figure) The pink circle shows the

size of the prioritized target expanded by the fact that user busyness is 100.0.

5.2 Case Study 2: Readability Enhancement
People read articles on computer screens everyday, but non-native readers seem to be intimidated
when encountering articles that “. . . include unfamiliar vocabulary, complicated grammatical
structure, and long, crowded or otherwise intimidating content display” [61]. To that end, Yu and
Miller invented Jenga Format [61], which transforms the sentence layout to enhance web page
readability.

We shall implement a feature of Jenga Format as an explicit interaction, which allows the reader
to change the space between sentences using a special slider. Figure 13 shows the code fragment
for this case study, and the explicit interaction is bound to e. The World data type contains the
sentences to be displayed, layout parameters, and other application state. As seen in e, when the
user moves the slider to increase or decrease the space between sentences, the HMoveKnob event
matches and updates the gap field.

Next, we shall extend this behavior by taking user status information into account. Let us assume
a scenario where the programmer thinks that when the user is frustrated, increasing the space
between sentences even more and enlarging characters might further improve the readability.
The implicit interaction, bound to i, encodes this behavior. As the user is frustrated, the space
between sentences (gap) and the character scale (scale) gets doubled, which could appear to be
more considerate, compared to the original behavior.
Suppose the programmer—after implementing i—noticed that the user of this GUI application

only expects the space between sentences (gap) to change when using the slider. The composed
interaction c can respect this desire. c declares that 1) after e handles HMoveKnob, run i and 2) the
effects of i’s world transformation tweak e’s. Since e only modifies gap and the position of the
knob, the tweak fusion strategy produces the resulting world by applying i’s doubling of the gap
size from e, but not taking the scale changes from i. So, the user of this GUI application does not
see the character scale changes when they did not expect it to be. Figure 14 shows the composed
interaction c in action.

While the first case study showed a staging effect, this case study demonstrated that a composed
interaction can express a decorating effect that an implicit interaction only modifies the parts of
the world that an explicit interaction modified.

22 Shibata, Ahrens, and Jacob

data World = World { ... (sentences, graphic information for rendering) ...

, gap :: Float , scale :: Float

, isGrabbingKnob :: Bool, knobX :: Float }

data User = Busy | Happy | Frustrated | Unspecified

[hook|

e = explicit world where

HGrabKnob -> do { returnIO world { isGrabbingKnob = True } }

| HReleaseKnob -> do { returnIO world { isGrabbingKnob = False } }

| (HMoveKnob x) -> do { let (knobXMin, knobXMax) = (0.0, (sliderWidth world))

; (gapMin, gapMax) = (0.0, 40.0)

; ((topLeftX, _), _) = locateSlider world

; knobX' = x - topLeftX

; gap' = gapMin + (knobX' - knobXMin) *

(gapMax - gapMin) / (knobXMax - knobXMin)

in returnIO world { gap = gap', knobX = knobX' }

}

| _ -> do { returnIO world }

i = implicit world where

Frustrated -> do { let gap' = (gap world) * 2.0

; scale' = (scale world) * 2.0

in returnIO world { gap = gap', scale = scale' }

}

| _ -> do-nothing

c = (after e handles (HMoveKnob x)

do i then tweak)

|]

--locateSlider :: World -> ((Float, Float), (Float, Float))

--returnIO :: World -> IO World

Fig. 13. A feature from Jenga Format that changes the space (gap) between sentences + a decorating effect

written in the Hook language.

Fig. 14. A feature from Jenga Format that changes the space (gap) between sentences + the decorating effect

in action. Left: The normal space (gap); the slider knob is at leftmost. Middle: As the slider knob was moved

rightward, the space (gap) is increased. Right: The knob was moved to right with the same amount, but the

space (gap) was increased more compared to before, since the user is frustrated. (Note: The sentences in this

figure were taken from [61].)

Hook: An Embedded Domain-Specific Language for Fusing Implicit Interactions to Explicit Event Handlers 23

5.3 Case Study 3: No explicit user events
In the previous case studies, the source of events to the explicit interactions came directly from
the user’s action. This case study, on the other hand, considers a different scenario where no
explicit user event is expected, yet the programmer can still use the Hook language to fuse implicit
interactions to programmatic event handlers, such as a periodic timer. For example, expressing
implicit interactions in relation to a periodic timer makes it possible for the programmer to detect
changes in the user status and trigger specific actions accordingly.
Below we consider Zero Shutter Camera [54] as an example and use the Hook language to

replicate its behavior—i.e., the application automatically takes a picture for the user when the
user became busy. Figure 15 shows the code fragment for this case study. We first prepare the
stepHandler function, in the host language, which responds to periodic timer events. The function
simply consumes timer events and does not change the world in this example. Note that we used
liftE, a function from the Hook language run-time libraries, to treat the stepHandler function
as the explicit interaction and then bound it to e. Then, we encode the behavior of Zero Shutter
Camera as the implicit interaction i. i uses the host language code that presumably takes a picture
when the user status switches from not busy to busy and then saves the file location of the saved
picture to the filePath field. Finally, we declare c that hooks i into e and simply merges the effects
since e does not change the world.

data World = World { filePath :: FilePath }

data User = User { busy :: Bool }

stepHandler :: Float -> World -> IO World

stepHandler _ = return

e = liftE stepHandler

[hook|

i = implicit world where

User { busy = True } -> do { if (filePath world) == ""

then do filePath' <- takePicture

returnIO world { filePath = filePath' }

else returnIO world

}

| User { busy = False } -> do { if (filePath world) /= ""

then returnIO world { filePath = "" }

else returnIO world

}

c = (after e do i then merge)

|]

--takePicture :: IO FilePath

--returnIO :: World -> IO World

Fig. 15. Zero Shutter Camera mock-up written in the Hook language.

24 Shibata, Ahrens, and Jacob

6 DISCUSSION AND FUTUREWORK
Overall, our case studies have demonstrated that the Hook language is capable of independently
expressing the explicit interactions of the existing interactive systems and the implicit interac-
tions for augmenting the behaviors of the systems. Also, because of the fusion strategies and the
declarative manner in expressing composed interactions, the programmer was able to specify
the interference between the explicit and implicit interactions in their implementation without
ambiguity. Thus, we argue that programmers using the Hook language can achieve separation of
concerns without giving up algorithmic precision in implementing the two types of interactions
and their compositions.

6.1 Design Choices
Agnostic. We designed the Hook language to be agnostic to the events, user status, and world

states so it can express as many interactive systems as possible. In the meantime, this design choice
also contributed to making the language flexible enough to handle more event patterns than ones
the eco-system provides. For example, we observed in Case Study 2 that the language was able to
handle a custom application-specific event pattern (HMoveKnob x) defined on top of the generic
event pattern (EventMotion (x, y)) that the gloss Haskell library provides. This observation
implies that finely grinded custom patterns encourage programmers to break down their world
transformers into even smaller and modular pieces. As a result, programmers will be able to declare
their composed interactions in even finer granularity. Plus, the observation also implies that the
concept of the Hook language could apply to more domains than GUI—e.g., Augmented Reality
(AR), Virtual Reality (VR) system, and so on, as long as programmers can map event-equivalent
tokens in the system to their own event patterns and program states of the system to their own
world pattern. Meanwhile, there should be no new restrictions on defining the user status pattern.

Fusion strategies. From the Venn diagram illustrations shown in Figure 4 and the Δ algebra
formalism shown in Computational Model section, we discovered eight possible fusion strategies
of which we picked three because the other five seemed to be detrimental. For example, there
exists a fusion strategy that keeps all changes other than ones made to fields belonging to G2—
algebraically represented as 𝜆𝑥𝑤 .(Δ1 − Δ2) · ((Δ2 − Δ1) · 𝑥𝑤). However, this strategy—unlike the
merge, overwrite, and tweak strategies—is not compelling for explaining the interference of the two
interactions in human language. Therefore, we decided to provide only fusion strategies that come
with a compelling analogy, which, we believe, reduces the chances for programmers implementing
unintended interactive behaviors.

6.2 Limitations
The following limitations, currently restricting the set of programs that can benefit from being
implemented in the Hook language, suggest directions for future work on improving the design of
the language.

World state. The Hook language compiler asks programmers to make their world type to be
an instance of the Trackable typeclass, and the current language design trades this requirement
for gaining the flexibility of the world type. However, there are indeed commonly used data
structures, such as inductive data structures (e.g., array, list, tree, etc.), that require more effort from
programmers to satisfy this requirement. Future work should consider providing a metaprogram
as a part of the Hook language run-time libraries that generates the corresponding Diff type and
Trackable instance with the programmers’ world type programmatically.

Hook: An Embedded Domain-Specific Language for Fusing Implicit Interactions to Explicit Event Handlers 25

Pattern matching. The current Hook language compiler does not prevent explicit and implicit
interactions from having redundant or non-exhaustive pattern matching. This is because the
patterns are currently defined in the host language. To perform this check at compile-time, future
work should consider extending the current language grammar to provide syntax for defining
events, user status, and world patterns directly in the Hook language.

Static analysis. Compilers ought to generate correct programs from correct code (“build the
thing right”). At the same time, compilers should also support programmers for writing correct
code from their desired logic (“build the right thing”). The current Hook language compiler, in
cooperation with the type system of Haskell, provides a lightweight static analysis. For example, it
checks the kind of every interaction and ensures that only implicit interactions are hooked into
explicit interactions, but not the other way around. Future work should enhance the static analysis
as well as implement its own type system specific to the Hook language. It would be desirable
for the type system of the Hook language to enable a compile-time check, such that it can locate
which interaction within composed interactions makes changes that overlap with others. This
check would be especially worthwhile when programmers define complex compositions.

Optimizations. In the example shown in Figure 1, the programmer was able to use their intuition
to remove unnecessary procedures from the implementation of r. For instance, the programmer
already merged the logic of p and q in their mind; therefore, the programmer was able to directly
substitute 0, the result of q, to the green field and simply ignored 255, the result of p. Meanwhile,
the current Hook language compiler does not perform any domain-specific optimizations, expect
it delegates to the lazy semantics of Haskell to prevent evaluating unnecessary expressions in the
generated host language code. Future work should consider employing “defunctionalization” [45]
to detect and eliminate redundant expressions, possibly side-effects as well, at compile-time while
the resulting code still follows the Δ algebraic laws at run-time.

Abstractions. The host language of our choice, Haskell, influenced the current language design
in terms of the relationships between patterns and world transformers. There are indeed other
programming languages that could satisfy preconditions for implementing the Hook language
compiler. Future work should consider exploring other host language implementations, especially
those commonly used for implementing interactive applications, to extend the current language
design with abstractions inspired by those implementations.

User studies. Lastly, future work should consider conducting a user study to evaluate the current
design of the language with programmers from various backgrounds. It would be desirable that
the user study finds which groups of programmers based on their skill sets can benefit from the
language as well as the economic acceptance of the language. In addition, we hope that user studies
motivate researchers to explore what kind of implicit interactions that computers initiate can bring
benefits to humans. For this, the Hook language is ready to handle more complex, sophisticated
user status patterns than the simple ones shown in this paper.

6.3 Implications for Interaction Algebra
This paper showed the two types of interactions, explicit and implicit, are composable. Taking a
step forward, we now touch on the feasibility of defining algebraic specifications for “interaction”
beyond the semantics of the Hook language. In concept, the Hook language lifts the event handler
and user status handler logics to the Interaction type so that programmers can treat them as
composable units at the type level. Inspired by Polaris [58] introducing Table Algebra, the following
is our early attempt to explain “interaction composition” found in the Hook language, as a part of
Interaction Algebra, using the plus (+) operator.

26 Shibata, Ahrens, and Jacob

In the Hook language, interaction is an ordered set of pairs of a pattern and world transformer.
Therefore, using the vocabularies from Computational Model section, let 𝑒 be an instance of explicit
interaction that has the form s.t. 𝑒 = {(𝑝𝑒1, 𝑡𝑒1), ..., (𝑝𝑒𝑛, 𝑡𝑒𝑛)} and let 𝑖 be an instance of implicit
interaction that has the form s.t. 𝑖 = {(𝑝𝑢1, 𝑡𝑢1), ..., (𝑝𝑢𝑚, 𝑡𝑢𝑚)}. For space, let us consider an example
case where each of 𝑒 and 𝑖 associates with two patterns; that is, 𝑒 = {(𝑝𝑒1, 𝑡𝑒1), (𝑝𝑒2, 𝑡𝑒2)} and
𝑖 = {(𝑝𝑢1, 𝑡𝑢1), (𝑝𝑢2, 𝑡𝑢2)}.

To explain the application order of the two interactions in using the plus operator, let us define
that the left hand side of the operator is the interaction that internally runs first. Then, the
interaction compositions, 𝑒 + 𝑖 and 𝑖 + 𝑒 , will be defined as follows, where the plus operator
for world transformers could be defined on top of the Δ algebraic laws and function composition
because world transformers are apparently functions. For example, in ((𝑝𝑒1, 𝑝𝑢1), (𝑡𝑒1+𝑡𝑢1)), we
could see (𝑡𝑒1+𝑡𝑢1) as 𝜆𝑥𝑤 .𝑡𝑢1 (𝑡𝑒1 (𝑥𝑤)) and (𝑝𝑒1, 𝑝𝑢1) as a lexical environment that the 𝜆 has access
to.

𝑒 + 𝑖 = {((𝑝𝑒1, 𝑝𝑢1), (𝑡𝑒1+𝑡𝑢1)), ((𝑝𝑒1, 𝑝𝑢2), (𝑡𝑒1+𝑡𝑢2))
, ((𝑝𝑒2, 𝑝𝑢1), (𝑡𝑒2+𝑡𝑢1)), ((𝑝𝑒2, 𝑝𝑢2), (𝑡𝑒2+𝑡𝑢2))}

𝑖 + 𝑒 = {((𝑝𝑒1, 𝑝𝑢1), (𝑡𝑢1+𝑡𝑒1)), ((𝑝𝑒1, 𝑝𝑢2), (𝑡𝑢2+𝑡𝑒1))
, ((𝑝𝑒2, 𝑝𝑢1), (𝑡𝑢1+𝑡𝑒2)), ((𝑝𝑒2, 𝑝𝑢2), (𝑡𝑢2+𝑡𝑒2))}

At the same time, 𝑒𝑥 + 𝑒𝑦 and 𝑖𝑥 + 𝑖𝑦 will be defined by simply using the set union.
To specify an event pattern in e, let us leverage subscript square brackets ([]), assume 𝑝𝑒𝑠 ⊆ 𝑝𝑒1,
and then define the interaction composition as follows.

𝑒 [𝑝𝑒1] + 𝑖 = {((𝑝𝑒1, 𝑝𝑢1), (𝑡𝑒1+𝑡𝑢1)), ((𝑝𝑒1, 𝑝𝑢2), (𝑡𝑒1+𝑡𝑢2)), (𝑝𝑒2, 𝑡𝑒2)}
𝑖 + 𝑒 [𝑝𝑒2] = {(𝑝𝑒1, 𝑡𝑒1), ((𝑝𝑒2, 𝑝𝑢1), (𝑡𝑢1+𝑡𝑒2)), ((𝑝𝑒2, 𝑝𝑢2), (𝑡𝑢2+𝑡𝑒2))}
𝑒 [𝑝𝑒𝑠] + 𝑖 = {((𝑝𝑒𝑠 , 𝑝𝑢1), (𝑡𝑒1+𝑡𝑢1)), ((𝑝𝑒𝑠 , 𝑝𝑢2), (𝑡𝑒1+𝑡𝑢2)), (𝑝𝑒1, 𝑡𝑒1), (𝑝𝑒2, 𝑡𝑒2)}

Similarly, complex compositions will be defined as follows.
(𝑒 [𝑝𝑒1] + 𝑖) [𝑝𝑒2] + 𝑖 = {((𝑝𝑒1, 𝑝𝑢1), (𝑡𝑒1+𝑡𝑢1)), ((𝑝𝑒1, 𝑝𝑢2), (𝑡𝑒1+𝑡𝑢2))

, ((𝑝𝑒2, 𝑝𝑢1), (𝑡𝑒2+𝑡𝑢1)), ((𝑝𝑒2, 𝑝𝑢2), (𝑡𝑒2+𝑡𝑢2))}
𝑖 + (𝑒 [𝑝𝑒1] + 𝑖) [𝑝𝑒2] = {((𝑝𝑒1, 𝑝𝑢1), (𝑡𝑒1+𝑡𝑢1)), ((𝑝𝑒1, 𝑝𝑢2), (𝑡𝑒1+𝑡𝑢2))

, ((𝑝𝑒2, 𝑝𝑢1), (𝑡𝑢1+𝑡𝑒2)), ((𝑝𝑒2, 𝑝𝑢2), (𝑡𝑢2+𝑡𝑒2))}
Lastly, to specify a fusion strategy, let us decorate4 the plus operator and define so that we use
<+> (and + as well) for merge, +> for overwrite, and <+ for tweak, where missing < or > indicates
throwing away changes made solely by the world transformer placed at that side.

𝑒 [𝑝𝑒1] <+> 𝑖 = {((𝑝𝑒1, 𝑝𝑢1), (𝑡𝑒1<+>𝑡𝑢1)), ((𝑝𝑒1, 𝑝𝑢2), (𝑡𝑒1<+>𝑡𝑢2)), (𝑝𝑒2, 𝑡𝑒2)}
𝑒 [𝑝𝑒1] +> 𝑖 = {((𝑝𝑒1, 𝑝𝑢1), (𝑡𝑒1 +>𝑡𝑢1)), ((𝑝𝑒1, 𝑝𝑢2), (𝑡𝑒1 +>𝑡𝑢2)), (𝑝𝑒2, 𝑡𝑒2)}
𝑒 [𝑝𝑒1] <+ 𝑖 = {((𝑝𝑒1, 𝑝𝑢1), (𝑡𝑒1<+ 𝑡𝑢1)), ((𝑝𝑒1, 𝑝𝑢2), (𝑡𝑒1<+ 𝑡𝑢2)), (𝑝𝑒2, 𝑡𝑒2)}

We acknowledge that there is still room we need to fill in to define “interaction composition” in
detail. (e.g., overlaps in patterns, etc.) Yet, we envision that introducing formalism brings two
potential benefits in the field of Human-Computer Interaction. First, it may allow us to import
theories and tools developed in the field of Programming Language researches. For example, since
the presented computational model defines world transformers using the form of functions, we
may be able to naturally apply and take advantage of existing tools that analyze properties of
functions. Second, it may allow us to expand design spaces beyond the kinds of user interface
designs. For example, there exist classes of user interfaces whose interactive behaviors involve
explicit interactions. (e.g., GUI, Tangible User Interfaces (TUI) [22], and so on, although event-
equivalent tokens, associated with “constraint” [51], in TUI may look different from ones in GUI.)
Plus, there exist classes of user interfaces whose interactive behaviors involve implicit interactions.
4Like the winged star (<*>) operator for Applicative apply in Haskell.

Hook: An Embedded Domain-Specific Language for Fusing Implicit Interactions to Explicit Event Handlers 27

(e.g., Passive Brain-Computer Interfaces (BCI) [63], Implicit BCI [56], Affective Computing [44],
Attentive or Attentional User Interfaces (AUI) [21, 59], and so on.) Consequently, if we can extract
explicit and implicit interactions from those user interface designs, then the algebraic specifications
for “interaction” may allow us to design a combination of two kinds of user interfaces—e.g., (TUI +
Implicit BCI)—and further compare two different combinations of user interfaces based on their
complexity—e.g., (GUI + Implicit BCI) compared to (TUI + Passive BCI)—systematically, even
without having their actual implementations.

7 CONCLUSION
As machine capabilities advance, opportunities to design implicit interactions will likely continue
to grow beyond explicit ones. As a result, programmers using the current tools to implement combi-
nations of the explicit and implicit interactions will face increasing modularity and clarity problems
due to the growing complexity. In this paper, we have introduced the Hook language, wherein
programmers using the language can treat explicit and implicit interactions independently and can
specify their composition declaratively. The Hook language made this possible by providing the set
of abstractions for describing the two types of interactions as parameterized world transformation
functions plus the fusion strategies for gluing results of the two interactions. Our case studies
demonstrated that theHook language—agnostic to events, user status, and application states—could
tackle a range of arbitrary (GUI) applications and that programmers could maintain modularity
and clarity of their code when extending interactive behaviors of existing interactive systems with
implicit interactions. Lastly, we discussed the design choices we made on achieving separation of
concerns and algorithmic precision and the limitations in the current language implementation for
future work, as well as the implications beyond the concept of the Hook language toward defining
Interaction Algebra. We hope that the Hook language encourages programmers to take a step
toward designing more implicit interactions and contributes to making interactive systems more
aware of their users.

ACKNOWLEDGMENTS
We would like to thank Remco Chang, Jeff Foster, Kathleen Fisher from Tufts University, and Jones
Yu from Wentworth Institute of Technology for their valuable insights into this work.

REFERENCES
[1] Daniel Afergan, Tomoki Shibata, Samuel W. Hincks, Evan M. Peck, Beste F. Yuksel, Remco Chang, and Robert J. K. Jacob.

2014. Brain-Based Target Expansion. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and
Technology (Honolulu, Hawaii, USA) (UIST ’14). Association for Computing Machinery, New York, NY, USA, 583–593.
https://doi.org/10.1145/2642918.2647414

[2] Alan Borning and Robert Duisberg. 1986. Constraint-Based Tools for Building User Interfaces. ACM Trans. Graph. 5, 4
(Oct. 1986), 345–374. https://doi.org/10.1145/27623.29354

[3] Andreas Bulling and Thorsten O. Zander. 2014. Cognition-Aware Computing. IEEE Pervasive Computing 13, 3 (2014),
80–83. https://doi.org/10.1109/MPRV.2014.42

[4] Daniel Buschek and Florian Alt. 2017. ProbUI: Generalising Touch Target Representations to Enable Declarative
Gesture Definition for Probabilistic GUIs. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery, New York, NY, USA, 4640–4653.
https://doi.org/10.1145/3025453.3025502

[5] Fredy Cuenca, Jan Van den Bergh, Kris Luyten, and Karin Coninx. 2015. Hasselt UIMS: A Tool for DescribingMultimodal
Interactions with Composite Events. In Proceedings of the 7th ACM SIGCHI Symposium on Engineering Interactive
Computing Systems (Duisburg, Germany) (EICS ’15). Association for Computing Machinery, New York, NY, USA,
226–229. https://doi.org/10.1145/2774225.2775437

[6] Evan Czaplicki. 2012. Elm: Concurrent frp for functional guis. (2012). https://elm-lang.org/assets/papers/concurrent-
frp.pdf

https://doi.org/10.1145/2642918.2647414
https://doi.org/10.1145/27623.29354
https://doi.org/10.1109/MPRV.2014.42
https://doi.org/10.1145/3025453.3025502
https://doi.org/10.1145/2774225.2775437
https://elm-lang.org/assets/papers/concurrent-frp.pdf
https://elm-lang.org/assets/papers/concurrent-frp.pdf

28 Shibata, Ahrens, and Jacob

[7] Edsger W. Dijkstra. 1982. On the Role of Scientific Thought. Springer New York, New York, NY, 60–66. https:
//doi.org/10.1007/978-1-4612-5695-3_12

[8] Bruno Dumas, Denis Lalanne, Dominique Guinard, Reto Koenig, and Rolf Ingold. 2008. Strengths and Weaknesses
of Software Architectures for the Rapid Creation of Tangible and Multimodal Interfaces. In Proceedings of the 2nd
International Conference on Tangible and Embedded Interaction (Bonn, Germany) (TEI ’08). Association for Computing
Machinery, New York, NY, USA, 47–54. https://doi.org/10.1145/1347390.1347403

[9] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi. 2009. A Functional I/O System or,
Fun for Freshman Kids. In Proceedings of the 14th ACM SIGPLAN International Conference on Functional Programming
(Edinburgh, Scotland) (ICFP ’09). ACM, New York, NY, USA, 47–58. https://doi.org/10.1145/1596550.1596561

[10] Kathleen Fisher, Nate Foster, David Walker, and Kenny Q. Zhu. 2011. Forest: A Language and Toolkit for Programming
with Filestores. In Proceedings of the 16th ACM SIGPLAN International Conference on Functional Programming (Tokyo,
Japan) (ICFP ’11). Association for Computing Machinery, New York, NY, USA, 292–306. https://doi.org/10.1145/
2034773.2034814

[11] Kathleen Fisher and Robert Gruber. 2005. PADS: A Domain-Specific Language for Processing Ad Hoc Data. In
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation (Chicago,
IL, USA) (PLDI ’05). Association for Computing Machinery, New York, NY, USA, 295–304. https://doi.org/10.1145/
1065010.1065046

[12] Mark A. Flecchia and R. Daniel Bergeron. 1986. Specifying Complex Dialogs in ALGAE. In Proceedings of the SIGCHI/GI
Conference on Human Factors in Computing Systems and Graphics Interface (Toronto, Ontario, Canada) (CHI ’87).
Association for Computing Machinery, New York, NY, USA, 229–234. https://doi.org/10.1145/29933.275635

[13] Laurent George and Anatole Lécuyer. 2010. An overview of research on ”passive” brain-computer interfaces for
implicit human-computer interaction. In International Conference on Applied Bionics and Biomechanics ICABB 2010 -
Workshop W1 ”Brain-Computer Interfacing and Virtual Reality”. Venise, Italy. https://hal.inria.fr/inria-00537211

[14] Tovi Grossman and Ravin Balakrishnan. 2005. The Bubble Cursor: Enhancing Target Acquisition by Dynamic
Resizing of the Cursor’s Activation Area. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Portland, Oregon, USA) (CHI ’05). Association for Computing Machinery, New York, NY, USA, 281–290.
https://doi.org/10.1145/1054972.1055012

[15] David Harel. 1988. On Visual Formalisms. Commun. ACM 31, 5 (May 1988), 514–530. https://doi.org/10.1145/42411.
42414

[16] H. Rex Hartson, Antonio C. Siochi, and D. Hix. 1990. The UAN: A User-Oriented Representation for Direct Manipulation
Interface Designs. ACM Trans. Inf. Syst. 8, 3 (July 1990), 181–203. https://doi.org/10.1145/98188.98191

[17] Zef Hemel and Eelco Visser. 2011. Declaratively Programming the Mobile Web with Mobl. In Proceedings of the 2011
ACM International Conference on Object Oriented Programming Systems Languages and Applications (Portland, Oregon,
USA) (OOPSLA ’11). Association for Computing Machinery, New York, NY, USA, 695–712. https://doi.org/10.1145/
2048066.2048121

[18] Ralph D. Hill. 1986. Supporting Concurrency, Communication, and Synchronization in Human-Computer Interac-
tion—the Sassafras UIMS. ACM Trans. Graph. 5, 3 (July 1986), 179–210. https://doi.org/10.1145/24054.24055

[19] Ralph D. Hill. 1992. The Abstraction-Link-View Paradigm: Using Constraints to Connect User Interfaces to Applications.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Monterey, California, USA) (CHI ’92).
Association for Computing Machinery, New York, NY, USA, 335–342. https://doi.org/10.1145/142750.142828

[20] Kasper Hornbæk and Antti Oulasvirta. 2017. What Is Interaction?. In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery, New York,
NY, USA, 5040–5052. https://doi.org/10.1145/3025453.3025765

[21] Eric Horvitz, Carl Kadie, Tim Paek, and David Hovel. 2003. Models of Attention in Computing and Communication:
From Principles to Applications. Commun. ACM 46, 3 (March 2003), 52–59. https://doi.org/10.1145/636772.636798

[22] Hiroshi Ishii and Brygg Ullmer. 1997. Tangible Bits: Towards Seamless Interfaces between People, Bits and Atoms. In
Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (Atlanta, Georgia, USA) (CHI ’97).
Association for Computing Machinery, New York, NY, USA, 234–241. https://doi.org/10.1145/258549.258715

[23] Robert J. K. Jacob. 1983. Using Formal Specifications in the Design of a Human-Computer Interface. Commun. ACM
26, 4 (April 1983), 259–264. https://doi.org/10.1145/2163.358093

[24] Robert J. K. Jacob. 1985. A state transition diagram language for visual programming. Computer 8 (1985), 51–59.
[25] Robert J. K. Jacob. 1996. A visual language for non-WIMP user interfaces. In Proceedings 1996 IEEE Symposium on

Visual Languages. 231–238. https://doi.org/10.1109/VL.1996.545292
[26] Robert J. K. Jacob, Leonidas Deligiannidis, and Stephen Morrison. 1999. A Software Model and Specification Language

for Non-WIMP User Interfaces. ACM Trans. Comput.-Hum. Interact. 6, 1 (March 1999), 1–46. https://doi.org/10.1145/
310641.310642

https://doi.org/10.1007/978-1-4612-5695-3_12
https://doi.org/10.1007/978-1-4612-5695-3_12
https://doi.org/10.1145/1347390.1347403
https://doi.org/10.1145/1596550.1596561
https://doi.org/10.1145/2034773.2034814
https://doi.org/10.1145/2034773.2034814
https://doi.org/10.1145/1065010.1065046
https://doi.org/10.1145/1065010.1065046
https://doi.org/10.1145/29933.275635
https://hal.inria.fr/inria-00537211
https://doi.org/10.1145/1054972.1055012
https://doi.org/10.1145/42411.42414
https://doi.org/10.1145/42411.42414
https://doi.org/10.1145/98188.98191
https://doi.org/10.1145/2048066.2048121
https://doi.org/10.1145/2048066.2048121
https://doi.org/10.1145/24054.24055
https://doi.org/10.1145/142750.142828
https://doi.org/10.1145/3025453.3025765
https://doi.org/10.1145/636772.636798
https://doi.org/10.1145/258549.258715
https://doi.org/10.1145/2163.358093
https://doi.org/10.1109/VL.1996.545292
https://doi.org/10.1145/310641.310642
https://doi.org/10.1145/310641.310642

Hook: An Embedded Domain-Specific Language for Fusing Implicit Interactions to Explicit Event Handlers 29

[27] Wendy Ju. 2015. The design of implicit interactions. Synthesis Lectures on Human-Centered Informatics 8, 2 (2015),
1–93.

[28] David J. Kasik. 1982. A User Interface Management System. SIGGRAPH Comput. Graph. 16, 3 (July 1982), 99–106.
https://doi.org/10.1145/965145.801268

[29] Kenrick Kin, Björn Hartmann, Tony DeRose, and Maneesh Agrawala. 2012. Proton: Multitouch Gestures as Regular
Expressions. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Austin, Texas, USA) (CHI
’12). Association for Computing Machinery, New York, NY, USA, 2885–2894. https://doi.org/10.1145/2207676.2208694

[30] Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent Bouillon, Murielle Florins, and Daniela Trevisan.
2004. USIXML: A User Interface Description Language for Context-Sensitive User Interfaces. In Proceedings of the ACM
AVI’2004 Workshop "Developing User Interfaces with XML: Advances on User Interface Description Languages". 55–62.

[31] Mathieu Magnaudet, Stéphane Chatty, Stéphane Conversy, Sébastien Leriche, Celia Picard, and Daniel Prun. 2018.
Djnn/Smala: A Conceptual Framework and a Language for Interaction-Oriented Programming. Proc. ACM Hum.-
Comput. Interact. 2, EICS, Article 12 (June 2018), 27 pages. https://doi.org/10.1145/3229094

[32] Ingo Maier and Martin Odersky. 2012. Deprecating the Observer Pattern with Scala.React. (2012), 20. http://infoscience.
epfl.ch/record/176887

[33] Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper, Michael Greenberg, Aleks Bromfield, and Shriram
Krishnamurthi. 2009. Flapjax: A Programming Language for Ajax Applications. In Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and Applications (Orlando, Florida, USA) (OOPSLA ’09).
Association for Computing Machinery, New York, NY, USA, 1–20. https://doi.org/10.1145/1640089.1640091

[34] Brad A. Myers. 1990. A New Model for Handling Input. ACM Trans. Inf. Syst. 8, 3 (July 1990), 289–320. https:
//doi.org/10.1145/98188.98204

[35] Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg, Brad Vander Zanden, David S. Kosbie, Edward Pervin, Andrew
Mickish, and Philippe Marchal. 1990. Garnet: comprehensive support for graphical, highly interactive user interfaces.
Computer 23, 11 (1990), 71–85. https://doi.org/10.1109/2.60882

[36] David Navarre, Philippe Palanque, Jean-Francois Ladry, and Eric Barboni. 2009. ICOs: A Model-Based User Interface
Description Technique Dedicated to Interactive Systems Addressing Usability, Reliability and Scalability. ACM Trans.
Comput.-Hum. Interact. 16, 4, Article 18 (Nov. 2009), 56 pages. https://doi.org/10.1145/1614390.1614393

[37] William M. Newman. 1968. A System for Interactive Graphical Programming. In Proceedings of the April 30–May 2,
1968, Spring Joint Computer Conference (Atlantic City, New Jersey) (AFIPS ’68 (Spring)). Association for Computing
Machinery, New York, NY, USA, 47–54. https://doi.org/10.1145/1468075.1468083

[38] Jeffrey Nichols and Brad A. Myers. 2009. Creating a Lightweight User Interface Description Language: An Overview
and Analysis of the Personal Universal Controller Project. ACM Trans. Comput.-Hum. Interact. 16, 4, Article 17 (Nov.
2009), 37 pages. https://doi.org/10.1145/1614390.1614392

[39] Dan R. Olsen. 1986. MIKE: The Menu Interaction Kontrol Environment. ACM Trans. Graph. 5, 4 (Oct. 1986), 318–344.
https://doi.org/10.1145/27623.28868

[40] Dan R Olsen and Elizabeth P. Dempsey. 1983. SYNGRAPH: A Graphical User Interface Generator. In Proceedings of the
10th Annual Conference on Computer Graphics and Interactive Techniques (Detroit, Michigan, USA) (SIGGRAPH ’83).
Association for Computing Machinery, New York, NY, USA, 43–50. https://doi.org/10.1145/800059.801131

[41] Chethan Pandarinath, Paul Nuyujukian, Christine H Blabe, Brittany L Sorice, Jad Saab, Francis R Willett, Leigh R
Hochberg, Krishna V Shenoy, and Jaimie M Henderson. 2017. High performance communication by people with
paralysis using an intracortical brain-computer interface. eLife 6 (feb 2017), e18554. https://doi.org/10.7554/eLife.18554

[42] David L. Parnas. 1969. On the Use of Transition Diagrams in the Design of a User Interface for an Interactive Computer
System. In Proceedings of the 1969 24th National Conference (ACM ’69). Association for Computing Machinery, New
York, NY, USA, 379–385. https://doi.org/10.1145/800195.805945

[43] Fabio Paterno’, Carmen Santoro, and Lucio Davide Spano. 2009. MARIA: A Universal, Declarative, Multiple Abstraction-
Level Language for Service-Oriented Applications in Ubiquitous Environments. ACM Trans. Comput.-Hum. Interact.
16, 4, Article 19 (Nov. 2009), 30 pages. https://doi.org/10.1145/1614390.1614394

[44] Rosalind W. Picard. 1997. Affective Computing. MIT Press, Cambridge, MA, USA.
[45] François Pottier and Nadji Gauthier. 2004. Polymorphic Typed Defunctionalization. In Proceedings of the 31st ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Venice, Italy) (POPL ’04). Association for
Computing Machinery, New York, NY, USA, 89–98. https://doi.org/10.1145/964001.964009

[46] Phyllis Reisner. 1981. Formal Grammar and Human Factors Design of an Interactive Graphics System. IEEE Transactions
on Software Engineering SE-7, 2 (1981), 229–240. https://doi.org/10.1109/TSE.1981.234520

[47] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. 1999. The Context Toolkit: Aiding the Development of Context-
enabled Applications. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Pittsburgh,
Pennsylvania, USA) (CHI ’99). ACM, New York, NY, USA, 434–441. https://doi.org/10.1145/302979.303126

https://doi.org/10.1145/965145.801268
https://doi.org/10.1145/2207676.2208694
https://doi.org/10.1145/3229094
http://infoscience.epfl.ch/record/176887
http://infoscience.epfl.ch/record/176887
https://doi.org/10.1145/1640089.1640091
https://doi.org/10.1145/98188.98204
https://doi.org/10.1145/98188.98204
https://doi.org/10.1109/2.60882
https://doi.org/10.1145/1614390.1614393
https://doi.org/10.1145/1468075.1468083
https://doi.org/10.1145/1614390.1614392
https://doi.org/10.1145/27623.28868
https://doi.org/10.1145/800059.801131
https://doi.org/10.7554/eLife.18554
https://doi.org/10.1145/800195.805945
https://doi.org/10.1145/1614390.1614394
https://doi.org/10.1145/964001.964009
https://doi.org/10.1109/TSE.1981.234520
https://doi.org/10.1145/302979.303126

30 Shibata, Ahrens, and Jacob

[48] Albrecht Schmidt. 2000. Implicit human computer interaction through context. Personal technologies 4, 2-3 (2000),
191–199.

[49] Julia Schwarz, Scott Hudson, Jennifer Mankoff, and Andrew D. Wilson. 2010. A Framework for Robust and Flexible
Handling of Inputs with Uncertainty. In Proceedings of the 23nd Annual ACM Symposium on User Interface Software and
Technology (New York, New York, USA) (UIST ’10). Association for Computing Machinery, New York, NY, USA, 47–56.
https://doi.org/10.1145/1866029.1866039

[50] Barış Serim and Giulio Jacucci. 2019. Explicating Implicit Interaction: An Examination of the Concept and Challenges
for Research. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland
Uk) (CHI ’19). ACM, New York, NY, USA, Article 417, 16 pages. https://doi.org/10.1145/3290605.3300647

[51] Orit Shaer, Nancy Leland, Eduardo H Calvillo-Gamez, and Robert J. K. Jacob. 2004. The TAC paradigm: specifying
tangible user interfaces. Personal and Ubiquitous Computing 8, 5 (2004), 359–369.

[52] Tim Sheard and Simon Peyton Jones. 2002. Template Meta-Programming for Haskell. In Proceedings of the 2002 ACM
SIGPLAN Workshop on Haskell (Pittsburgh, Pennsylvania) (Haskell ’02). Association for Computing Machinery, New
York, NY, USA, 1–16. https://doi.org/10.1145/581690.581691

[53] Tomoki Shibata, Alena Borisenko, Anzu Hakone, Tal August, Leonidas Deligiannidis, Chen-Hsiang Yu, Matthew
Russell, Alex Olwal, and Robert J. K. Jacob. 2019. An Implicit Dialogue Injection System for Interruption Management.
In Proceedings of the 10th Augmented Human International Conference 2019 (Reims, France) (AH2019). Association for
Computing Machinery, New York, NY, USA, Article 27, 9 pages. https://doi.org/10.1145/3311823.3311875

[54] Tomoki Shibata, Evan M. Peck, Daniel Afergan, Samuel W. Hincks, Beste F. Yuksel, and Robert J. K. Jacob. 2014.
Building Implicit Interfaces for Wearable Computers with Physiological Inputs: Zero Shutter Camera and Phylter. In
Proceedings of the Adjunct Publication of the 27th Annual ACM Symposium on User Interface Software and Technology
(Honolulu, Hawaii, USA) (UIST’14 Adjunct). Association for Computing Machinery, New York, NY, USA, 89–90.
https://doi.org/10.1145/2658779.2658790

[55] Ben Shneiderman. 1983. Direct Manipulation: A Step Beyond Programming Languages. Computer 16, 8 (1983), 57–69.
https://doi.org/10.1109/MC.1983.1654471

[56] Erin T. Solovey, Daniel Afergan, Evan M. Peck, Samuel W. Hincks, and Robert J. K. Jacob. 2015. Designing Implicit
Interfaces for Physiological Computing: Guidelines and Lessons Learned Using FNIRS. ACM Trans. Comput.-Hum.
Interact. 21, 6, Article 35 (Jan. 2015), 27 pages. https://doi.org/10.1145/2687926

[57] Erin T. Solovey, Paul Schermerhorn, Matthias Scheutz, Angelo Sassaroli, Sergio Fantini, and Robert J. K. Jacob. 2012.
Brainput: Enhancing Interactive Systems with Streaming Fnirs Brain Input. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (Austin, Texas, USA) (CHI ’12). Association for Computing Machinery, New York,
NY, USA, 2193–2202. https://doi.org/10.1145/2207676.2208372

[58] Chris Stolte, Diane Tang, and Pat Hanrahan. 2002. Polaris: a system for query, analysis, and visualization of mul-
tidimensional relational databases. IEEE Transactions on Visualization and Computer Graphics 8, 1 (2002), 52–65.
https://doi.org/10.1109/2945.981851

[59] Roel Vertegaal. 2003. Attentive user interfaces. Commun. ACM 46, 3 (2003), 30–33.
[60] Mark Weiser. 1999. The Computer for the 21st Century. SIGMOBILE Mob. Comput. Commun. Rev. 3, 3 (July 1999), 3–11.

https://doi.org/10.1145/329124.329126
[61] Chen-Hsiang Yu and Robert C. Miller. 2010. Enhancing Web Page Readability for Non-Native Readers. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems (Atlanta, Georgia, USA) (CHI ’10). Association for
Computing Machinery, New York, NY, USA, 2523–2532. https://doi.org/10.1145/1753326.1753709

[62] Beste F. Yuksel, Kurt B. Oleson, Lane Harrison, Evan M. Peck, Daniel Afergan, Remco Chang, and Robert J. K. Jacob.
2016. Learn Piano with BACh: An Adaptive Learning Interface That Adjusts Task Difficulty Based on Brain State. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (San Jose, California, USA) (CHI ’16).
Association for Computing Machinery, New York, NY, USA, 5372–5384. https://doi.org/10.1145/2858036.2858388

[63] Thorsten O Zander and Christian Kothe. 2011. Towards passive brain–computer interfaces: applying brain–computer
interface technology to human–machine systems in general. Journal of Neural Engineering 8, 2 (mar 2011), 025005.
https://doi.org/10.1088/1741-2560/8/2/025005

https://doi.org/10.1145/1866029.1866039
https://doi.org/10.1145/3290605.3300647
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/3311823.3311875
https://doi.org/10.1145/2658779.2658790
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1145/2687926
https://doi.org/10.1145/2207676.2208372
https://doi.org/10.1109/2945.981851
https://doi.org/10.1145/329124.329126
https://doi.org/10.1145/1753326.1753709
https://doi.org/10.1145/2858036.2858388
https://doi.org/10.1088/1741-2560/8/2/025005

	Abstract
	1 Introduction
	2 Related Work
	2.1 Explicit and Implicit Interactions
	2.2 Formal Specifications
	2.3 Domain-Specific Language (DSL)

	3 The Hook Language
	3.1 Abstracting Interactions as World Transformation Functions
	3.2 Expressing Interactions
	3.3 Composing Interactions
	3.4 Complex Compositions
	3.5 Implementation Considerations

	4 Computational Model
	4.1 Mathematical Notations
	4.2 Abstract Syntax and Semantics

	5 Evaluation
	5.1 Case Study 1: Target Acquisitions
	5.2 Case Study 2: Readability Enhancement
	5.3 Case Study 3: No explicit user events

	6 Discussion and Future Work
	6.1 Design Choices
	6.2 Limitations
	6.3 Implications for Interaction Algebra

	7 Conclusion
	Acknowledgments
	References

