
Do Now Exercise
To prepare you for the lecture today, please do the following exercise.

In regards to P3, list as many types of input arrays
with different characteristics as you can come up.

1

COMP15: Data Structures
Week 6, Summer 2019

2

Admin

3

P3: Sorter
Project Due by 6pm on Sunday, June 30

4

Grading Rubrics for P3 (the report part)
30 points

- sorting time graphs (15 points)
- discussion (15 points)

for your report, consider the following cases:
 a) list is in order
 b) list is reversed
 c) list is randomized
 d) list has lots of copies of the same number
 e) what happens as the number of random elements gets massive (~100 million elements)?
 f) consider discussing your findings in terms of big-O notation - do you see what you'd expect?

Questions about P3?

6

Midterm Exam
on Wednesday, July 3rd

7

Midterm Exam
● in class; 90 mins

● closed books, closed notes, no electronic devices

● You can bring a sheet of paper (US letter size) with your handwritten notes.
We will collect your paper at the end of the exam, so please put your name on it.

● Topics include everything from the lectures, in-class activities, labs,
programming projects and Teach Yourself reports that we have done so far.
(L6 and P3 are included.)

Midterm Exam Format
● About 10 big questions in total, each could involve sub-questions.

● Type of questions
○ (Given fragments of program code,) implement XXX functions/methods
○ Fill in blanks (terminologies, asymptotic running time, etc.)
○ Multiple choices and justification (Which XXX would you use and why?)
○ Sketch what happens in memory when XXX.
○ Short answers (Give a high-level description of a data structure that supports XXX operations.

Give a high-level description of how XXX works. List operations on data structure XXX and
their asymptotic running times. How would you implement XXX. etc.)

○ Given a function, write some use cases. Give suggestions on how you update it for XXX.
○ etc.

Question about the Midterm Exam?

Sorting (cont.)

11

● Selection sort (Week 5)

● Insertion sort (P3)
● Merge sort (P3)
● Quicksort (P3)

● Counting sort (Week 6)
● Heap sort (Week 8)

12

Big-O
"asymptotically no larger than"
"asymptotic upper bound"

 is if:
- There exists a positive constant and
- There exists a positive value of such that
- for all .

A sneak peek preview (Comp 160, Algorithms)

Ref: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms. MIT press.
13

(Slide from Week 5)

Big-Ω
"asymptotically no smaller than"
"asymptotic lower bound"

 is if:
- There exists a positive constant and
- There exists a positive value of such that
- for all .

A sneak peek preview (Comp 160, Algorithms)

Ref: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms. MIT press.
14

(Slide from Week 5)

Big-Θ
"asymptotically equal to"

 is if and only if:
- is and
- is .

A sneak peek preview (Comp 160, Algorithms)

Ref: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms. MIT press.
15

(Slide from Week 5)

(draw graphs on the whiteboard)

Running Time Complexity of
Sorting Algorithms

Selection sort

(Notes from the live demo or live coding. Please do NOT assume the code is complete.)

Worst-case running time

Best-case running time

Selection sort

Worst-case:
Best-case:

Insertion sort

(Notes from the live demo or live coding. Please do NOT assume the code is complete.)

012 345 67 89

24

Do Now Exercise
To prepare you for the lecture today, please do the following exercise.

In regards to P3, list as many types of input arrays
with different characteristics as you can come up.

25

Do Now Exercise
Students' answers:

●

26

Insertion sort

(Notes from the live demo or live coding. Please do NOT assume the code is complete.)

0123456 7 8 9

29

(Notes from the live demo or live coding. Please do NOT assume the code is complete.)

01 2 3 4 5 6 7 8 9

30

0

Insertion sort

Worst-case:
Best-case:

In-place

Merge sort

Divide and conquer

35

012 345 67 89

(Notes from the live demo or live coding. Please do NOT assume the code is complete.)

36

0 36 892 5 71 4

(merge sort, very rough procedures, not precise)

mergeSort(A, /* (your will figure out) */)
 if /* (check stop condition) */
 find the middle of A
 mergeSort(A, /* (represent first half) */)
 mergeSort(A, /* (represent second half) */)
 merge(A, /* (first half and second half) */)

(Notes from the live demo or live coding. Please do NOT assume the code is complete.)

 (We used the whiteboard to derive)

(Notes from the live demo or live coding. Please do NOT assume the code is complete.)

Master theorem
(Introduced only the word...)

A sneak peek preview (Comp 160, Algorithms)

Stable

Merge sort

Worst-case:
Best-case:
(In-place: No)
(Stable: Yes)

Quicksort

44

012 345 67 89

(Notes from the live demo or live coding. Please do NOT assume the code is complete.)

... ...
45

0

123 45

6 7 8

9

(Notes from the live demo or live coding. Please do NOT assume the code is complete.)

46

pivot selection
partition phase

47

(Notes from the live demo or live coding. Please do NOT assume the code is complete.)

48

1 2 3 4 5 6 7 8

9

0

Randomly pick the pivot

(Notes from the live demo or live coding. Please do NOT assume the code is complete.)

50

01

2

3 4 5 6 7 8 90

Median-of-3 partition

(Notes from the live demo or live coding. Please do NOT assume the code is complete.)

52

01 2 3 4
5

6 7 8 90

Average case running time

Quicksort

Worst-case:
Average-case:
(In-place: Yes)
(Stable: No (for the version we saw))

54

Counting sort

55

012 345 67 89

(Notes from the live demo or live coding. Please do NOT assume the code is complete.)

56

1 1 1 1 1 1 1 1 1 1

 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

bounded-universe
(fixed-)

Questions about sorting?

Trees

(Linked structure)
Hierarchical structure

Why trees?

How long does bool contain(TYPE item)
method of Array or LinkedList class take?

(tree examples)

Abstract Syntax Tree (AST)

A sneak peek preview (Comp 105, Programming Languages)

1 + 2;

1 + 2;
1 2

+

3 - 2 - 1;

3 - 2 - 1; - 1

-

3 2

1 * (2 + 3);

1 * (2 + 3); 1 +

*

2 3

Terminologies

tree

binary tree

ternary tree

GC

H

B

D

E

F

I

J

A K

L

M

N

O

binary tree

GC

H

B

D

E

F

I

J

A K

L

M

N

O

binary tree

node

GC

H

B

D

E

F

I

J

A K

L

M

N

O

binary tree

node
edge

GC

H

B

D

E

F

I

J

A K

L

M

N

O

binary tree root

GC

H

B

D

E

F

I

J

A K

L

M

N

O

binary tree root

leaf

GC

H

B

D

E

F

I

J

A K

L

M

N

O

binary tree root

internal node

leaf

GC

H

B

D

E

F

I

J

A K

L

M

N

O

binary tree node

(left) subtree (right) subtree

GC

H

B

D

E

F

I

J

A K

L

M

N

O

binary tree parent

children

node

GC

H

B

D

E

F

I

J

A K

L

M

N

O

binary tree

sibling

GC

H

B

D

E

F

I

J

A K

L

M

N

O

binary tree
ancestor

node

GC

H

B

D

E

F

I

J

A K

L

M

N

O

binary tree

descendant

node

GC

H

B

D

E

F

I

J

A K

L

M

N

O

binary tree
depth0

1

2

3

GC

H

B

D

E

F

I

J

A K

L

M

N

O

binary tree
height

GC

H

B

D

E

F

I

J

A K

L

M

N

O

binary tree
(balanced)

H

J

K

L

N

binary tree
(unbalanced)

D

Tree traversals

Pre-order traversal

GC

H

B

D

E

F

I

J

A K

L

M

N

O

In-order traversal

GC

H

B

D

E

F

I

J

A K

L

M

N

O

Post-order traversal

GC

H

B

D

E

F

I

J

A K

L

M

N

O

Depth-First Traversal

Level-order traversal

GC

H

B

D

E

F

I

J

A K

L

M

N

O

Breadth-First Traversal

In-Class Activity

101

arrays
linked lists
stacks
queues
(trees)

In Your Pocket
man ssh exit pwd cd ls
valgrind touch mkdir cp
rm rmdir mv cat head
tail less

102

Sorting Algorithms
- Selection sort
- Insertion sort
- Merge sort
- Quicksort
- Counting sort

Some keywords from today's lecture:

103

● running time complexity of sorting algorithms
● worst-case, best-case, average-case
● characteristics of input arrays
● in-place
● stable
● pivot selection, randomly, median-of-3
● counting sort
● bounded-universe
● tree
● hierarchical structure
● abstract syntax tree (AST)
● binary tree, ternary tree
● node, edge, root, leaf, internal node, subtree, children, sibling, ancestor, descendant,

depth, height, balanced, unbalanced
● pre-order, in-order, post-order (, level-order) tree traversal

To the lab!

104

