Do Now Exercise

To prepare you for the lecture today, please do the following exercise.

Try searching (walking) routes
from Halligan Hall

to Museum of Fine Arts, Boston
using Google Maps.

COMP15: Data Structures

Week 10, Summer 2019

Admin

T9: (Please check the course page for details)
Due by 6pm on Tuesday, July 30

T9: In-class Presentation
on Week 11 (Wednesday, July 31)

Questions about T9 and the presentation?

Feedbacks on P4 from Matt

P5: Word Frequency Database
Project Due by 6pm on Sunday, August 4

Questions about P57

Hash Tables

The running time of
put(), get(), remove() performed on a hash table
using chaining?

11

Worst-case: O(n)
Best-case: 0(1)
(Average-case: 0(1))

(Note: Plus the cost of generating a hash code and of the compression operation.
Worst-case: With an assumption that the put operation checks duplicates.
Average-case: With an assumption that a "good" hash function is used.)

Load factor and rehashing

13

Discussion:
What happens when the load factor is high?

14

Other ways to handling collisions

A sneak peek preview (Comp 160, Algorithms)

Open addressing
- Linear probing
- Quadratic probing
- Double hashing

Graph

Some Terminologies

Vertices (Nodes)

EEEEE

Undirected Edges

Undirected Graph

Directed Edges

Directed Graph (Digraph)

Connected Graph

Disconnected Graph

Self loop edge

&

CCCCC

- Parallel edges
- Strongly connected directed graph
- Weakly connected directed graph

Tree

Some notations

(a graph, a set of vertices and a set of edges)
(the number of vertices)

(the number of edges)

(an edge from v1 to v2; (or between v1 and v2))

(the weight of an edge from v1 to v2; (or between v1 and v2))

Graph

- add/remove vertex

- add/remove edge

- has edge between two vertices
- eftc.

Representing a graph

Adjacency Matrix

V1

V2

V3

V4

V5

V1

V2

V3

V4

V5

V1

V2

V3

V4

V5

Vi V2 V3 V4 V5
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

V1

V2

V3

V4

V5

Vi V2 V3 V4 V5
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

V1

V2

V3

V4

V5

Vi V2 V3 V4 V5
0 1 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

V1

V2

V3

V4

V5

Vi V2 V3 V4 V5
0 1 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

V1

V2

V3

V4

V5

Vi V2 V3 V4 V5
0 1 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

V1

V2

V3

V4

V5

Vi V2 V3 V4 V5
0 1 1 0 0
0 0 0 1 0
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

V1

V2

V3

V4

V5

Vi V2 V3 V4 V5
0 1 1 0 0
0 0 0 1 0
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0

V1

V2

V3

V4

V5

Vi V2 V3 V4 V5
0 1 1 0 0
0 0 0 1 0
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0

Adjacency List

V1

V2

V3

V4

V5

V1

V2

V3

V4

V5

V1

V2

V3

V4

V5

V1

V2

V3

V4

V5

V1

V2

V3

V4

V5

éé:

V1

V2

V3

V4

V5

3%

°°
0

[S—

°°
0

[S—

Discussion:
What is the worst-case running time of add/remove/has edge

operations performed on each of the adjacency matrix and
the adjacency list?

57

Discussion:
How much (memory) space does each of the adjacency
matrix and the adjacency list need?

58

Breadth-first search (BFS)

Breadth-first search (BFS)

o

Breadth-first search (BFS)

(7 -

o

(using a queue)

Breadth-first search (BFS)

(7 -

o

(color all vertices White)

Breadth-first search (BFS)

(start from A;

color A Gray; A is discovered.) e'e

Breadth-first search (BFS)

0@ -

o I

(enqueue A)

Breadth-first search (BFS)

@ -

(front and dequeue A) H E

Breadth-first search (BFS)

O -

Breadth-first search (BFS)

(7 -

!

(explore edges from A)

Breadth-first search (BFS)

-

-

(color B Gray; B is discovered.)

(4)(e)

i

Breadth-first search (BFS)

0@ -

2

(enqueue B)

(4)(e)

Breadth-first search (BFS)

0@ -

(color C Gray; C is discovered.) e e

(4)(e)(e)

Breadth-first search (BFS)

ol I, -

oz

(enqueue C)

(4)(e)(e)

Breadth-first search (BFS)

ol I, -

sz

(color A Black; done with A)

(4)(e)(e)

Breadth-first search (BFS)

Jelf -

(front and dequeue B) H E
A (=

(4)(e)(e)

eadth-first search (BFS)

®¢

(4)(e)(e)

o« [/l

A

Breadth-first search (BFS)

0@ -

(explore edges from B)

(4)(e)(e)

Breadth-first search (BFS)

-

(color D Gray; D is discovered.)

Breadth-first search (BFS)

Breadth-first search (BFS)

ol 1 | -

(color B Black; done with B)

(A)(e)(e) (o)

Breadth-first search (BFS)

®-® -

(front and dequeue C)

(A)(e)(e) (o)

eadth-first search (BFS)

©¢

(A)(e)(e) (o)

o | |

)—©

Breadth-first search (BFS)

0@ -

(explore edges from C)

(A)(e)(e) (o)

Breadth-first search (BFS)

0@ -

(color E Gray; E is discovered.)

(A)(e)(e)(o)(e)

Breadth-first search (BFS)

(A)(e)(e)(o)(e)

Breadth-first search (BFS)

ol 1, -

(color F Gray; F is discovered.)

(A)(e)(e) (o) (e)(F)

ol 1 1 BEe

<

—©
(A)(e)(e) (o) (e)(F)

eeeeeeeeee

Breadth-first search (BFS)

ol 1 1 BEe

(color C Black; done with C)

(A)(e)(e) (o) (e)(F)

Breadth-first search (BFS)

00 -

(front and dequeue

(A)(e)(e) (o) (e)(F)

eadth-first search (BFS)

©- 00 -

3%
P ”

Breadth-first search (BFS)

ol I -

(explore edges from D)

(A)(e)(e) (o) (e)(F)

Breadth-first search (BFS)

ol I -

(color D Black; done with D)

(A)(e)(e) (o) (e)(F)

Breadth-first search (BFS)

. Jalf -

(front and deque E)

(A)(e)(e) (o) (e)(F)

eadth-first search (BFS)

@@ :
3%

(A)(e)(e) (o) (e)(F)

Breadth-first search (BFS)

0@ -

(explore edges from E)

(A)(e)(e) (o) (e)(F)

Breadth-first search (BFS)

0@ -

(color G Gray; G is discovered.)

(&) (&) () () (e)(F)(e)

eeeeeeeeee

(&) (&) () () (e)(F)(e)

Breadth-first search (BFS)

af I -

(color E Black; done with E)

(&) (&) () () (e)(F)(e)

Breadth-first search (BFS)

. Jelf -

(front and dequeue F)

(&) (&) () () (e)(F)(e)

eadth-first search (BFS)

O .
%

(&) (&) () () (e)(F)(e)

Breadth-first search (BFS)

0@ -

(explore edges from F)

(&) (&) () () (e)(F)(e)

Breadth-first search (BFS)

0@ -

(color H Gray; H is discovered.)

(A)(e)(e)(2)(e)(F)(e) ()

(A)(e)(e)(2)(e)(F)(e) ()

Breadth-first search (BFS)

o 1 | -

(color F Black; done with F)

(A)(e)(e)(2)(e)(F)(e) ()

Breadth-first search (BFS)

Jelf -

(front and dequeue G)

(A)(e)(e)(2)(e)(F)(e) ()

Breadth-first search (BFS)

© 0@ -

(A)(e)(e)(2)(e)(F)(e) ()

Breadth-first search (BFS)

0@ -

(explore edges from G)

(A)(e)(e)(2)(e)(F)(e) ()

Breadth-first search (BFS)

0@ -

(color G Black; done with G)

(A)(e)(e)(2)(e)(F)(e) ()

Breadth-first search (BFS)

@ -

(front and dequeue H)

(A)(e)(e)(2)(e)(F)(e) ()

Breadth-first search (BFS)

® :
o

(A)(e)(e)(2)(e)(F)(e) ()

Breadth-first search (BFS)

(7 -

(explore edges from H)

(A)(e)(e)(2)(e)(F)(e) ()

Breadth-first search (BFS)

(7 -

(color H Black; done with H)

(A)(e)(e)(2)(e)(F)(e) ()

Breadth-first search (BFS)

(7 -

(done; The queue is now empty.)

(A)(e)(e)(2)(e)(F)(e) ()

Depth-first search (DFS)

Depth-first search (DFS)

o

Depth-first search (DFS)

-

(using a stack)

o

Depth-first search (DFS)

-

(color all vertices White)

2

Depth-first search (DFS)

- @

(start from A; push A) e e

Depth-first search (DFS)

- ®

o

(top A)

Depth-first search (DFS)

- ®

(color A Gray; A is discovered.)

Depth-first search (DFS)

- ®

(explore edges from A) E E

Depth-first search (DFS)

- QL0

o <

(push B)

Depth-first search (DFS)

- Ol

(start over; (not done with A yet)) e e

Depth-first search (DFS)

- O®

o

(top B)

Depth-first search (DFS)

-

(color B Gray; B is discovered.)

(4)(e)

Depth-first search (DFS)

-

(explore edges from B)

(4)(e)

®®

o

Depth-first search (DFS)

-

(push D)

(4)(e)

Depth-first search (DFS)

-

0@

(start over; (not done with B yet))

(4)(e)

_ i/l

Depth-first search (DFS)

(top D)

(4)(e)

-

LEO®

o

Depth-first search (DFS)

- ©OeO®

(color D Gray; D is discovered.) e e

(4)(e) (o)

Depth-first search (DFS)

- ©OeO®

(explore edges from D) E E

(4)(e) (o)

Depth-first search (DFS)

-

(color D Black; done with D)

(4)(e) (o)

Depth-first search (DFS)

QO L L

(pop D)

(4)(e) (o)

Depth-first search (DFS)

- @0

(4)(e) (o)

Depth-first search (DFS)

- ®®

(top B)

(4)(e) (o)

Depth-first search (DFS)

- ®®

(explore edges from B)

(4)(e) (o)

Depth-first search (DFS)

-

(color B Black; done with B)

(4)(e) (o)

Depth-first search (DFS)

o O

(pop B)

(4)(e) (o)

Depth-first search (DFS)

- &

(4)(e) (o)

Depth-first search (DFS)

- ®

(top A)

(4)(e) (o)

Depth-first search (DFS)

- ®

(explore edges from A)

(4)(e) (o)

Depth-first search (DFS)

- 90,

(push C)

(4)(e) (o)

Depth-first search (DFS)

- Ol

(start over; (not done with A yet))

(4)(e) (o)

Depth-first search (DFS)

- O®

(top C)

(4)(e) (o)

Depth-first search (DFS)

-

(color C Gray; C is discovered.)

Depth-first search (DFS)

-

(explore edges from C)

(((((((

Depth-first search (DFS)

-

(start over; (not done with C yet))

(A)(e) (o) ()

S)

OEO®

« Y

Depth-first search (DFS)

- OO®

(color E Gray; E is discovered.)

(A)(e) (o) (e)(e)

Depth-first search (DFS)

- OO®

(explore edges from E) E

B D

(A)(e) (o) (e)(e)

-first search (DFS)

W 0OO®

(A)(e) (o) (e)(e)

(((((((

Depth-first search (DFS)

- @@@@

(start over; (not done with E yet))

(A)(e) (o) (e)(e)

(A)(e) (o) (e)(e)

Depth-first search (DFS)

(a)(e) (o) (e)(e)(F)

Depth-first search (DFS)

-

(explore edges from F)

(a)(e) (o) (e)(e)(F)

(a)(e) (o) (e)(e)(F)

Depth-first search (DFS)

- @@@@@

(start r; (not done with F yet))

B D

(a)(e) (o) (e)(e)(F)

W 0O00O®

- ° e‘:":

(a)(e) (o) (e)(e)(F)

. 000O®

(color G Gray; G is discovered.) e e

(W) (&) () () (e)(F)(e)

. 000O®

(explore edges from G) E

(W) (&) () () (e)(F)(e)

Depth-first search (DFS)

W WOOOO®

. ° e‘:":

(W) (&) () () (e)(F)(e)

Depth-first search (DFS)

SROIOIICTOLY

(start over; (not done with G yet)) e e

B D

(W) (&) () () (e)(F)(e)

Depth-first search (DFS)

Y IWOOOO®

: <§ « 11

(W) (&) () () (e)(F)(e)

Depth-first search (DFS)

wOO0OO®

(color H Gray; H is discovered.) e e

(A)(e) () (e)(e)(F)(e)(n)

Depth-first search (DFS)

wOO0OO®

(explore edges from H) E E

(A)(e) () (e)(e)(F)(e)(n)

Depth-first search (DFS)

v 0000O®

(color H Black; done with H) e e
B D

(A)(e) () (e)(e)(F)(e)(n)

Depth-first search (DFS)

0 60066

. «:'4?

(A)(e) () (e)(e)(F)(e)(n)

Depth-first search (DFS)

v 0000

(A)(e) () (e)(e)(F)(e)(n)

Depth-first search (DFS)

. 000O®

- ° e‘:"?

(A)(e) () (e)(e)(F)(e)(n)

. 000O®

(explore edges from G) E
B D

(A)(e) () (e)(e)(F)(e)(n)

Depth-first search (DFS)

v Q00OO®

(color G Black; done with G) E
l ‘ |
(A © €
B D

(A)(e) () (e)(e)(F)(e)(n)

Depth-first search (DFS)

0 66606

. ° e‘:":

(A)(e) () (e)(e)(F)(e)(n)

W 000

(A)(e) () (e)(e)(F)(e)(n)

(A)(e) () (e)(e)(F)(e)(n)

(A)(e) () (e)(e)(F)(e)(n)

Depth-first search (DFS)

-

(color F Black; done with F)

(A)(e) () (e)(e)(F)(e)(n)

Depth-first search (DFS)

Qo 000

(A)(e) () (e)(e)(F)(e)(n)

- 000

(A)(e) () (e)(e)(F)(e)(n)

- OO®

: °°¢?'4i

(A)(e) () (e)(e)(F)(e)(n)

Depth-first search (DFS)

(A)(e) () (e)(e)(F)(e)(n)

Depth-first search (DFS)

-

(color E Black; done with E)

(A)(e) () (e)(e)(F)(e)(n)

Depth-first search (DFS)

= R L L

(pop E)
B D

(A)(e) () (e)(e)(F)(e)(n)

Depth-first search (DFS)

- 0

(A)(e) () (e)(e)(F)(e)(n)

- ©®

(top C)
B D

(A)(e) () (e)(e)(F)(e)(n)

Depth-first search (DFS)

(A)(e) () (e)(e)(F)(e)(n)

Depth-first search (DFS)

-

(color C Black; done with C)

(A)(e) () (e)(e)(F)(e)(n)

(A)(e) () (e)(e)(F)(e)(n)

O

B

(A)(e) () (e)(e)(F)(e)(n)

2%

(A)(e) () (e)(e)(F)(e)(n)

Depth-first search (DFS)

- ®

(explore edges from A)

(A)(e) () (e)(e)(F)(e)(n)

Depth-first search (DFS)

-

(color A Black; done with A)

(A)(e) () (e)(e)(F)(e)(n)

Depth-first search (DFS)

- O

(pop A)

(A)(e) () (e)(e)(F)(e)(n)

Depth-first search (DFS)

-

(done; The stack is now empty.)

(A)(e) () (e)(e)(F)(e)(n)

In-Class Activity

Operator Overloading

(Note: We didn't have time for this; will do next week.)

Do Now Exercise

To prepare you for the lecture today, please do the following exercise.

Try searching (walking) routes
from Halligan Hall

to Museum of Fine Arts, Boston
using Google Maps.

195

Discussion:
How could we find the shortest path
from Location A to Location B?

(watching a video)

(watching a video)
(Brute-force approach)

Single-source shortest-paths problem

Dijkstra’s algorithm

(Greedy algorithm)

(Notes from the live demo or live coding. Please do NOT assume the code is complete.)

(Notes from the live demo or live coding. Please do NOT assume the code is complete.)

(Notes from the live demo or live coding. Please do NOT assume the code is complete.)

distance

previous

(Notes from the live demo or live coding. Please do NOT assume the code is complete.)

distance

previous

(Notes from the live demo or live coding. Please do NOT assume the code is complete.)

distance previous

(A) | INFINFYO NONE

(B) | HNFINY 1 NONE A
(C) | INFINH¥4 NONE A
(D) | INFINHR¥ 3 NONE B
(E) | INFINHYE7 NONE C
(F) | HNFINHY 8 NONE C
(G) | INFINHRY 9 NONE E

(H) | INHNHR-42 10 NONEDF

In Your Pocket

/ /man ssh exit pwd cd Is\
darrays valgrind touch mkdir cp

rm rmdir mv cat head tail

I|nked I|StS less redirect (>, >>, <)

pipe (|) (echo, sort, uniq,

stacks we) diff grep clear

Kclang++ valgrind make /

quetes /Sortlng Algorithms)
treeS ISelerc;tlon Sor?
hea pS - Merge sort
- Quicksort
hash tables | -Hearsor

_- Counting sort

Qraphs j

207

Some keywords from today's lecture:

hash table, put, get, remove
load factor, rehashing
open addressing, linear probing, (quadratic probing, double hashing)
graph, vertex, edge
undirected graph, directed graph (digraph), connected/disconnected graph,
(self loop edge)
cycle
adjacency matrix, adjacency list
e Dbreadth-first search (BFS), depth-first search (DFS)
o using 3 colors (White, Gray, Black)

Single-source shortest-paths problem

(brute-force approach)
e Dijkstra’s algorithm, (Greedy algorithm)

208

To the lab!

