
Comp 15, Summer 2019 

Project 3: Sorter 

1. Introduction 
In this assignment, you will implement one module, Sorter, that sorts an array of integers in 
ascending order, in which the user of your Sorter module can specify which one of sorting 
algorithms is used, ​Insertion sort​, ​Merge sort​ or ​Quicksort​. After implementing your module, you 
will write a report about the three sorting algorithms. (See Section 4 for more details.) 
 
The code skeleton provides you with two files (​Sorter.hpp​, ​test.cpp​) and is under 
/comp/15/files/p3​ on the CS server. 
 

1. Log in to the CS homework server. 
2. Move to your ​comp15​ directory that you created in Lab 1. 
3. Create a directory named ​project3​ under the comp15 directory. 
4. Move to the project directory. 
5. Copy the code skeleton to the current working directory. 
6. Leverage the features of Git to manage your progress toward writing the program. 

 
Suggestion:​ Consider implementing the ​isSorted()​ function in ​test.cpp​ first. (See Another 
requirement section for more details.) 
 
You will at least need to create ​Sorter.cpp​ file by yourself. Note that the file name matters for 
the grading purpose and is case-sensitive. Note also that the public section of ​Sorter.hpp 
cannot be modified. Finally, you are expected to write your own tests in ​test.cpp​. 

2. Specifications 

Sorter class 
Sorter(); 

This sorter is initialized to be one whose sorting mode is set to be 
Mode::INSERTION_SORT​. 

 
Sorter(Mode mode); 

This sorter is initialized to be one whose sorting mode is set to be the given "mode". The 
given "mode" is one of ​Mode::INSERTION_SORT​, ​Mode::MERGE_SORT​, or 
Mode::QUICK_SORT​. 

 
 

1/3 



Comp 15, Summer 2019 

Sorter(const Sorter& other); 
Sorter& operator=(const Sorter& other); 

This sorter is initialized to be one that holds the same information that the given sorter 
holds. 

 
~Sorter(); 

You are supposed to release (memory) resources, if necessary. 
 
void sort(int* const array, int size) const; 

Sort the array of integers pointed by the given "array" in ascending order using the 
sorting algorithm that this sorter currently holds. The given "size" is the size of the given 
array. 
If the given "array" points to ​nullptr​ and/or if the given "size" is less than 1, then throw 
a ​std::invalid_argument​ exception with the message (case-sensitive): 
Invalid Argument 
 

void sort(int* const array, int size, Mode mode) const; 

Sort the array of integers pointed by the given "array" in ascending order using the 
sorting algorithm corresponding to the given sorting "mode". The given "size" is the size 
of the given array. 
If the given "array" points to ​nullptr​ and/or if the given "size" is less than 1, then throw 
a ​std::invalid_argument​ exception with the message (case-sensitive): 
Invalid Argument 
Note that calling this method does not change the sorting mode that this sorter holds. 

 
void set(Mode mode); 

Set the given "mode" to be the sorting mode that this sorter holds. 
 

Mode getMode() const; 

Return the sorting mode that this sorter holds. 

Another requirement 
Implement the following function in ​test.cpp​, and leverage it when testing your Sorter module. 
 

bool isSorted(int* const array, int size); 

Return ​true​ if the array of integers pointed by the given "array", whose size is the given 
"size", is sorted in ascending order; ​false​, otherwise. 

2/3 



Comp 15, Summer 2019 

3. Testing 
Modify the ​test.cpp​ by adding your own test cases to ensure that your modules function 
correctly. The given ​test.cpp​ includes two example test cases using assert(). You are 
encouraged to add as many test cases as necessary to make you feel confident about your 
modules. 

4. Writing a Report 
After implementing your Sorter module and testing its functionality, try using your module to sort 
a variety of arrays of integers, for example, of different sizes, of different characteristics, and so 
on. Then, write a report that includes a discussion of each sorting algorithm in terms of time 
complexity and includes any of your findings. 
 
The report should be precise and concise and should be at most one page long per sorting 
algorithm. The report should be submitted as ​PDF​. If you plan to perform an empirical analysis 
of sorting algorithms, similar to what we did in the In-Class Activity 3, you may find the 
/comp/15/files/a3/test.cpp​ file useful. It will be a good idea to use colors and to include figures 
in your report. 

5. README 
Create the README file that includes the following categories with appropriate section headers. 

1. Name​: The programmer's name. 
2. Date​: The last updated date of the program code, including README. 
3. Summary​: A brief summary of the project. (e.g. What does the program do? How do you 

use the modules? etc.) 
4. Files​: A list of files that are necessary to build and test the program. 
5. Instructions​: A sequence of commands to compile and test the program. Note that you 

are expected to report procedures without using the make command. 
6. References​: A list of citations to information used to complete the project. 
7. Post evaluation on planning​: Did your project go smoothly, as planned? If not, which 

parts were difficult? What were the causes? How will you improve your planning for 
future assignments? 

6. Submission 
Submit your files listed below using Gradescope. 
Files: ​Sorter.hpp Sorter.cpp test.cpp README report.pdf 

3/3 


