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Abstract

Methods for translating gene expression signatures into clinically relevant infor-

mation have typically relied upon having many samples from patients with similar

molecular phenotypes. Here, we address the question of what can be done when it is

relatively easy to obtain healthy patient samples, but when abnormalities correspond-

ing to disease states may be rare and one-of-a-kind. The associated computational

challenge, anomaly detection, is a well-studied machine learning problem. However,

due to the dimensionality and variability of expression data, existing methods based on

feature space analysis or individual anomalously-expressed genes are insufficient. We

present a novel approach, CSAX, that identifies pathways in an individual sample in

which the normal expression relationships are disrupted. To evaluate our approach, we

have compiled and released a compendium of public expression data sets, reformulated

to create a testbed for anomaly detection. We demonstrate the accuracy of CSAX

on the data sets in our compendium, compare it to other leading methods, and show

that CSAX aids in both identifying anomalies and explaining their underlying biology.

We describe an approach to characterizing the difficulty of specific expression anomaly

detection tasks. We then illustrate CSAX’s value in two developmental case studies.

Confirming prior hypotheses, CSAX highlights disruption of platelet activation path-

ways in a neonate with retinopathy of prematurity and identifies, for the first time,
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dysregulated oxidative stress response in second trimester amniotic fluid of fetuses

with obese mothers. Our approach provides an important step towards identification

of individual disease patterns in the era of precision medicine.

1 Introduction

The development in the 1990’s of techniques for genome-wide monitoring of expression

data [1, 2] has had a dramatic impact on the field of molecular medicine. Precision di-

agnostics based on expression array signatures are increasingly moving into the clinic [3, 4].

However, methods for designing microarray-based diagnostics or discovering disease sub-

types require a reasonable number of samples representing each patient class [5]. There

are techniques for boosting the signal when relatively few samples are available [6, 7], but

these don’t eliminate the need for a representative set of samples that fully characterize the

molecular variability underlying the phenotypes of interest. For rare diseases or genetically

heterogeneous disorders, another analysis paradigm is needed. Here we demonstrate that by

characterizing the expression patterns of “normal” samples, it is often possible to identify

abnormal samples even when each abnormality is one-of-a-kind.

The problem of determining which samples to flag as abnormal, given only normal train-

ing data, is related to the computational field of anomaly detection, sometimes called outlier

detection. Anomaly detection is an active research area in both statistics and data mining [8].

It is regularly applied to such problems as spam detection, identifying potential credit-card

theft, verifying online identities, and correcting errors in census data.

Several previous efforts explicitly apply anomaly detection to bioinformatics problems,

including correction in genome annotation [9] and identifying changes in the steady-state

behavior of stochastic gene regulatory networks [10]. A related approach by Torkamani and

Schork [11] identifies genes whose expression pattern is unusual in a given cellular context.

For gene expression microarray data, the task of identifying differentially expressed genes has

been viewed in the framework of outlier detection [12–15], as has the problem of identifying

array artifacts [16]. Perhaps the closest approach to ours is that of Tomlins, et al. [17], who

use outlier detection to identify common translocations in cancer, but the outliers still refer

to individual genes rather than samples.

The underlying machine learning problem, that of identifying “abnormal” samples given

only “normal” samples as training data, is a challenging one. Microarray data is particularly

ill-suited for anomaly detection, as for many other machine learning problems, because of
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its noise level, the dimensionality of a typical data set (hundreds of samples but tens of

thousands of genes), and the expectation that only a small fraction of those genes may

provide any information about the classification of the samples.

Fortunately, other characteristics make the problem potentially tractable. We expect

meaningful expression changes to reflect unusual regulation in specific functional pathways.

We can therefore use prior knowledge about the relationships between genes to identify

anomalous examples. Such information has the added advantage that it may provide hints

to the underlying cause of the detected anomalies.

To evaluate the utility of such an approach, we created a compendium of data sets for

anomaly detection from published microarray classification data sets. On this compendium,

we compare several state-of-the-art methods for anomaly detection, including CSAX, a novel

approach that we designed to boost the signal from the prior method most robust to irrelevant

features [18] while identifying the gene sets that best distinguish each anomalous sample.

Our results show that in many cases, anomaly detection can both identify unusual samples

and produce meaningful information about the nature of the anomalous data.

There is also a question of what abnormalities we can expect to identify. For example,

a single abnormal sample characterized by abnormal expression of a single gene could not

possibly be detected by any method – the data are simply too noisy. Our method is applicable

when a sizable number of genes’ expression levels are sufficiently different. We characterize

the classes of anomalies we can expect to detect, and we discuss how clinical intuition

might be applied to identify anomalies suitable for these methods. Our inspiration for this

work came from prenatal and neonatal genomics, where recognizing and interpreting rare

developmental abnormalities is crucial. We therefore conclude with a case study illustrating

how our methods can contribute in this setting.

2 Data and Methods

2.1 Compendium of Microarray Anomaly Detection Data Sets

We assembled a compendium of 28 anomaly detection tasks from published gene expression

classification studies that involve at least two classes of samples (e.g., healthy vs. disease).

We convert these to anomaly detection tasks by (i) designating one class as the “anomalous”

class, and all samples from the other classes as the “normal” class, which may therefore be

quite heterogeneous; (ii) creating a training set from a random subset of normal microar-

rays, and (iii) creating a test set from the remaining samples (Figure 1). We created our
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Figure 1: To create an anomaly detection task from a microarray study with two classes of samples, A and

B, we randomly select a portion of the A samples for the test set and use the remainder for training. The

task is then to identify samples from class B after training on samples from class A alone.

compendium from suitably-sized data sets with at least two clearly-defined classes found

in GEO (www.ncbi.nlm.nih.gov/geo) combined with a testbed of expression classification

data sets assembled elsewhere for the development of computational methods (see Acknowl-

edgements). The compendium includes all the data sets with which we experimented that

had previouly been released publicly. (Details and data at bcb.cs.tufts.edu/csax).

In most envisioned applications, such as diagnosing rare developmental disorders, ab-

normalities are likely to be one of a kind. However, in each data set in this compendium,

we have a collection of relatively similar anomalies and we know which samples we should

expect to identify as anomalous. We therefore use this compendium as a “gold standard”

data to evaluate the accuracy of our methods.

2.2 Methods for Expression Anomaly Detection

2.2.1 Prior methods

There are many existing methods for anomaly detection in high-dimensional data. The

most successful general approaches include density-based methods such as the Local Outlier
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Factor (LOF) [19], which identifies outliers by comparing their distances from their nearest

neighbors to the typical distances between nearby training examples, and one-class support

vector machines (SVMs) [20]. To compare the approaches described below to one-class

support vector machines [20], we use the LIBSVM [21] implementation with default settings.

Preliminary investigation showed that results were not sensitive to a wide range of parameter

settings (data not shown).

To compare our approach to LOF [19], we use our own implementation. LOF requires

the specification of a single parameter, MinPts, which is the size of the neighborhood of

microarrays. Following a suggestion in the original presentation of LOF [19], we compute

the LOF using all possible values of MinPts, and take the maximum LOF. Source code and

documentation for our implementation can be found at http://bcb.cs.tufts.edu/csax/.

However, neither of these prior methods is especially well suited for handling the dimen-

sions of expression microarray data. We recently developed an anomaly-detection method

called Feature Regression and Classification, or FRaC [18, 22]. FRaC learns relationships

among gene expression in the training data, and measures their reliability. It uses those

models to estimate the likelihood of test set expression. The extent to which a test set gene’s

expression is considered anomalous is measured by the log-loss of its likelihood, according to

those models. Anomaly scores for samples are computed by summing anomaly scores over

all genes. FRaC is known to be robust to large numbers of irrelevant variables [18], making

it well suited for identifying outliers in expression data.

Because FRaC forms the core of our new method below, we give a brief summary here.

Given a training set and an unlabeled test example, FRaC does the following for all genes i:

1. Infer a predictive model Ci of the expression of gene i from the training data. The

model will use the expression of some of the other genes to make its predictions. For

this step, we use an ǫ-SVR (support vector regression) model with a linear kernel, the

ǫ parameter (in the loss function) set to zero, and the C parameter (for regularization)

set to 1. Preliminary experiments with expression anomaly detection showed that

FRaC is not very sensitive to these choices, and these settings prove to work well (data

not shown).

2. Use held-aside training data (i.e., not used in the previous step) to estimate the accu-

racy of the model by building a model Ei of the predictive error. We use leave-one-out

cross-validation to sample the predictive error and we model Ei as a normal distri-

bution N (µ, σ), where µ and σ are set to the sample mean and standard deviation,

respectively.
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3. Use the predictive model Ci to predict the expression of gene i in the unlabeled example.

4. Compute the likelihood of the error of the prediction using the error model Ei.

5. The anomaly score we assign to gene i is the log loss, or surprisal, of the likelihood

computed in the previous step.

The anomaly score for the test sample is computed as the sum of the anomaly scores for

each gene. We use our own implementation of FRaC; the source code and documentation

are available at bcb.cs.tufts.edu/frac/.

2.2.2 CSAX: A New Method for Expression Anomaly Detection

All of the above methods classify samples as outliers, but do not explicitly provide informa-

tion about the nature of each anomaly. Instead, our goal is to identify gene sets or pathways

in which a sample is particularly anomalous. We therefore developed a robust method,

“Characterizing Systematic Anomalies in eXpression data” (CSAX), for doing so, taking

advantage of FRaC’s robustness to irrelevant variables.

CSAX uses FRaC to compute an anomaly score for each gene, and uses Gene Set En-

richment Analysis (GSEA) [23,24] to find gene sets containing many genes whose expression

is particularly surprising. GSEA is implemented in Java and available at http://www.

broadinstitute.org/gsea/downloads.jsp. We use the Java archive (gsea2-2.07.jar) and

run the “preranked” version of GSEA (xtools.gsea.GseaPreranked) on gene sets with at

least seven and at most 500 genes, with 1000 permutations and a weighted scoring scheme

(see GSEA documentation). GSEA in this case takes as input a list of genes, ranked by

their anomaly scores, and a collection of gene sets. The output of GSEA is a table, listing

each gene set, its enrichment score (see [23,24] for details), and other statistics, including a

normalized version of the enrichment score that accounts for gene set size.

This approach alone, which we call ‘FRaC + enrichment’, has the important advantage

of identifying the gene sets that may best explain an anomaly, one of the primary goals of our

research. However, applying this method to test set microarrays that come from the normal

class will also identify gene sets that that are statistically enriched, even though these sets

are effectively random and depend on how accurately the training set represents the true

distribution of the normal class. Specifically, when the training set is too small to capture

the full diversity of the normal sample space, there will be false positive results. For the

envisioned applications, we need to better distinguish the results characterizing normal test

samples from those characterizing anomalies.
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We therefore use bagging to address this effect: over multiple iterations, we take a random

subset of the training set and run FRaC and GSEA on it. This process produces multiple

GSEA enrichment rankings for each gene set. The gene sets that best explain a true difference

between an unlabeled microarray and the training set will appear at or near the top of

GSEA’s ranked list over multiple iterations of bagging, whereas the gene sets that are only

enriched because their genes are misrepresented in the training set (because of the small

sample size) are less likely to do so.

The remaining challenges are to select the informative gene sets from the GSEA output

lists and to combine their enrichment scores into a single anomaly score. A single gene set

may not be enough by itself to fully characterize an anomaly, so we must consider multiple

gene sets, but we only want the most informative ones—those that are ranked highly in

GSEA’s output tables. The method that we use first considers the collection of rankings

for each gene set and computes its median. For example, if a gene set appears in the #1

position more often than not, its median rank will be 1.

Formally, let G be our collection ofG gene sets, andB be the number of bagging iterations.

Let rb(g) be the ranking (i.e., 1, 2, ...) of gene set g in the bth iteration of bagging, as ranked

by GSEA (the ranked position is a function of enrichment score and gene set size). Let V (g)

be the median of all the rankings of gene set g, i.e.,

V (g) = median
b∈1...B

[rb(g)]. (1)

We consider the gene sets with the best median rankings (lowest values of V ) to be the most

informative ones. LetM be theG gene sets in G, ordered by their median ranking V , i.e., M1

is the gene set g with the lowest V (g), and V (Mi) ≤ V (Mi+1) for all i ∈ [1, 2, ..., G− 1].

We also run FRaC and GSEA on the entire training set (as opposed to the iterations of

bagging). Let ES(g) be the enrichment score calculated by GSEA for gene set g on the full

training set. We define ES(g) = 0 for any gene set g that does not appear in the table.

To compute an anomaly score, we combine the enrichment scores of each gene set, dis-

counted by their position in M as

anomaly score =
G∑

i=1

γi−1 × ES(Mi). (2)

The single parameter γ controls how many of the highest-ranking gene sets are included in

the computation of the anomaly score, and, by extension, how many genes influence the

predictions.
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In our experiments, we set γ = 0.95. Overall, we observe similar performance for different

values of γ (results in supplementary materials online). In our experiments, we perform

B = 40 iterations of bagging and use the G = 1, 079 Reactome pathways as gene sets [25],

except where noted. Source code and documentation for CSAX can be found at http:

//bcb.cs.tufts.edu/csax/.

2.3 Evaluating Anomaly Detection Methods

The goal of any anomaly detection approach is to assign a high anomaly score to unlabeled

samples that are not in the normal class. To measure the success of each anomaly detection

method on a compendium data set, we construct an ROC curve [26] from the test set labels

(normal or anomalous) and the method’s predicted anomaly scores and calculate the area

under the curve (AUC). The AUC can be viewed as the likelihood that an anomaly detector

assigns a higher anomaly score to a test set anomaly than it does to a test set normal.

Thus, higher AUCs are better, the best possible score being 1.0. The AUC is a common

performance measure that is independent of both the number and proportion of anomalies

in the test set.

For each data set in our compendium, we create an anomaly detection task (Section 2.1)

by randomly selecting 75% of the normal samples for training. The remaining 25% of the

normal sampless and all anomalous samples make up the test set. We repeat this process 20

times and report an average AUC for each anomaly detection method for each data set.

We compare the performance of CSAX to that of two top-performing anomaly detection

methods: local outlier factor (LOF) [19], and one-class support vector machines (SVMs) [20].

We also compare against the performance of our own method, FRaC [18], as well as to a

method consisting of performing enrichment analysis on genes ranked by their FRaC scores

(which we call “FRaC + enrichment”), but without the bagging and weighting components

of CSAX.

2.4 Data for Developmental Case Studies

To further demonstrate the utility of CSAX, we applied it to two developmental data sets.

One is a collection of published expression data [27] from the blood of infants born below

32 weeks’ gestational age. In this data set, the “abnormal” samples came from infants who

developed bronchopulmonary dysplasia, retinopathy of prematurity, periventricular leuko-

malacia, or any combination of these; the controls were infants born at the same ages but
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whose clinical course did not include any of these three complications of preterm birth.

The second set combines data from several of our own studies of gene expression in second

trimester amniotic fluid supernatant samples [28–33]. The abnormal samples include those

from fetuses with trisomy 18, trisomy 21, Turner syndrome, twin-twin transfusion syndrome,

or obese mothers; the controls are all control samples from these same studies.

Our team recently created the DFLAT gene set collection [34], a project in which we as-

sembled developmentally-relevant gene annotation using the Gene Ontology framework [35],

specifically for the purpose of interpreting gene expression data from fetal and neonatal sam-

ples. Here we used CSAX with the DFLAT gene sets to analyze these two studies of fetal

and neonatal expression.

3 Results

3.1 Detection and Characterization of Anomalous Samples

The AUC scores of CSAX, FRaC, FRaC + enrichment, LOF, and SVMs on our compendium

are shown in Table 1. Each of the methods performs best on some data set. If we average

the AUC scores over all the data sets, FRaC and CSAX are tied for the best performance.

Overall, FRaC has the highest AUC (or is tied for highest AUC) on the largest number of

data sets (14). Yet none of FRaC, SVMs, or LOF directly implicates specific gene sets as

contributing to the identification of anomalous samples. (FRaC + enrichment does identify

gene sets, but the gene sets implicated by FRaC + enrichment are not necessarily the same

as those identified by CSAX. Furthermore, anomaly detection accuracy is better with CSAX

than with FRaC + enrichment on average and on 19 of 28 compendium data sets.) CSAX

also performs well and identifies the gene sets that are most surprisingly dysregulated. These

can provide valuable information about the pathways disrupted in the anomalous samples.

For example, the “bild” data set consists of human mammary epithelial cells in which ex-

ogenous oncogenes (either myc, ras, E2F3, β-catenin, or src) are expressed. The src pathway

was selected as the anomalous class for the compendium because it had the fewest samples.

CSAX’s most anomalous pathway across all src samples is “NCAM signaling for neurite

out-growth,” with a median rank of 2, meaning that this pathway was ranked either first or

second in at least half the bagging trials. The next two top pathways, both with median

rank 3, were “Signaling by FGFR” and “Downstream signaling of activated FGFR.” FGFR

signaling is mediated by src [36]. NCAM binds to FGFR-1 and its role in cell migration de-

pends on both FGFR-1 and src activation [37], showing that src activation in the anomalous
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Table 1: The average AUC over 20 replicate experiments of five anomaly detection methods on the tasks in

our compendium: One-class SVMs [20], LOF [19], FRaC [18], FRaC + enrichment (as defined in the text),

and CSAX. A different random subset of the normal class is chosen as the training data for each replicate.

“Best AUC” shows a count of the number of data sets in which the method has the highest AUC of the five

(or is tied for the highest). “Average AUC” averages the AUC scores over all the data sets for that method.

We also include the RAAD score for each set (see Section 3.2).

Average AUC RAAD Score

Task SVM LOF FRaC FRaC+Enrichment CSAX

atrt 1.00 1.00 1.00 0.99 0.99 1.258

bcat 0.97 0.95 0.97 0.92 0.87 1.102

bild 0.78 0.77 0.88 0.98 1.00 1.064

biomarkers 0.59 0.93 0.95 0.93 0.94 1.230

breast.basal 0.75 0.69 0.76 0.77 0.73 1.128

breast.er 0.65 0.78 0.83 0.78 0.82 1.104

desmoplastic 0.43 0.41 0.43 0.41 0.53 0.973

diabetes 0.49 0.45 0.49 0.42 0.44 0.913

downs 0.65 0.66 0.64 0.52 0.58 1.008

ethnic 0.59 0.65 0.66 0.64 0.67 1.019

gender 0.85 0.65 0.83 0.72 0.98 1.067

hematopoiesis 0.69 0.79 0.89 0.85 0.92 1.032

leukemia 0.93 0.88 0.93 0.89 0.93 1.283

lymphomas 0.59 0.84 0.87 0.87 0.81 1.141

meningiomas 0.55 0.61 0.65 0.66 0.69 1.049

meta.1.2 1.00 0.94 0.98 0.74 0.87 1.071

mind.body 0.43 0.61 0.54 0.56 0.53 1.087

multitumor 1.00 0.88 1.00 1.00 0.99 1.306

revlimid 0.64 0.47 0.56 0.60 0.66 1.053

ross2 0.96 0.91 0.98 0.95 0.98 1.182

ross3 0.98 1.00 1.00 1.00 1.00 1.180

roth07 0.63 0.59 0.67 0.59 0.65 1.039

sepsis 0.61 0.64 0.68 0.54 0.64 1.049

shakes 0.43 0.45 0.45 0.42 0.43 0.985

smokers 0.65 0.62 0.58 0.58 0.60 1.081

smokers2 0.55 0.63 0.72 0.74 0.73 1.058

survey 0.61 0.67 0.88 0.81 0.86 1.043

tzd 0.57 0.54 0.60 0.61 0.59 1.057

Best AUC 7 5 14 6 10

Avg AUC 0.699 0.715 0.765 0.732 0.765
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samples produces anomalous gene sets reflecting the direct effects of src expression. These

low median rank scores suggest that there is remarkable consistency across the different test

samples.

As another example, the “leukemia” data set distinguishes between acute myeloid (“nor-

mal”) and acute lymphoblastic leukemia (“anomalous”) samples. The top gene set identified

by CSAX, with a median rank of 5, is “Regulation of signaling by CBL.” CBL, an oncogene

known to be translocated or mutated in many acute myeloid leukemias, has more recently

been discovered to play a broader role in many myeloid neoplasms [38].

3.2 How Hard is an Anomaly Detection Task?

The variation in performance across the compendium seems to depend strongly on charac-

teristics of individual data sets. For example, on the “leukemia” data, where differential

expression is known to be substantial and widespread, all four methods perform well, while

on the “diabetes” data set, known to have only subtle expression differences between the

normal and anomalous classes [24], all methods perform poorly. We would like the abil-

ity to predict which anomalous expression patterns should be detectable by these methods.

Accordingly, we sought to characterize the difficulty of each compendium data set.

We found no reliable way to characterize the difficulty of a data set using only the

training data. Given our compendium of gold-standard data, however, we can still learn

about characteristics of solvable problems using what we know about the test data. We can

then apply this information to help us predict the utility of anomaly detection in applications

where we don’t know the right answer.

We discovered that the ratio between the median distance separating the training data

from an anomalous example and the median distance between the training data and a test-

set normal example is an excellent predictor of the eventual performance of an anomaly

detector, regardless of which anomaly detector we use. We refer to this measure as the

relative anomaly aggregate distance (RAAD). Formally,

RAAD =
median
x∈X ,q∈Qa

|x− q|

median
x∈X ,q∈Qn

|x− q|
(3)

where X is the training set, Qa are the test set anomalous instances, Qn are the test set

normal instances, and |x − q| indicates the vector distance between a training and test set

instance (i.e., each gene’s expression is one component of a high-dimensional vector). We use

the l1 norm (“Manhattan” distance) when computing vector distance because it is intuitive–
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Figure 2: A scatterplot comparing RAAD with test set performance over the 28 compendium data sets

(each shown in its own color). Points show 20 replicates (random selection of training/test samples) for each

data set. Horizontal and vertical lines show an AUC of 0.5 (random guessing) and a RAAD of 1.0 (normal

and anomalous instances equidistant), respectively. (Scatter plots showing individual data sets are available

in supplementary material.)
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the total distance is the sum of differences in gene expression between two microarrays. The

scatterplot in Figure 2 shows the relationship between RAAD and performance using FRaC.

In real applications, where the test data labels are unknown, clinicians’ intuition about

the degree of expression variation one might expect among the normal class and among the

types of envisioned anomalies can be used to estimate whether anomaly detection methods

are likely to be helpful. Further, a small test set can be used to estimate the RAAD score,

helping to determine the value of obtaining and analyzing additional samples.

3.3 Case Studies on Fetal and Neonatal Samples

We applied CSAX to the developmental data sets described in Section 2.4. The RAAD

scores for the preterm and amniotic fluid data sets were 1.045 and 0.98, respectively. We

therefore suspected that it would be impossible to predict abnormalities accurately given

the normal amniotic fluid data, and that the presence of preterm complications could be

predicted with only moderate accuracy. This hypothesis proved correct. The preterm data

set had a CSAX AUC of 0.606 (compared to 0.580, 0.498, and 0.574 with LOF, SVM, and

FRaC, respectively); the amniotic fluid data, a CSAX AUC of 0.534 (compared to 0.572,

0.534, and 0.540 with LOF, SVM, and FRaC). Yet despite the limited overall prediction

accuracy, we found the gene sets CSAX highlighted for individuals or groups of samples to

be very informative.

3.3.1 Blood from Preterm Neonates

Only a single neonatal sample had retinopathy of prematurity (ROP) but no other compli-

cations. The top gene sets in this sample, with median ranks of 1 and 2 respectively, were

“platelet degranulation” and “platelet activation.” ROP, which can lead to vision defects

and even blindness, is caused by disordered retinal vascularization. There is an ongoing

debate in the literature about whether platelets play a role in the pathogenesis of ROP

and what that role might be [39, 40]. Our observation of disrupted expression relationships

among genes involved in platelet activation in an individual with ROP may provide valuable

evidence about the molecular mechanisms of this process.

Our samples also included 14 infants with periventricular leukomalacia (PVL), a type

of ischemic brain injury that can lead to cerebral palsy. Glutamate-mediated defects in

calcium signaling play a significant role in oligodendrocyte damage in PVL [41] and offer

the potential for protective therapeutic intervention [42]. CSAX highlighted dysregulation

of calcium signaling or homeostasis pathways in six individuals with PVL. Such analyses
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may not only confirm the role of these pathways, but could identify individuals who might

be candidates for treatments targeting this process.

3.3.2 Amniotic Fluid in Aneuploidy and Maternal Obesity

In the amniotic fluid data set, overall AUC is no better than chance, and indeed CSAX

is not the best predictor. The poor RAAD and AUC scores for this data set make sense

because the controls are highly variable, including samples collected over a period of more

than six years. Nonetheless, the gene sets describing the abnormal samples appear to be

informative.

The most dysregulated pathway over all abnormal samples together was “regulation of

chromosome segregation,” a fitting summary of a data set where 16 of 38 abnormal samples

were from fetuses with chromosomal aneupoidy. The most dysregulated pathways in trisomy

21 samples relate to neural development, heart development, and vision; Down syndrome

patients are known to have developmental abnormalities in all these systems [43,44]. In tri-

somy 18, tooth development, immune processes, and glucocorticoid metabolism were among

the top ten gene sets, again consistent with prior knowledge about the phenotype [45–47].

The impact of maternal obesity on fetal development is an active area of research. The

top two gene sets implicated by CSAX in these samples overall are “stem cell development”

and “stem cell differentiation.” Also highly ranked are “glucose metabolic process” and

several gene sets pertaining to nervous system development, including neuronal stem cell

maintenance and Notch signaling. Dysregulation of neural stem cells has been noted in the

fetal brains of mice fed a high-fat diet [48, 49]. Additionally, expression of genes involved in

Notch signaling, required for neural stem cell development, is known to be disrupted in the

brains of offspring of mice fed high fat diets [50].

In individual samples we see different processes coming to the fore. One sample featured

disruption of lipid and cholesterol transport pathways; in another, axonogenesis was most af-

fected. In two other samples, the top pathways implicated oxidative stress and inflammation.

The original analysis of the samples from obese and lean mothers [32] noted that Apolipopro-

tein D (APOD) is the most upregulated gene in fetuses of obese women. The ApoD protein

has been demonstrated to regulate inflammatory response [51] and to exert neuroprotective

and neurotrophic effects in a rodent model of excitotoxic brain injury, possibly by protecting

against oxidative stress [52–54]. However, until now, the link between increased expression

of APOD and increased oxidative stress in second trimester fetuses of obese women has been

only speculative; traditional analyses of these same samples sought but did not find evidence
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of this connection. Our novel observation may shed light on molecular mechanisms under-

lying the increased expression of APOD noted in these fetuses, demonstrating how CSAX

may provide new insights into the molecular etiology of pathological conditions.

Finally, because maternal BMI is positively correlated with maternal systemic, placental,

and neonatal inflammation [55], and increased age also correlates positively with systemic

inflammation [56], we reviewed these two patients’ clinical characteristics. These two samples

are from the patient with the highest maternal age (46 in a cohort with age range 31-46) and

one with unusually high BMI (39.5; cohort BMI range: 30.47-39.71). These results strongly

suggest that CSAX is identifying valid characteristics of particular samples.

4 Discussion

We have shown that it is often possible to detect and characterize anomalous expression

data given training data from normal samples only, and that the two methods designed

with expression data in mind perform best, albeit with different strengths. FRaC learns

reliable relationships between genes’ expression patterns from the training data, and identifies

anomalies when these patterns break down. This method is therefore entirely data-driven;

it does not rely on prior knowledge about gene sets. Yet it makes sense that many clinically-

important conditions would be characterized by a breakdown in the expected relationships

between genes’ expression patterns. So it is perhaps not surprising that FRaC is particularly

effective.

On average, CSAX is about as accurate as FRaC (Table 1), but it has two very important

differences: it identifies gene sets that may help to explain the nature of each anomaly, and

it uses fewer gene expression features in its predictions (because of the discount parameter

γ in Equation 2), instead gaining power from using known gene sets to integrate prior

knowledge about gene relationships into the anomaly detection process. We find it revealing

that CSAX also outperforms the simple combination of running enrichment analysis on the

FRaC anomaly scores (“FRaC + enrichment”). This result suggests that CSAX’s bagging

and weighting steps succeed in providing the desired robustness.

The identification of gene sets with known functional roles associated with an abnormal

sample is one of the primary goals of our work. It provides insight into the nature of the

abnormality, and allows experts to follow up by ordering relevant tests. The fact that the

performance of CSAX is comparable to that of FRaC while using fewer genes is evidence

that the gene sets identified by our method are indeed relevant, because in general the use

15



of fewer features hurts performance.

We also observed that performance depends less on the computational method used than

on the difficulty of the data set itself. While the RAAD score is useful for characterizing the

difficulty of anomalies whose classification is already known, in most cases such data will not

be available. Thus, clinical intuition about the nature of anticipated anomalies will need to

come into play. If the anomalous samples are likely to be no more different from the normal

samples than the normal samples are from each other, no method is likely to succeed. Prior

knowledge about expression variability and heterogeneity of the samples under consideration

is expected to be helpful here.

We note that as the cost of sequencing continues to decrease, genome-wide studies of

expression are shifting away from microarrays towards RNA-seq approaches. However, there

is no reason that CSAX cannot be applied in an RNA-seq setting. Indeed, it might be even

more powerful, as changes in the relative abundance of different isoforms can be integrated

into the analysis. Future work should therefore include demonstrating CSAX’s power to

identify systematic anomalies in RNA-seq data.

Overall, we have demonstrated that in many biomedically-interesting cases, it is indeed

possible to identify and characterize individual anomalous samples from their expression pat-

terns. Such one-of-a-kind analyses are crucial steps as we move towards the era of precision

medicine.
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