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Abstract. Between-Pathway Models (BPMs) are network motifs con-
sisting of pairs of putative redundant pathways. In this paper, we show
how adding another source of high-throughput data, microarray gene
expression data from knockout experiments, allows us to identify a com-
pensatory functional relationship between genes from the two BPM path-
ways. We evaluate the quality of the BPMs from four different studies,
and we describe how our methods might be extended to refine pathways.

1 Introduction

In this paper, we use microarray expression data to validate instances of an impor-
tant class of network motif in the yeast interactome. These motifs, called “Between
Pathway Models” or BPMs, consist of putative pairs of redundant pathways and
were first described by Kelley and Ideker in a seminal paper in 2005 [1]. The basic
idea behind the BPM is simple. Protein-protein interaction relationships may be
divided into two types: physical interactions and genetic interactions. In particu-
lar, the subset of the genetic interactions that are “synthetic lethal” interactions
are considered. Synthetic lethality between two yeast genes indicates that strains
lacking either individual gene (called “knockout” or “deletion” strains) are viable
on rich media, but if the two genes are deleted simultaneously, the yeast is invi-
able. Kelley and Ideker defined two sets of genes, G1 and G2, to represent a BPM
motif if there are few synthetic lethal edges within G1 and within G2, but many
synthetic lethal edges between G1 and G2, and if the opposite holds for the phys-
ical interaction edges, i.e., there are many physical interaction edges within G1
and G2, but few between G1 and G2. In their notation and ours, gene sets G1 and
G2 are referred to as the “pathways” of this BPM.

The term BPM has been used to describe both purely mathematical substruc-
ture within the protein-protein interaction network, but also as a synonym for two
sets of genes that function in redundant pathways. It is in the second fashion that
we will use the terms “BPM” and “putative or candidate BPM” in this work; that
is, independent of the exact definition of the graph theoretic criteria used in each
of the papers we consider, the two sets of genes (and their connectivity edges)
will be considered a candidate BPM for us, where we will try to validate the as-
sertion that these two sets of genes come from redundant pathways using other
high-throughput measures (in the present case, using microarray studies).
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The motivation for this terminology, and indeed for the interest in the BPM
network motif, is the following. Organisms often evolve a sort of fault-tolerance or
redundancy, in that they may have multiple sets of proteins capable of perform-
ing certain essential functions. Suppose, for some particular essential function,
there are two pathways, each of which can compensate for the other if only one of
the pathways is disrupted. Then one would expect to see many physical interac-
tions between the genes in each pathway. One would also expect to see synthetic
lethal interactions whenever a gene essential to each pathway is simultaneously
suppressed or deleted. Thus these pathways will organize into a BPM pattern,
with many synthetic lethal edges between G1 and G2 and with many physical
interaction edges tending to occur within G1 and within G2.

Compared to Kelley and Ideker [1], a subsequent paper of Ulitsky and Shamir
[2] identified BPMs using somewhat different definitions of “many” and “few.”
The graph theoretic structures of the Ulitsky and Shamir pathways, and thus of
their BPMs, are somewhat different (Ulitsky and Shamir also included “synthetic
sick” interactions in their data). Recent work of Ma, Tarone and Li [3] and of Brady
et al. [4] redefined BPMs mainly in terms of the structure and placement of the
synthetic lethality edges only, evaluating their putative BPMs after the fact by
enrichment or the placement of physical interaction edges within the motifs. All
four studies claim that their putative BPMs form possible examples of pairs of
compensatory pathways in yeast. It is important to stress that regardless of the
algorithm used to generate the putative BPM, or the exact graph-theoretic struc-
ture that is sought, all four studies generate pairs of sets of genes (G1,G2), where
they claim that G1 and G2 make up compensatory pathways.

It is hard to validate the claim that two individual sets of genes (G1,G2)
make up compensatory pathways given only the networks of protein-interaction
and genetic-interaction data. One method might be to see if a study’s putative
BPMs correctly predict which untested pairs of genes will physically interact or
will be synthetically lethal. Note that Brady et al. [4] employ this approach: the
method of [4] run on data from a prior BioGRID download was shown to be able
to predict the location of “new” synthetic lethal edges in a more current version
of BioGRID. However, the standard measure of “goodness of BPMs” agreed
on by all four studies [1,2,3,4] has been to show that a substantial fraction of
their BPMs exhibit functional coherence, in the form of GO enrichment for the
pathways. While this sort of enrichment result provides evidence that the genes
in each pathway have some common function, it does not directly demonstrate
a relationship between the two pathways unless the enriched functions happen
to be related.

In this paper, we show how adding another source of high-throughput data,
microarray gene expression data, allows us to identify a compensatory functional
relationship between genes from the two pathways. Expression data gives us a
temporal snapshot of the cells’ RNA under specific conditions. We can use gene
expression data from knockout experiments to help evaluate the quality of the
BPMs from all four studies.
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In particular, suppose that we had microarray expression profiles of all yeast
single-gene deletion strains. Then suppose (G1,G2) is a putative BPM with
pathways G1 and G2, and let g be a gene from G1. If the loss of g disables
pathway G1, and if pathway G2 is truly compensating for G1’s loss as the BPM
suggests, then we might see the genes in G2 show a coherent change in gene
expression in the g-deletion strain compared to wild-type. We furthermore expect
this change to be stronger than what we would see for a random set of genes.

This signal is subtle, but detectable. Our method is similar to that used by the
Gene Set Enrichment Analysis (GSEA) method [5] to test for coherent expression
of gene sets. We compute a cluster-rank score, analogous to their Enrichment
Score, that measures the coherence of expression changes of the genes in the
pathway. Because the pathway being validated may include genes involved in
different but related roles in the same functional process, we use the absolute
value of the log expression change to rank our genes. Thus, a pathway that
has strong up-regulation of some genes and strong down-regulation of others in
response to a compensatory deletion will still score well.

In practice, we do not currently have expression profiles for all the yeast dele-
tion strains. However, the Rosetta Compendium [6] includes expression profiles
of 276 deletion mutants. This is enough data for an initial assessment of many
of the BPMs, and certainly enough for method development. In all four studies
we find example BPMs that we can validate, though the percentage of validated
BPMs is highest for the BPMs of Brady et al. [4].

We note that there have been several successful previous approaches for in-
tegrating microarray measurements with protein-protein interaction knowledge.
Ideker et al. [7] searched for connected sets of genes with unexpectedly high levels
of differential expression. Segal, Wang and Koller [8] and Ulitsky and Shamir [9]
used correlated expression data together with protein-protein interaction data
to identify sets of genes that putatively act in similar pathways. Liu et al. [10]
showed how such analysis could be done in reference to genes disregulated in
type 2 diabetes; and Ulitsky, Karp and Shamir [11] most recently did a high-
throughput analysis identifying connected gene subnetworks enriched for genes
disregulated in different diseases.

2 Methods

2.1 Computing the ClusterRank Score

Our BPM evaluation method relies on measuring the coherence of changes in
the complementary pathway’s genes’ expression levels. We do this by computing
what we call the ClusterRank Score. Note that this score is similar to the GSEA
Enrichment Score [5], except that the weights are the raw ranks of the absolute
value of the “log 10” ratio. This allows us to validate pathways whose genes
respond strongly, but in different ways, to knockouts in a compensatory pathway.

Let (X, Y ) be the two pathways of a candidate BPM. Without loss of gen-
erality, let x̄ ∈ X be a gene for which there is expression data for the deletion
strain. Furthermore, we require that Y contain at least three genes. For every
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gene g, we define the “log-10-ratio” (as in the Rosetta Compendium data) to
be Qx̄(g) = log10

εx̄(g)
ε∗(g) where, εx̄(g) is the expression of gene g in the deletion

strain x̄ and ε∗(g) is the expression of gene g in wild-type. Let the yeast genes,
g1 . . . gN be enumerated such that |Qx̄(g1)| ≤ |Qx̄(g2)| ≤ . . . ≤ |Qx̄(gN )|. Similar
to the GSEA method define:

hit(i) =
ΣN

j=ijIj

ΣN
j=1jIj

miss(i) =
ΣN

j=i(1 − Ij)
ΣN

j=1(1 − Ij)

where

Ij =
{

1 if gj ∈ pathway Y
0 otherwise

We now define the ClusterRankScore as:

ClusterRankScore(Yx̄) = max
i=Nto1

hit(i) − miss(i).

Note that genes with the same “log 10” ratio have the same rank.

2.2 Estimating Statistical Significance

How can we tell whether the observed score for a particular pathway is good
or not? It is hard to know what a good ClusterRankScore is because, like the
GSEA Enrichment Score, it depends in part on the number of genes in the
pathway. Therefore, we generate an appropriate null distribution each time, and
estimate significance from that.

Specifically, the ClusterRankScore of a pathway Y is converted to a p-value
using a permutation test as follows. We generate 99 random subsets of genes the
same size as the complement pathway, Y , G1, . . . G99, with |G1| = . . . |G99| = |Y |.
For each subset, Gi, we calculate the ClusterRankScore(Gix̄). The set of all 100
tests are sorted and the p-value is the percentile of ClusterRankScore(Yx̄).

We say a BPM pathway is validated if its p-value is below 0.10. This value
was chosen as an arbitrary cutoff. In fact, we can simply use these p-values to
rank the pathways from most- to least-supported by the given knockout data
available. In Figure 5 we look instead at cumulative rates of validation as this
cutoff value ranges from zero to one.

We also performed a second test we call the random-knockout validation test
on a subset of the validated pathways. In this case the ClusterRankScore of
Pathway Y with knockout gene x̄, ClusterRankScore(Yx̄), is compared against
the scores of random knockout strains of genes not present in either pathway.
Specifically, we find 99 random deletion mutants z̄, z̄ /∈ X, z̄ /∈ Y and compute
ClusterRankScore(Yz̄). All 100 scores are sorted, and the reported p-value is
the percentile of ClusterRankScore(Yx̄) in the list. If the p-value of pathway Y
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is less than 0.10 we say that the BPM passes the random-knockout validation
test. More about the relative merits of the two validation methods is said in the
Discussion.

2.3 Data

The Rosetta Compendium[6] includes genome-wide expression profiles for 276
yeast deletion mutants. Each mutant is missing exactly one gene, and for each
mutant the expression levels of all yeast genes are measured, compared to wild-
type. The log10 of the mutant-to-wild-type expression ratio is reported.

We consider between pathway models where at least one gene from the 276
knockout strains in the Rosetta data appears somewhere in the BPM and the
number of genes in the compensatory pathway is greater than two. We find 160
of the 404 BPMs reported by Kelley and Ideker [1] satisfy these criteria, as do 36
BPMs from Ulitsky and Shamir [2], 54 from Ma et al. [3], and 959 from Brady
et al. [4].

Note, that Ma et al. describe producing over 2,000 possible BPMs, which they
believe contain many false positives. Since they do not supply this large set of
BPMs, when we refer to the dataset of the Ma et al. study, we are referring to
the subset of the BPMs that they make available; namely those of their BPMs
that were found to be enriched for the same function in both pathways.

Website. All data and ClusterRank code are available online at
http://bcb.cs.tufts.edu/validatedBPM

3 Results

3.1 BPM Validation

In Figure 1 we show both a validated BPM from Kelley and Ideker and a second
BPM that we do not validate. For the BPM on the top, pathway 1 (by convention,
shown on the left-hand side) contains the deleted gene MBP1. Note that MBP1
has a high rank, as we take the absolute value of its expression ratio. Notice how
the genes in pathway 2 are all differentially regulated when MBP1 is deleted,
with ranks ranging from 3742 to 5749, yielding a ClusterRankScore of .6 with
a p-value < .06. In the second BPM in the Figure, PAC2 in pathway 1 is the
deleted gene. Note how the differential expression in pathway 2 in response to the
loss of gene PAC2 clusters towards the low end, corresponding to an absolute
expression change close to zero. The highest ranked expression change, 3718,
is below the lowest rank we saw with the previous BPM. These data give the
second BPM a ClusterRankScore of −0.39, corresponding to a p-value of 0.99.

In the validated BPM from this figure, both pathways display functional en-
richment: Pathway 1 for the GO Biological Process term “DNA replication ini-
tiation,” and pathway 2 for “chromatin assembly.”

When we have data for two or more deletion mutants in the same pathway, we
can do more than simply look at the data from each individually. Figure 2 shows
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Fig. 1. Two BPMs with validation data. The genes in each pathway are represented by
a set of dots. The deleted strain’s gene is shown in red, other genes in that pathway are
green, and genes in the compensatory pathway are shown in blue. Each is plotted next
to a number line indicating the ranks of the genes when sorted by their differential
expression between the wild-type and mutant strains. The figure on the top shows
the data for a validated BPM from Kelley and Ideker. In contrast, the figure on the
bottom shows the genes in a BPM we do not validate. Higher ranks correspond to larger
changes in expression value (in either direction) in the deletion strains as compared to
wild-type.
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Fig. 2. A heat map of the differential expression of yeast genes in pathway 2 (individual
genes in the pathway are shown with red bars at the top) in response to the deletion
of two different genes (SHE4 and GAS1) from pathway 1(shown with blue bars at the
top) in a validated BPM of Ma et. al. Notice that genes across both pathways are
expressed similarly under the GAS1 and SHE4 deletion mutants.

a heat map of a BPM from Ma et al. [3]. Here we have two deletion mutants
from pathway 1, SHE4 and GAS1. Both validate the opposite pathway with
p-values of 0.02 and 0.09 and ClusterRankScores of 0.64 and 0.56 respectively.
With both strains we can compare both pathways and order the genes in terms
of up regulation and down regulation. It is clear to see that CHS3, CHS6, and
CHS7 are over-expressed within both mutants and that MNN10 is highly down-
regulated in both.

In Figure 3 we summarize the number of pathways in each of the four studies
whose intersection with the knockout data was non-empty and contained at least
three genes. A total of 1209 pathways across all four studies met these criteria,
of which we found 257 pathways that we were able to validate (ClusterRank
test described above with p < .1.) The Kelley-Ideker data had 160 pathways
meet this criteria with 16 of these pathways validated. Ulitsky-Shamir had 36
pathways tested and 5 of these pathways were validated. Ma, et. al. had 54
pathways meet the criteria with 6 validated pathways. Brady, et. al. had 959
pathways meet the criteria and had 230 of these validate.

To compare the various techniques we consider the percentage of tested path-
ways and their ClusterRankScore with regard to their lowest p-value. For each
method we plot the p-value against the percentage of pathways that have a
smaller or equal p-value. We saw that 44% of the Brady pathways had values
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Fig. 3. For each method, we consider all BPMs for which we can compute a
ClusterRankScore based on data currently available, i.e. for BPMs where at least
one gene intersects the Rosetta Compendium data and its opposite pathway contains
at least three genes. Such a pathway is considered validated if its ClusterRankScore
has a p-value ≤ 0.01.

Fig. 4. Histograms of the distribution of ClusterRankScores by p-value for each of
the four methods

less than 0.30. Similarly we saw 29% for Kelley and Ideker, 29% for Ulitsky and
Shamir, and 22% for Ma et. al., see Figures 4 and 5.

The “validation” described above can be described as a measure for how
likely a pathway in a BPM is likely to demonstrate coherent expression
changes when a gene in the second pathway is deleted. However, it is possi-
ble that a validated pathway would show coherent expression changes when
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Fig. 5. For each p-value, the percentage of pathways tested that have a smaller or
equal p-value

many genes (both on and off the second pathway) were deleted, or even just
change coherently in the wild-type strain in response to different conditions.
If the validated pathway shows more coherent expression changes when a
gene on its other BPM pathway is deleted than when a random gene is
deleted, we say it passes the random-knockout validation test. This more
stringent test is again, something that we don’t have enough data to apply
in a high-throughput fashion; but this stronger test in fact shows that the
two pathways are connected to each other, not just individually coherent.

In Figure 6 we see a validated BPM from Brady. Pathway 1 contains ERG8,
HAP1, ERG6, with knockout ERG2; the complementary pathway contains
ERG24, ECM2, and UPC2. Here we have validation that pathway 2 clusters
nicely in the ERG2 deletion strain against random gene sets of size 3: we ob-
serve a p-value of 0.01 for its ClusterRankScore. We also know that this path-
way clusters best with this particular deletion mutant as compared to random
deletion mutants in the Hughes data set: the BPM passes the random-knockout
validation test with a p-value of < 0.01.

In fact, this turns out to involve interesting and important genes. In particu-
lar, these genes are all involved in the ergosterol biosynthesis pathway, required
for generation of a major constituent of the fungal plasma membrane, ergos-
terol [12,13]. This pathway has been extensively studied as a target of antifungal
drugs [14]. The synthesis of lanosterol is the first step in the pathway dedicated
to yeast biosynthesis in wild-type yeast, and ERG24 is required to complete C-14
demethylation of lanosterol. [15]. Later in the pathway, ERG6 converts zymos-
terol to fecosterol, which is then converted by ERG2 to episterol [16]. ERG28
has recently been shown to be a scaffolding protein that physically interacts with
ERG6. HAP1, ECM22 and UPC2 are all transcription factors that are involved
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Fig. 6. A BPM from Brady et al. that passes both the random-gene validation and the
random-knockout validation tests

in the regulation of the ergosterol biosynthesis pathway. Many deletion strains
with single mutants of these genes (or double mutants of genes on the same side
of the partition) result in accumulation of atypical sterol intermediates, viable,
at least in certain genetic conditions and on rich media; for example, single mu-
tants of ERG24 causes the accumulation of the aberrant sterol ignosterol [16].
Based on the BPM structure and the expression data, we postulate that there is
some mechanism of compensation involving the transcription factors ECM22 and
UPC2 (perhaps to remove toxic sterol intermediates) when the late stages of the
egesterol biosynthetic pathway is disrupted. On the other hand, when ERG24 is
deleted, perhaps HAP1 can upregulate other genes to synthesize aberrant sterols
that let the yeast hang on to viability in certain favorable conditions. If the two
subportions of the pathway are thus compensating, stronger antifungal drugs
might result from targeting genes in both subsets simultaneously.

4 Discussion

Understanding the functional relationships between proteins is essential for the in-
terpretation of genomic data sets. Manual, experimental construction of pathway
models is a slow and painstaking process [17,18]. Thus, there is a need for com-
putational methods to predict pathway models and functions. Between-pathway



382 B.J. Hescott et al.

models are an especially advantageous method of pathway-mining, in that the
compensatory nature of the two complementary pathways may provide additional
clues to function.

Here, we suggest a method for evaluating the results of BPM discovery projects.
However, our method is still only a pragmatic approximation of our ultimate goal,
which would be reachable if we had gene expression data for all yeast single-gene
deletion strains. In that case, we could reasonably expect to find knockouts of most
genes on both sides of a BPM. We would then be able to look for consistent Clus-
terRank scores across most genes in each pathway from a BPM, and for a rela-
tionship between the scores of the knockouts on both sides. Even those with only
middling p-values might be validated if knocking out every gene in one pathway
produces the same set of coherent changes in the other, and vice-versa.

We have instead worked with the Rosetta compendium - the best source of such
data available, but still containing knockouts of only about 5%of the yeast genome.
Thus, finding BPMs with more than a few deleted genes is difficult, and we have
needed to adjust our methods accordingly. We note that, because few BPM path-
wayscontainmore than justonedeletedgene,wemay fail tovalidate somepathways
that are simply noisy rather than incorrect. For example, suppose that a pathway
contains 8 pathway- related genes and 2 unrelated ones. If the one deletion strain
wehave is one of the unrelated genes, then the pathwaywill not have been validated
in our study. However, the addition of more data would address this problem.

Similarly, this lack of data has had an effect on our methods to evaluate statisti-
cal significance. If we had the full set of knockout data, then the random-knockout
validation method would be the preferred approach. Thiswould be amuch stronger
way of assessing the significance of coherent expression changes in the specific gene
set than comparison to a random set of genes. (This is because we know that ran-
dom sets of genes have low expression correlation, while it is possible that a par-
ticular gene set is co-expressed, wildly variable, and completely unrelated to the
knockout from the complementary pathway.)However, in this paper, we still prefer
random-gene-set permutations over random-mutant-strain permutations, simply
because the set of mutants considered in our data set is so small (276), and it is
biased heavily towards those genes whose deletion mutants were considered most
interesting to investigators. Thus, selecting 100 random mutant strains from this
set is almost certainly heavily biased towards specific functions,many ofwhichmay
well be intentionally correlated with those of the pathways being evaluated.

We point out that the BPMs of Brady et al. represent the work of our
own group (LC) or colleagues. We worked independently to design a valida-
tion method that made the most sense, and we at first applied it only to the
other three data sets (whose combined sizes made their evaluation much more
efficient). Only once the methods were fixed did we attempt to evaluate the final
Brady data set using our method.

Finally, we note that for specific BPMs, it may be becoming financially feasible
for interested investigators to obtain expression profiles of all BPM genes in all or
nearly all BPM knockout strains (perhaps by taking advantage of new custom
array technologies), and thus having complete data sets may ultimately be a
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Fig. 7. A BPM from Kelley and Ideker not validated by our method. This BPM illus-
trates clustering of subsets of genes within the compensatory pathway.

reality. Once such data are available, our method might be applied to help refine
the specific pathway models further. Imagine what Figure 2 would look like if it
contained data for not just two deletion strains, but deletions for all the genes
in one pathway from the BPM. Clustering the rows of the matrix might begin
to allow a potential ordering of the genes in the pathway itself.

In fact, even with the data we have now, some pathway refinement is possible.
Figure 7 shows a BPM from Kelley and Ideker and, on the right-hand side, the
ranks of a pathway’s gene expression changes in deletion mutant OST3. Among
the 20 genes on the right-hand pathway, we see three different clusters of coherent
expression changes. The gene set FKS1, CHS3, FKS3, GSY1, GSC2, GSY2,
TSL1, YHL012W all have high ranks, another set of four genes have moderate
ranks, and a third set show little change in their expression within this deletion
mutant as compared to wild-type. One interesting possibility is that this BPM
should perhaps be refined to include just the high-ranking genes.
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