Program Structure Aware Garbage Collection

Raoul Veroy
Graduate student

rveroy @cs.tufts.edu / Tufts University
Advisor: Samuel Guyer

ACM Student number: 3748596

1. Problem and Motivation

This work seeks to improve garbage collectors by using knowl-
edge about how and where objects become garbage to inform our
decision to perform a collection. With the explosion of Big Data,
the size of the heap is increasing to the point that full collections
can be catastrophic for the running application. Because current
modern collectors are typically implemented as generational trac-
ing systems, this forces the collector to do a full collection on a
large heap. The resulting pause time from a full collection can be
unacceptable for the user. The ever increasing size of the live heap
opens an opportunity for a collector that can trade throughput for
reduced pause times. The program structure aware (PSA) collec-
tor attempts to do this by incurring more incremental collections so
as to lessen the work for full collections. The important question
is: how can we schedule these additional incremental collections
so as not to accidentally degrade overall performance of the user
application?

2. Background and Related Work

Many of the performance improvements in garbage collection have
resulted from adapting garbage collection algorithms to various
program attributes. One of the most successful examples of this
is generational collection, which exploits the weak generational
hypothesis that most objects die young (Lieberman and Hewitt
1983; Ungar 1984). Clustered garbage collection attempts to reduce
pause times and total collector work by exploiting the connectivity
of object clusters (Cutler and Morris 2015). Data structure aware
garbage collection uses hints from the programmer to inform live-
ness decisions (Cohen and Petrank 2015).

There have been prior work on immediate reclamation of
garbage. A straightforward implementation of reference counting
reclaims garbage as soon as it becomes unreachable (Collins 1960).
Free-me used a static analysis to determine where to safely insert
calls to free newly formed garbage (Guyer et al. 2006).

In a previous paper, we studied how and where objects become
garbage (Veroy and Guyer 2017 - under review) by determining the
exact program action that caused the objects to become unreach-
able. Objects can die in three ways: by losing a heap reference (dy-
ing by heap action), by losing a stack reference (dying by stack ac-
tion) or when a program terminates (dying at program end). Thus,

[Copyright notice will appear here once *preprint’ option is removed. ]

we know which objects die as a result of losing a stack reference
(versus losing a heap reference), and in which methods these events
occur.

My goal for Program Structure Aware Garbage Collection will
exploit the following program tendencies (Veroy and Guyer 2017 -
under review):

1. Most objects die by stack action. See figure 1.

2. For most programs, objects die in only a handful of methods.

The PSA collector will exploit these tendencies by using func-
tion exits as a sign to start a collection.

Reference counting collectors represent the one end of the
garbage collection spectrum where garbage is reclaimed imme-
diately in a naive implementation. On the other end, modern exten-
sions to the naive reference counting algorithm delays reclamation
of garbage to improve performance. Most modern tracing collec-
tors wait for an allocation failure to trigger a collection. The PSA
collector proposes to offer a tradeoff where collections happen
more frequently, but pause times are reduced. By amortizing the
costs of collection over the run of the program, the chances of a
catastrophic full collection will be greatly reduced.

3. Approach and Uniqueness

Most tracing collector implementations trigger a collection only
when there isn’t enough space for an allocation request. Even gen-
erational collectors, which can perform an incremental collection
on the young nursery, will only do so when the nursery can not
fulfill the current allocation request. If the nursery collection is un-
able to satisfy the allocation request, generational collectors will
perform a full collection.

The question I would like to answer is this: Given what we’ve
discovered about how objects tend to become garbage through
some stack action, is there a better point in time in the program
to trigger a collection? That is, would it be beneficial for some
programs to trigger the collection before the heap is exhausted?
I propose that there are more useful program events that can signal
when to start a collection.

Previously, stack allocation-based collectors have attempted to
exploit the stack discipline nature of programs (Gay and Steens-
gaard 2000; Choi et al. 2003; Shankar et al. 2008). These imple-
mentations usually used escape analysis to identify objects that can
be safely allocated on a stack instead of the heap. On the other hand
the key idea in the PSA collector is to trigger collection using func-
tion exits, so there is no need for stack allocation. While there is no
need for stack allocation, the PSA collector would be compatible
with the mentioned static escape analyses.

2017/4/8



100 -

~
a
|

8

2 % in bytes

i . By heap

g 504 By stack

=

g Program end
o}

o

press

tomcat
ytrace
228_jack ~

222_mpegaudio ~ .

_205_raytrace
201_com

Benchmark

Figure 1. Objects’ cause of death classified, in percentage of mem-
ory size, as dying by heap, dying by stack action, and dying at pro-
gram end. Benchmarks are sorted from largest maximum live size
to smallest.

3.1 Program Structure Aware Garbage Collection

The program structure aware (PSA) garbage collector aims to take
advantage of the tendency of most objects to die because of a
function returning. My current research on the PSA collector can
be divided into the following steps:

1. Using the dynamic analysis in our previous work, we can iden-
tify the top functions where a lot of objects die at the end of
the function (Veroy and Guyer 2017 - under review). The PSA
collector will use these functions to trigger a collection. I plan
to implement this in the Jikes RVM for the mark-sweep and
copying collectors (Alpern et al. 2005).

2. If objects die at the end of the same function, then the PSA col-
lector can incrementally threaten only those objects that may
die in that function. This suggests that allocating these objects
into the same region will improve collector performance. There-
fore, in addition to the Jikes RVM collectors, I also plan to
test the PSA hypothesis in the Garbage First collector for the
Hotspot JVM (Detlefs et al. 2004).

3. Reference counting collectors could also be improved using
the PSA hypothesis. All reference counting collectors need a
backup system to detect cycles. These backup systems tend to
run periodically in a manner similar to tracing algorithms. As
such, the backup cycle detectors can also be triggered like the
tracing collectors.

3.1.1 Design Points

I plan to run experiments acorss the following design points in the
PSA collector:

Trigger points 1 plan to identify the best functions to use for the
PSA collection trigger points. These should be the functions
where most objects die.

Collection frequency Triggering on every function return for the
chosen trigger points may negatively affect program perfor-
mance. PSA collection frequency should be tuned depending
on the application.

Note that these design points do not have to be statically defined.
The collector may employ heuristics to tune the design points
dynamically while the user application is running.

4. Results and Contributions

I plan to run the PSA collector on well-known Java benchmark
suites: SPECIVMOS, DaCapo, and SPECjbb. I also plan to run the
PSA collector on large (> 64G B) heaps. While the key metric will
be pause times, I fully expect the PSA collector to improve overall
runtimes for programs with large heaps.

While initial experiments will be run on Jikes RVM mark-
sweep collector, the PSA paradigm should be applicable to both
generational and region collectors. Thus I expect to be able to
experiment on the Jikes generational reference counting collector
and the Hotspot garbage first collector.

The essential contribution of this work will be to add a new
technique to the garbage collection toolbox. I envision this to be
useful to both researchers and industry implementors.

References

B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi, P. Cheng,
J. Dolby, S. Fink, D. Grove, M. Hind, K. S. McKinley, M. Mergen,
J. E. B. Moss, T. Ngo, and V. Sarkar. The jikes research virtual machine
project: Building an open-source research community. /BM Syst. J., 44
(2):399-417, Jan. 2005. ISSN 0018-8670. doi: 10.1147/sj.442.0399.
URL http://dx.doi.org/10.1147/sj.442.0399.

J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P. Midkiff.
Stack allocation and synchronization optimizations for java using escape
analysis. ACM Transactions on Programming Languages and Systems
(TOPLAS), 25(6):876-910, 2003.

N. Cohen and E. Petrank. Data structure aware garbage collector. In
Proceedings of the 2015 ACM SIGPLAN International Symposium on
Memory Management, pages 28—40. ACM, 2015.

G. E. Collins. A method for overlapping and erasure of lists. Communica-
tions of the ACM, 3(12):655-657, 1960.

C. Cutler and R. Morris. Reducing pause times with clustered collection.
In Proceedings of the 2015 International Symposium on Memory Man-
agement, ISMM ’15. ACM, 2015.

D. Detlefs, C. Flood, S. Heller, and T. Printezis. Garbage-first garbage col-
lection. In Proceedings of the 4th International Symposium on Mem-
ory Management, ISMM °04, pages 3748, New York, NY, USA, 2004.
ACM. ISBN 1-58113-945-4. doi: 10.1145/1029873.1029879. URL
http://doi.acm.org/10.1145/1029873.1029879.

D. Gay and B. Steensgaard. Fast escape analysis and stack allocation
for object-based programs. In International Conference on Compiler
Construction, pages 82-93. Springer, 2000.

S. Z. Guyer, K. S. McKinley, and D. Frampton. Free-me: a static analysis
for automatic individual object reclamation. In ACM SIGPLAN Notices,
volume 41, pages 364-375. ACM, 2006.

H. Lieberman and C. Hewitt. A real-time garbage collector based on the
lifetimes of objects. Commun. ACM, 26(6):419-429, June 1983.

A. Shankar, M. Arnold, and R. Bodik. Jolt: lightweight dynamic analysis
and removal of object churn. ACM Sigplan Notices, 43(10):127-142,
2008.

D. Ungar. Generation scavenging: A non-disruptive high performance
storage reclamation algorithm. SIGPLAN Not., 19(5):157-167, Apr.
1984.

R. L. Veroy and S. Z. Guyer. Garbology: A study of how java objects die.
2017 - under review.

2017/4/8



