
Scimitar: Functional Programs as Optimization
Problems

Nate F. F. Bragg
Tufts University

Medford, MA, USA
nate@cs.tufts.edu

Jeffrey S. Foster
Tufts University

Medford, MA, USA
jeffrey.foster@tufts.edu

Philip Zucker
Draper Laboratory

Cambridge, MA, USA
pzucker@draper.com

Abstract
Mixed integer linear programming is a powerful and widely
used approach to solving optimization problems, but its
expressiveness is limited. In this paper we introduce the
optimization-aided language Scimitar, which encodes opti-
mization problems using an expressive functional language,
with a compiler that targets a mixed integer linear program
solver. Scimitar provides easy access to encoding techniques
that normally require expert knowledge, enabling solve-time
conditional constraints, inlining, loop unrolling, and many
other high-level language constructs. We give operational
semantics for Scimitar and constraint encodings of various
features. To demonstrate Scimitar, we present a number
of examples and benchmarks including classic optimization
domains and more complex problems. Our results indicate
that Scimitar’s use of a dedicated MILP solver is effective
for expressively modeling optimization problems embedded
within functional programs.

CCS Concepts: • Theory of computation→ Integer pro-
gramming; Linear programming; • Software and its
engineering→ Compilers; Functional languages.

Keywords: mixed integer linear programming, functional
programming, compilers

ACM Reference Format:
Nate F. F. Bragg, Jeffrey S. Foster, and Philip Zucker. 2024. Scimitar:
Functional Programs as Optimization Problems. In Proceedings of
the 2024 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (Onward!
’24), October 23–25, 2024, Pasadena, CA, USA. ACM, New York, NY,
USA, 17 pages. https://doi.org/10.1145/3689492.3690051

1 Introduction
Mixed integer linear programming (MILP) is a classic con-
straint optimization approach for problems with linear and

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1215-9/24/10
https://doi.org/10.1145/3689492.3690051

integer variables and constraints. It has applications rang-
ing from simple to complex, including network and logistics
problems, and machine learning.
Despite the success of MILP, in practice it can still be

very challenging to write MILP programs. The difficulty lies
in MILP’s limited expressiveness, which means that MILP
programmersmust use complex encodings tomap the seman-
tics of their problems into the MILP language. For example,
encodings enable MILP to be applied to domains such as
boolean logic [7], nonlinear functions like multiplication [9]
or piecewise linear functions [17], conditional constraints
[13; 16; 26], and others [24; 30]. However, while such encod-
ings are effective, they require significant expert knowledge
to use, and they make programs difficult to maintain as they
complicate and obscure the underlying problem.

In this paper we introduce Scimitar, an optimization-aided
language that enables seamless integration of MILP con-
straint optimization problems into functional programs. Sev-
eral researchers have explored integrating constraint solvers
into programming languages, e.g., logic languages like SWI-
Prolog [29], verification-aware languages like Dafny [19],
prover languages likeWhy [11], and the Rosette solver-aided
language [28]. However, these languages focus on SMT or
similar decision procedures. In contrast, the design and im-
plementation of Scimitar show how to integrate an opti-
mization solver into functional programming.
Our approach is inspired by the SMT solver-aided lan-

guage Rosette. Like Rosette, Scimitar combines functional
and symbolic reasoning in the same program, but unlike
Rosette, Scimitar is optimization-aided—specifically by a
MILP solver—rather than SMT-aided. Scimitar programs
include the (minimize o e) construct, which minimizes
the objective o with respect to the constraints in the body
expression e. The key novelty of Scimitar is that e is also a
functional expression containing function calls, conditionals,
loops, and more, which is compiled by Scimitar into opti-
mization problems. This relieves Scimitar programmers of
the burden of manually encoding these constructs, enabling
a level of abstraction not available in normal optimization
problem representations. In Section 2 we give two exam-
ples demonstrating our language design while explaining
Scimitar’s behavior in detail.

Another difference is that Scimitar separates host seman-
tics from the solver semantics used in the body of minimize.
Solver semantics translate source code into MILP problems

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
International License.

96

https://doi.org/10.1145/3689492.3690051
https://doi.org/10.1145/3689492.3690051
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by-sa/4.0/

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Nate F. F. Bragg, Jeffrey S. Foster, and Philip Zucker

of the standard form argmin 𝑐𝑇𝑥 s. t. 𝐴𝑥 ⪯ 𝑏. Scimitar also
includes a type system that tracks variable bounds, which
are required by optimization solvers. In Section 3 we give a
grammar and formal semantics for Scimitar that precisely
captures how functional and optimization code interact.
Scimitar uses a wide range of encodings to lower func-

tional programming features to optimization code, while
Rosette relies directly on Z3’s smtlib2 encoding and built-in
translations. Scimitar has encodings for features such as
multiplication, booleans, conditionals, and dynamic vector
indexing. Since solver problems are finite, Scimitar must
also perform function call inlining and loop unrolling during
compilation. Section 4 describes these encodings.
Finally, the applications of these languages are quite dis-

tinct. Those given by Rosette’s developers include formal
verification of systems such as JIT compilers, synthesis of
GPU kernels, program repair, and model checking. On the
other hand, Scimitar targets applications such as logistics
problems, resource allocation, and design optimization. In
Section 5 we present Scimitar benchmarks in different do-
mains to demonstrate the capabilities in our system’s design.
We measure performance, giving evidence that a dedicated
MILP solver compares favorably with the more general pur-
pose SMT solver on optimization applications.

In summary, the contributions of this paper include:

• Scimitar, a new language that combines functional
and symbolic reasoning to provide a set of abstractions
and corresponding encodings to seamlessly compose
MILP constraint optimization problems into functional
programs (Section 2),

• A formal semantics for a functional host language with
nested optimization problems solved via a translation
into standard form (Section 3),

• An implementation strategy for compiling programs
into MILP encodings (Section 4), and

• An evaluation demonstrating that Scimitar programs
can efficiently solve problems in a variety of domains
(Section 5).

2 Examples
Scimitar is a unique language design that lets a user combine
optimization with classical computation seamlessly with a
clear phase distinction. It combines these paradigms through
an integrated MILP solver, which is controlled via constraint
assertions and an optimization construct. Scimitar provides
functional features including recursive, anonymous, and (lim-
ited) higher-order functions; conditionals; let bindings; and
values including numbers, booleans, and tuples.

In this section, we introduce Scimitar via two examples,
a recursive summation function and an arena allocator. Sec-
tion 5 walks through several more examples.

1 (minimize n
2 (letrec
3 ((sum-to-n
4 (lambda (n acc)
5 (if (= n 0.0) acc
6 (sum-to-n (- n 1.0) (+ n acc))))))
7 (assert (>= (sum-to-n n 0.0) 100.0))))

Figure 1. Example of a recursive function

2.1 Sum from Zero to N
Scimitar programs are written as a specialized language
within Racket. In addition to standard functional language
features, Scimitar includes a form (minimize o e), where
expression o is the objective to minimize subject to con-
straints in the expression e. For example, Figure 1 shows a
simple Scimitar program that finds the minimum value of
n subject to the constraint

∑𝑛
𝑖=0 𝑖 ≥ 100.0. This constraint

uses the recursive function sum-to-n, defined within the
minimization expression with two variables n and acc. On
line 5, if n is zero, sum-to-n returns acc. Otherwise it re-
curses, decrementing n and adding n to the accumulator.
When executed, this program gives a final result of 𝑛 = 14.

Normal program semantics executes with a known 𝑛 and
calculates a final value sequentially. On the other hand, solver
semantics must model the whole program at once, divining
the initial 𝑛 from the constraint on the result value.

The recursion in sum-to-n effectively creates a constraint
against the conditional branches at each recursion depth.
Recursion is handled via inlining, which relies on a sen-
tinel indicating dynamically that the inlining depth has been
reached. The constraint on line 7 is finally satisfied when
𝑛 + (𝑛 − 1) . . . + 0.0 ≥ 100.0, and the value of 𝑛 is chosen.

In solver semantics, the entire if expression on lines 5-6
is active, including the guard and both branches. Branches
taken can be picked dynamically, and can even decide the
guard. This example forces the solver to choose between
branches according to the accumulator value rather than 𝑛.

However, during normal execution both branches cannot
be active simultaneously, so the solver must have a way to
enable one and disable the other depending on the result
of the condition expression. This can not be done directly,
but it can be accomplished indirectly using the encoding
⟦if 𝑐 then 𝑡 else 𝑓 ⟧ = 𝑐 · 𝑡 + (1− 𝑐) · 𝑓 . The condition expres-
sion (= n 0.0) has a binary type, and we use that as the
indicator variable 𝑐 . If 𝑐 is true, the result of the true branch
𝑡 is multiplied by one, and the false 𝑓 by zero, and vice versa.
I.e., if 𝑐 = 0, then 0 · 𝑡 + (1− 0) · 𝑓 = 𝑓 , which selects the false
branch. We expand this multiplication using McCormick
envelopes, which we discuss below in Section 2.2.
Scimitar’s functional language compiler translates this

example to a restricted constraint language via this encoding
as well as many others. From there, the optimization language
compiler outputs a matrix format understood by Scimitar’s

97

Scimitar: Functional Programs as Optimization Problems Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

1 (define arena (Init-Arena))
2 (define (Allocate size)
3 (let ((bucket-ix (Bucket-For-Size size)))
4 ...
5 (Update-Arena-Dist arena)
6 (Grab-Block bucket-ix)))

Figure 2. Allocate example: Allocate

virtual machine, which repeatedly invokes a MILP solver
and decodes the optimum into a continuation to execute.

This example demonstrates how in the high level language
users can reason about each constraint sub-problem inde-
pendently, and Scimitar does the heavy lifting of composing
these into an overall problem. By considering a term in isola-
tion, users can ignore its structural relationshipwith adjacent
terms. While this does not make reasoning about the solver’s
decision process for a particular program any easier, it does
provide some guarantees about the program’s construction.
This is in contrast to normal optimization problems, where
users must put in effort to tie parts of their problem together,
which later on could represent a maintainability hurdle. Our
goal is to allow users to implement certain classes of prob-
lems, including traditional optimization problems such as
those that we present in Section 5.

2.2 Arena Allocator
The previous section gives a basic example of a top-level

minimize expression, but in general Scimitar allows such
expressions within of a larger program. This enables itera-
tively solving the problem. Figures 2 and 3 explore Scimi-
tar’s host-solver boundary with a more complex example.

Here, we demonstrate a memory allocator like malloc.
Some malloc implementations use an arena of buckets based
on allocation size, with allocations drawn from the least
greater sized bucket. When users request a block of memory,
the allocator retrieves one from the appropriate bucket. Over
time, some buckets are used more than others, and the logical
solution is to rebalance the buckets to prevent that.
Figure 2 defines Allocate, a stateful allocator function

that follows this design. It is responsible for the mutable state,
including the current arena as well as the history of arenas,
used for hysteresis. On line 1 we initialize the global constant
arena, the number of buckets for each size. The exact blocks
the arena uses are managed outside of the optimization, and
are not shown.
Line 3 selects the bucket containing the requested block,

which is then updated to ensure one is available. This bucket
is used in various other operations that we omit for brevity.
The call to Update-Arena-Dist on line 5 rebalances the
buckets according to the user’s algorithm. We discuss our
implementation of Update-Arena-Dist below. Finally, line 6
returns a new block to the user.

7 (define (Update-Arena-Dist old-arena)
8 (let ((new-arena
9 (optimum-ref optimal-arena
10 (minimize mem-usage
11 ...
12 (assert (>= optimal-arena
13 (... history derate)))
14 (for ([b (range bucket-count)])
15 (if (ref adjust-bucket b)
16 (assert (... derate outliers))
17 (assert (... derate))))))))
18 (if (Converges? new-arena old-arena)
19 (Set-Arena new-arena)
20 (Update-Arena-Dist new-arena))))

Figure 3. Allocate example: Update-Arena-Dist

A straightforward way to rebalance buckets is to use
heuristics such as high water mark or average value. Most
heuristics may not be optimal overall, and some might not
be easily specified.

Our implementation (Figure 3) adjusts the number of slots
within each bucket via an optimization problem. The solution
to this problem redistributes slots from an underused bucket
to an overused one within the arena. It passes values back
and forth cyclically until finally settling on a result that
satisfies both host and solver. Note that we make a number of
simplifying assumptions here—a real implementation must
handle all the complexity of a real system.

In this example, we use three new features—for, ref, and
functions over vectors. Iteration (for ([i (range n)]) e)
can perform some computation e for index i from 0 through
n. Vector indexing (ref v k) retrieves the kth index of the
vector v. Both the index k and the upper bound n can be
concrete values or symbolic variables. We discuss these in
Section 4.
Line 7 defines Update-Arena-Dist, a recursive function

that calculates a new arena by minimizing the total mem-
ory according to various constraints until it converges. On
line 10 we cross the host-solver boundary via the minimize
expression, going from normal functional semantics to Scimi-
tar’s solver semantics. Note how the syntax does not change
across the transition, allowing programmers to focus on
the semantics of their problem. See Section 3.1 for more
details. This minimize expression introduces the symbolic
optimal-arena, mem-usage, derate, and adjust-bucket
variables. The result of the expression minimizes the total
memory used by the new arena, while retrieving the arena
itself. We omit the first few constraints for brevity, but in-
tuitively they establish the relationship between the total
memory and the new arena. Conceptually, these constraints
flow the minimization of the memory usage down to the
individual buckets, weighted by their sizes. The remaining
constraints make up the core heuristic, which relies on the

98

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Nate F. F. Bragg, Jeffrey S. Foster, and Philip Zucker

e ::= x | v | letrec f ⇐ e in e | 𝜆 x . e | e e
| if e then e else e | e ; . . . ; e
| for x ⇐ e do e | sum x ⇐ e of e
| e + e | e · e | ref e e | (e , . . . , e)
| assert C | minimize o e | optimum-ref x e

C ::= e ⪯ e
v ::= () | n | 𝛼 | ⟨ e , . . . , e ⟩ | P
o ::= x | n | 𝛼 | o · o | o + o

𝑥,𝑦 ∈ vars 𝑛 ∈ Z
𝑓 , 𝑔 ∈ funcs 𝛼, 𝛽 ∈ R
P ∈ prims

Figure 4. The Scimitar source language

two symbolic variables derate and adjust-bucket to in-
corporate weighted allocation trends into the current arena
via hysteresis.

The implementation of that heuristic uses the three fea-
tures mentioned above. We determine derate dynamically
by looping over the boolean vector adjust-bucket (up to
the parameter bucket-count), starting on line 14. We access
each bucket one at a time to determine the manner in which
derate is constrained. The number of true buckets is upper
bounded by a parameter set by the system. The conditional
considers both derating possibilities simultaneously. If true
for a particular bucket (line 16), its derating factor is con-
strained by a call to a function, including some outliers
parameter known to the system. If false (line 17), derate is
constrained by some different function that does not depend
on the outliers.

The interaction between the two variables is subtle, and it
may be the case that attempting to optimize the new arena
according to the hysteresis criteria may fail some non-linear
allocator convergence criteria. The algorithm transitions on
line 18 back to the host semantics, then tests whether the new
and old arenas converge. If the new arena has converged,
then on line 19 the algorithm sets the arena and returns.
Otherwise (line 20) it recurses with the new value. A real
implementation would schedule this on some cadence in-
stead of recursing, and after convergence to the steady state
distribution would presumably switch to some cheaper but
more approximate algorithm such as high water mark.

Note that unlike Figure 1, this recursion uses host seman-
tics. Rather than creating a single optimization problem,
host semantics generate a series of optimization problems
executed one at a time. This is made easy by the design of
Scimitar’s virtual machine, which directly integrates contin-
uations, easily allowing for such chaining (see Section 3.3).
We discuss recursion using solver semantics in Section 4.2.

3 Functional Language
Figure 4 shows Scimitar’s source language. The language
includes variables x; values v; a letrec f ⇐ e1 in e2 expres-
sion that defines a function f , whose body e1 is always a

o =
𝑛∑︁
𝑖=1

𝛼𝑖 · y𝑖 + 𝛼 · y + 𝛽

min𝛼1 · y1 + . . . + 𝛼𝑛 · y𝑛 + 𝛽 ;C ⊢ 𝑒 { y
⟦𝑜⟧ = 𝑐𝑇𝑥 ⟦C⟧ = 𝐴𝑥 ⪯ 𝑏

solve(argmin 𝑐𝑇𝑥 s. t. 𝐴𝑥 ⪯ 𝑏) → 𝑥★ ⟦v⟧ = 𝑥★

minimize o e ⇓ v
Solve

e ⇓ v

optimum-ref x e ⇓ v [x]
OptRef

Figure 5. The solve rules of the functional host semantics
The judgment form here is the usual big-step 𝑒 ⇓ 𝑣

lambda; lambdas 𝜆x . e and function application e e; condi-
tionals if e then e else e; sequences of expressions e ; . . . ; e,
executing each expression for the constraints it might intro-
duce and returning the result of the final expression; loops
for x ⇐ e do e that iterate through a tuple, assigning each
tuple element in turn to x and evaluating the loop body;
a native summation operation sum x ⇐ e of e that is more
efficient that summing via a loop; addition e + e; multiplica-
tion e · e over a real and a scalar or binary variable; vector
indexing ref e e; and tuples (e , . . . , e).
The language also includes the assertion form assert C,

which generates the constraint C. Without loss of generality,
in the grammar we write constraints as e ⪯ e where, as is
standard in the optimization literature, ⪯ stands for ≥,=, or ≤.
To specify the optimization goal, the language has solve ex-
pressions of the form minimize o e, where the objective o in-
dicates the expression to be minimized under the constraints
generated in the body e. Objectives o are a syntactic subset of
expressions. The result of aminimize expression is a solution
record for all the variables mentioned in the objective. The
form optimum-ref x e returns the solution for x from the so-
lution record e. Note that while the grammar here is limited
to minimize, our implementation also supports a maximize

solve expression.
Values in Scimitar are unit, numbers, vectors, and primi-

tives. As discussed in Section 7, one deviation from the usual
functional language semantics is that Scimitar does not
support general lists, with list syntax instead denoting fixed-
width tuples. Primitives P are native optimization problems
stored in the solver’s matrix format.
As stated previously, programs in this language are sent

to the functional language compiler, which outputs code in
O, the optimization problem language. O is (almost) a strict
subset of the grammar presented in Figure 4. For a complete
formalization, see Appendix B.

99

Scimitar: Functional Programs as Optimization Problems Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

3.1 Semantics
Scimitar uses two sets of semantics: functional host seman-
tics and functional solver semantics. Scimitar crosses this
host-solver boundary via solve expressions.
Top-level code outside of solve expressions has the stan-

dard scheme-like semantics. In Figure 5, we give a spec-
ification of the functional host semantics’ minimize and
optimum-ref rules. The Solve rule minimizes some objec-
tive o subject to the constraints induced by the expression
e to produce the solution record value v. The user supplies
the objective o in a form that Scimitar can compile down to
the equation o =

∑𝑛
𝑖=1 𝛼𝑖 · y𝑖 + 𝛼 · y + 𝛽 .

To evaluate e, we switch to the functional solver semantics.
Instead of executing e as in the host semantics, the solver
semantics determine an equivalent optimization problem,
if it exists, via angelic nondeterminism [4]. The solution to
this problem is an assignment for the objective that, when
substituted into the body of e, yields a program that correctly
obeys the host semantics. The judgment form used in the
solver semantics is trace-based. The relation e { y states
that the solver can only reason about the operation e in a
context where the solver is aware of some result variable y.
The solvability of this relation is contingent on the existence
of some equifeasible MILP problem that minimizes an objec-
tive subject to constraints C over the objective and result
variables. For such an equifeasible MILP problem to exist, the
variables and constants in its objective and result must be a
superset of those requested by the user-supplied objective o.
For a complete discussion of the functional solver semantics,
please see Appendix A.2.
The Scimitar objective and constraints are converted to

the solver’s vector and matrix format argmin 𝑐𝑇𝑥 s. t. 𝐴𝑥 ⪯ 𝑏

known as standard form. Standard form minimizes the func-
tion 𝑐𝑇𝑥 , where 𝑥 is a vector comprised of all program vari-
ables ⟨𝑦1, . . . , 𝑦𝑛, 𝑦⟩ for the solver to decide, and 𝑐 is the given
coefficient vector ⟨𝛼1, . . . , 𝛼𝑛, 𝛼⟩ (we ignore 𝛽 since it doesn’t
impact the argument values). In the constraints 𝐴𝑥 ⪯ 𝑏, the
term 𝐴 is the matrix of coefficients, and 𝑏 is the vector of
bounds. Once assembled, this standard form problem is sub-
mitted directly to the solver.

The result is the vector of the optimal values of 𝑥 , known
as the optimal point 𝑥★. We convert 𝑥★ into the opaque Scim-
itar solution record value v, whose members are accessed
by OptRef.

3.2 Types
Scimitar includes a type system built around vector shapes
and value sets. The language includes a variety of types,
but they are ultimately converted into I𝜇 (vectors of shape
𝜇 over some interval I). Of particular interest are the set
of reals R and the set {0, 1}. We discuss types in detail in
Appendix A.1.

3.3 Virtual Machine
Scimitar’s virtual machine uses a CPS execution model in-
ternally. The compiler breaks code blocks into parameterized
continuations, which it stores in a table with an associated
key. The virtual machine loop looks up a key, loads the con-
tinuation, applies parameters, and finally executes it. When
complete, each continuation returns the key for the next one
to execute.

Because Scimitar supports first class functions, optimiza-
tion problems can take advantage of this execution model
by using continuations to direct control flow dynamically
across the host–solver boundary (for more on this topic, see
Sections 2.2 and 3.1).

3.4 Solver Awareness
To use Scimitar, users must sometimes be aware of the
solver’s behavior and configuration. Solvers themselves have
limits, like allowable solver values and finite problem size.

For example, different solvers have different numeric lim-
its internally, which restricts the algorithm’s precision and
the values it can use. To control this behavior, Scimitar users
may have to configure the largest and smallest allowed val-
ues before compilation to ensure the solver can handle all
values needed by the program. For example, the contradict
benchmark (Section 5) with the default bounds is infeasible
using Gurobi. By setting the bounds within 6 orders of mag-
nitude from largest to smallest value, it solves correctly. In
general, multiplication and conditional constraints may in-
troduce such precision issues. To avoid them, programmers
must take care that values used in those expressions have
tighter bounds on their type (see Section 3.2).

Solver problemsmust be finite, which comes into playwith
constant propagation in loop unrolling. If a loop’s bounds
can be reduced to constant numeric values via constant prop-
agation, Scimitar unrolls the loop precisely that many times,
propagating the loop variable’s value for each iteration. How-
ever, if the loop’s bounds cannot be statically determined,
e.g., if they use unknown optimization variables, then Scimi-
tar can not know how much to unroll. It must still finitize
the program though, so it unrolls the loop up to a user sup-
plied loop unroll bound parameter. The user has to be sure
that Scimitar is configured with an unroll limit that is suffi-
cient to solve the problem. They must also take care that the
limit is tight, because if it is too high, this can dramatically
increase the solve time. The user must be aware of these
limitations when designing their programs.

4 Encoding Scimitar to Constraints
Scimitar uses a range of techniques and strategies to encode
high-level program features. In this section, we demonstrate
some of the most important ones. We also discuss some of
the areas where Scimitar must take special care to avoid
potential pitfalls.

100

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Nate F. F. Bragg, Jeffrey S. Foster, and Philip Zucker

⟦𝑥 · 𝑦⟧ ≥ 𝑥𝑙 · 𝑦 + 𝑥 · 𝑦𝑙 − 𝑥𝑙 · 𝑦𝑙
⟦𝑥 · 𝑦⟧ ≥ 𝑥𝑢 · 𝑦 + 𝑥 · 𝑦𝑢 − 𝑥𝑢 · 𝑦𝑢
⟦𝑥 · 𝑦⟧ ≤ 𝑥𝑙 · 𝑦 + 𝑥 · 𝑦𝑢 − 𝑥𝑙 · 𝑦𝑢
⟦𝑥 · 𝑦⟧ ≤ 𝑥𝑢 · 𝑦 + 𝑥 · 𝑦𝑙 − 𝑥𝑢 · 𝑦𝑙

⟦if 𝑐 then 𝑏𝑡 else 𝑏 𝑓 ⟧ = 𝑐 · 𝑏𝑡 + (1 − 𝑐) · 𝑏 𝑓
⟦if 𝑐 then 𝑏𝑡 else 𝑏 𝑓 ⟧ = ∀ 𝑟𝑡𝑖 ∈ free(𝑏𝑡).

𝑣𝑡𝑖 = if 𝑐 then 𝑟𝑡𝑖 else 𝑑𝑡𝑖
∀ 𝑟 𝑓𝑗 ∈ free(𝑏 𝑓).
𝑣 𝑓𝑗 = if 𝑐 then 𝑑𝑓𝑗 else 𝑟 𝑓𝑗

𝑏𝑡 [𝑟𝑡0 ↦→ 𝑣𝑡0] . . .
𝑏 𝑓 [𝑟 𝑓0 ↦→ 𝑣 𝑓0] . . .

⟦ref (𝑣0 . . . 𝑣𝑛) 𝑦⟧ =
∑𝑛

𝑖=0 𝑏𝑖 · 𝑣𝑖 s.t. 𝑦 =
∑𝑛

𝑖=0 𝑖 · 𝑏𝑖
1 =

∑𝑛
𝑖=0 𝑏𝑖 ∀ 0 ≤ 𝑖 < 𝑛 . 𝑏𝑖 ∈ {0, 1}

Figure 6. Encodings of various useful language features

4.1 Exact Encodings
Figure 6 gives the encodings used in Scimitar for several
key language constructs (described in Section 3): variable
multiplication, conditionals, and dynamic indexing. Figure 7
presents the definitions of two libraries: Boolean algebra and
variable comparison.

VariableMultiplication. Unfortunately, linear programs
cannot multiply two variables, nor can MILP programs with-
out special constraint formulas that create a relaxation of
the expression. For this discussion, we break apart variable–
variable multiplication into three cases: general continuous–
continuous, binary, and integer.
The first is not possible in MILP, and requires a more

powerful solver (see Section 7).
Scimitar does implement multiplication by a binary vari-

able, which uses the standard encoding using McCormick
envelopes [9]. For the exact encoding, see the top set of equa-
tions in Figure 6. This encoding creates a convex relaxation
that simulates multiplying a binary variable with any other
integer or continuous variable, which approximates the orig-
inal nonlinear function. This method relies on knowing the
upper and lower bounds (denoted by superscript 𝑢 and 𝑙 ,
respectively) of each variable. Scimitar carries these bounds
in the variable’s type, which makes implementing this trans-
lation simple (see Section 3.2). Experts may find introducing
McCormick envelopes simple for small programs, but as the
program grows it becomes increasingly difficult to track and
maintain them.

While possible, multiplication by integer variables is more
involved, and Scimitar does not currently support this.

If-Then-Else. Conditionals are implemented in two cases,
shown in the middle of Figure 6.

In the simple case, Scimitar encodes the guard as an indi-
cator variable 𝑐 that is multiplied by the branches 𝑏𝑡 and 𝑏 𝑓 ,

thus effectively “disconnecting” the other branch. By plug-
ging true and false into 𝑐 , we can see that the corresponding
branch value is returned. The simple case is used for condi-
tional formulas that does not include any constraints.
Otherwise, in the constraint case Scimitar uses a more

complex encoding. As with the simple case, to translate the
constraints, we must disconnect each branch depending on
the result of the guard. This is more complicated here because
asserts must only activate when their corresponding branch
is selected. We disconnect branches by replacing their vari-
ables with dummies. First, we collect the real free variables
𝑟𝑥 from each branch, where 𝑥 ranges over the free variables
𝑟𝑡𝑖 and 𝑟 𝑓𝑖 . For each variable, we create a dummy variable 𝑑𝑥 .
We then select between these one by one using the encoding
from the simple case, assigning each to the used variable 𝑣𝑥 .
Finally, the branches are encoded but substituting the real
variables for the used ones.

This approach allows the solver to satisfy each branch’s
constraints with variable assignments that do not impact
the rest of the problem. The dummies are unconstrained
slack variables that “float” without impacting the computa-
tion. Thus the active branch uses the real variables, while
constraints in the inactive branch have no effect1.

Dynamic Indexing. Dynamic vector and matrix indexing
ref (𝑣0 . . . 𝑣𝑛) 𝑦 is the process of selecting a specific vector
element 𝑣𝑘 using a variable𝑦 as the index. Dynamic indexing
is required, for example, in a recursive function with an
argument representing the index into a vector, as discussed
in Section 4.2. Because the index is a variable, the compiler
does not know in advance how to access the vector, and
must leave it to solve time. This is not a simple operation, in
contrast to selecting an element using a constant, which is
trivial. The implementation of dynamic indexing is shown
at the bottom of Figure 6.

First, the encoding needs one-hot indicator variables 𝑏𝑖 for
each index 𝑣𝑖 in the vector. Only the indicator 𝑏𝑘 is nonzero,
so the sum of all 𝑏𝑖 · 𝑣𝑖 is equal to the corresponding vector
entry 𝑣𝑘 . The variable 𝑦 is translated into the one-hot encod-
ing by scaling each indicator by its corresponding index. For
example, to select the third index, the third indicator variable
𝑏3 is multiplied by three. This will then select the third vector
element 𝑣3 as the result. The encoding is constructed this
way so that both constraints on 𝑣𝑖 and 𝑦 affect the value of
the ref, and so that constraints on the ref affect the values of
the 𝑣𝑖 and 𝑦.

Boolean Algebra. The encoding of Boolean algebra is
straightforward, as shown in the top set of equations in
Figure 7. The Scimitar library implementation uses one
for true and zero for false, and each Boolean operation can

1With one exception: if the programmer includes unsatisfiable constraints
such as 0 = 1 in a branch that is not taken, the problem will be infeasible
overall.

101

Scimitar: Functional Programs as Optimization Problems Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

true = 1
false = 0

not(𝑏) = 1 − 𝑏

and(𝑏1 𝑏2) = 𝑏1 · 𝑏2
or(𝑏1 𝑏2) = 𝑏1 + 𝑏2 − 𝑏1 · 𝑏2
xor(𝑏1 𝑏2) = 𝑏1 + 𝑏2 − 2 · 𝑏1 · 𝑏2

cmp(𝑛 𝑚 𝑐< 𝑐= 𝑐>) =
{ 1 = 𝑐< + 𝑐= + 𝑐>, 0 = 𝑐< · (𝑚 − 𝑛 − 𝜖),
0 = 𝑐= · (𝑛 −𝑚), 0 = 𝑐> · (𝑛 −𝑚 − 𝜖)}

Figure 7. Encodings of useful library functions

be modeled using simple sums and multiplications of their
arguments. By plugging true and false into each formula, we
can see that the corresponding truth table is satisfied.

Variable Comparison. Testing variables for equality or
inequality is a necessary operation for any numeric compu-
tation system. Scimitar’s library encodes it using one-hot
indicators 𝑐<, 𝑐=, and 𝑐>, each of which is true when one
input is less than, equal to, or greater than the other, respec-
tively. The encoding of this test relies on some parameter
𝜖 , as shown in the cmp equations at the bottom of Figure 7.
Because they are mutually exclusive, if 𝑐= is true, it must be
the case that 𝑛 −𝑚 is zero. Otherwise, this difference must
be at least 𝜖 away in one direction or the other (as the small-
est value in our system, we do not worry about differences
smaller than 𝜖).

4.2 Approximate Encodings
Figure 6 omits some important encoding techniques for lan-
guage constructs. One thing to note is that unlike the exact
encodings, in certain cases these techniques can lead to infea-
sible problems, and some do not achieve the optimal result.
The user must pay special attention to their use in practice,
as programmers often have sideband information that is not
encoded directly into the program and that is impossible to
determine programmatically. Avoiding these bad cases may
require tweaking some runtime parameters, such as inlining
and unrolling bounds, as we discuss next.

Inlining. An optimization-aided language must inline all
function calls, both normal and recursive. As with traditional
languages, function inlining directly replaces a function call
with the function body. Unlike traditional languages, opti-
mization problems are unable to reuse code. Each call to a
function must be translated into a separate copy of that func-
tion’s constraints to allow the solver to freely set its variables
independently of the other calls to the same function.

Optimization problems are intrinsically bounded. Finitiz-
ing a recursive function is challenging because it can only
be inlined up to some depth limit parameter supplied by the
user at compile time, and is unable to be invoked beyond this

depth. When the limit is reached, Scimitar compiles in a
sentinel with an associated path condition. Given a sufficient
depth limit, this path condition will not be met at solve time
because the solver will be able to reach the program’s base
case. The sentinel is triggered when the solver has no choice
but to meet its path condition, which conditionally makes
the program infeasible (as discussed above in Section 3.1).
As a consequence of this, recursion without a base case will
always yield infeasible results.

Loop Unrolling. Scimitar finitizes loops by unrolling
them. We discuss two cases of loops: known bounds and un-
known bounds. Scimitar can completely unroll finite loops
because the number of iterations is known at compile time.
If it is impossible to calculate the range of iteration, such
as when the upper bound of the type uses a solver variable,
compilation falls back on a translation to a recursive func-
tion using an index parameter. This produces a sequence of
index-guarded loop bodies up to a user-supplied unroll limit
parameter. As with inlining, the drawback of this approach is
that the problem will be infeasible when the solver is unable
to find a solution within the number of unrolled iterations.

4.3 Other Considerations
Finally, to avoid explosion of the size of the compiled pro-
gram, it is critical to optimize the whole-program represen-
tation. This includes using compact code and data represen-
tations, type information, compiler passes such as constant
propagation, and constraint normalization.

Data and Problem Representation. It is critical to have
an efficient representation for optimization problems and
their data. High level languages are highly compositional,
with most terms containing several subterms. During the
translation to solver-level constraints, this can quickly lead
to large optimization problems, as translated subproblems
will constantly have to be linked up using conjoining con-
straints, introducing a constant number of extra constraints
per subterm. Because this is a frequent operation, the speed
of concatenating constraints is critical. Thousands of inter-
mediate constraints may be constructed, so this must take
as little time as possible.
Unavoidably, the compiler may have to inspect or mod-

ify the contents of a given solver constraint or value, e.g.,
when selecting an index, merging two constraints, splitting
one constraint into multiple, or scaling a value. An efficient
representation can have an asymptotic speedup for these op-
erations. In Scimitar, we elected to represent optimization
problems as normalized sparse matrices augmented with
type metadata. Due to the compositionality discussed above,
most constraint rows reference very few variables, and those
variables are often only used in adjacent rows. Because the
output problem generated by our compiler is very sparse
and clustered around the matrix’s diagonal, this is a very
efficient representation.

102

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Nate F. F. Bragg, Jeffrey S. Foster, and Philip Zucker

Types. Scimitar’s types are invaluable for several reasons
(see Section 3.2). Firstly, we must track the type of data
for the sake of the solver, whose internal representation
requires variables to be bounded. As usual, it is important
to verify whether operations are even permitted on certain
variables. Without types, it is impossible to implement the
encodings we have mentioned, e.g., McCormick envelopes
and dynamic vector indexing, as they need to know the
bounds and shapes of their arguments. The approximate
encodings we mentioned above would also be impossible
without tracking variable types, as we need them to check
the path condition of the sentinel. Finally, data flow and
control flow across the host-solver boundary would not be
possible without types, since the compiler is not designed
to introspect and infer the types of runtime data. Even if
the functional language values were themselves untyped, we
must know the relationship between the functional language
representation and the optimization language representation
in order for values to cross the boundary. We discuss types
in detail in Appendix A.1.

Compiler Passes. The Scimitar compiler is comprised
of several successive passes. Transformations such as con-
stant propagation are critical to minimize the number of con-
straints. Because assembling the final standard form problem
is the most expensive step of compilation, the fewer con-
straints that reach that phase, the faster the program will
compile. By eliminating or combining redundant and cou-
pled constraints, we can offset changes later in the pipeline
where additional constraints must be generated, such as in
the case of McCormick envelope expansion. There is a trade
off, however, because the time spent performing preprocess-
ing may actually exceed the time spent in the solver. We
found that in practice, most passes executed in a matter of
microseconds, or at worst, a few milliseconds. This is in
contrast to assembling the standard form problem, which
was the compiler performance driver, and represents the
biggest opportunity for future performance improvements;
see Section 5.

Constraint Normalization. One particularly important
requirement for the compiler is to reformulate the constraints
into a normalized representation by successively rewriting
terms into lower level representations and guaranteeing that
some terms only appear in certain positions, like requiring
the left subterm of multiplication to be a number. It is impor-
tant to eliminate terms as early as possible, thereby requiring
fewer redundant decisions. This is one reason we separate
the Scimitar grammar from the optimization language gram-
mar. There are even cases where one constraint must be split
into two to create this streamlined representation. In addi-
tion to performance, a side benefit of normalization is that it
helps in simplifying subsequent compiler passes.

4.4 Pitfalls
While the encodings discussed above present opportunities
to support a diverse selection of high level language con-
structs, there are many challenging details that had to be
carefully overcome or avoided to implement Scimitar. We
briefly discuss two of these issues.

Types. As powerful and necessary as types are in Scim-
itar, they are not trivial. The compiler infers the types of
variables and expressions, which is nuanced. The core fea-
ture of the type system is the shape and bounds of vectors as
mentioned in Section 3.2, and type information is required
to correctly lower many operations constraints.

Vectors of different bounds and shapes must often interact.
This could be a problem in a system that required strict type
equality, as many expressions would not type. Because vector
types in Scimitar form a partially ordered set over their
bounds and shapes we can accommodate such interaction
by performing subtype inference.
In some corner cases, such as general variable multipli-

cation or indexing a vector by the index of another vector,
Scimitar cannot infer the type correctly, because the type
system lacks the richness to cover these cases. Scimitar
currently requires type annotation for those cases, and will
produce a type error if they are missing.

Higher Order Functions. Compiling higher order func-
tions in Scimitar requires careful handling of function argu-
ments. There can be conflicts between supplying a function
argument and actually applying that parameter in the body
of the higher order function. These conflicts arise with func-
tions that can not be fully inlined. In cases such as returning
a function from another function, Scimitar is not able to
decide how that resulting function can be invoked. As a re-
sult, Scimitar’s implementation of first class functions is
incomplete. We leave this to future work.

5 Evaluation
To demonstrate Scimitar’s features and explore its capabili-
ties, we developed several benchmarks:

• logistics is a traditional logistics example of optimizing
for profit.

• pipes is a simple network flow problem demonstrating
basic language features. This and logistics show Scimi-
tar’s applicability to classic optimization problems.

• malloc is a full implementation of the program sketch
described in Figures 2 and 3.

• recitation minimizes the number of sections required
to adequately serve the students from a class.

• contradict tests a conditional that contains a contradic-
tion.

• bounce recurses on a simple heuristic that bounces
back and forth until converging.

• sum-to-n is the problem presented in Figure 1.

103

Scimitar: Functional Programs as Optimization Problems Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

• imp is a complete implementation of Winskell’s Imp
language, which demonstrates Scimitar’s full model-
ing power.

We discuss the design of each benchmark below and give
its size in terms of source lines of code (sloc), including the
extra Racket support code required to decide program prop-
erties at compile time such as input data formatting. For
each benchmark, we also report Scimitar’s performance in
terms of compile and solve times. For several benchmarks,
we wrote a corresponding problem directly in the optimiza-
tion language O. In these cases, we compare the performance
of the Scimitar-generated problem encoding to the directly
written version. Most programs compile faster in O, but the
difference in performance is unpredictable. For several prob-
lems, we also compare performance against Rosette versions
of the benchmarks. We use Rosette’s optimize query, which
depends on Z3’s MaxRes algorithm. The performance dif-
ferences are split between time spent encoding programs
and time needed by the underlying solver. Overall, Scimi-
tar’s compile times are two orders of magnitude slower than
Rosette, but its solve times are an order of magnitude faster.

Our benchmark code is available along with the Scimitar
implementation [6].

5.1 Benchmarks
Logistics. One of the classic domains addressed by opti-

mization solvers is logistics problems. We implemented an
example logistics problem that optimizes and returns the
maximum profit expected from some commercial warehouse
and trucking enterprise.
Originally, we implemented the benchmark in the opti-

mization language—at the time, Scimitar source language
was not fully developed. We then continued to co-develop
the source language and the example. This back-and-forth
drove the design of Scimitar, and caused us to add sup-
port for dynamic loop unrolling, dynamic recursion inlining,
and dynamic vector indexing. Scimitar also influenced the
implementation of the benchmark. Because solve-time condi-
tionals are central to Scimitar, as we ported to the functional
language we replaced operations that were implemented us-
ing MILP encoding techniques with structured code using
for and if. This led to simpler and more intelligible code.
To see the exact differences between the two versions, we
refer the reader to the benchmark implementations in the
Scimitar repository.

Overall, we found that Scimitar source language code is
much easier to update and modify. Although the raw num-
ber of constraints generated by our compiler for a given
problem is a constant multiple greater than the number in
the manual version, the Scimitar version is more maintain-
able because as the input program grows linearly in size,
the number of constraints in the compiler output (and the
manual version) grows quadratically. Because of the design

1 (optimum-ref sink-out
2 (maximize sink-out
3 ; omitted source and sink constraints
4 (for ([j (range (length num-is))])
5 (assert ; junction inflows = outflows
6 (= (sum ([i (range (ref num-is j))])
7 (ref pipes (ref j-is `(,i ,j))))
8 (sum ([i (range (ref num-os j))])
9 (ref pipes (ref j-os `(,i ,j)))))))
10 (for ([i (range (length pipes))])
11 (begin ; pipe flows in allowed range
12 (assert (<= (- (ref pipes i))
13 (ref pipe-flows i)))
14 (assert (<= (ref pipes i)
15 (ref pipe-flows i)))))))

Figure 8. The pipes problem

of this benchmark, most constraints in both the Scimitar
and O versions are highly redundant, and some are similar
but have nuanced differences. This can make it difficult to
maintain the O version if the data changes. Furthermore, the
Scimitar version can be much more easily changed, e.g., to
also optimize the number of trucks, while in a hand-written
version this would require drastic changes.

As a demonstration of the ease with which we can change
the higher-level benchmark, wemeasured two versions of the
problem, one smaller and one larger. The logistics-s program
has 1 product, 2 cities, 1 road, and 1 truck, while logistics-
h has 4 products, 4 cities, 4 roads, and 8 trucks. As stated
previously, this increase in program size results in a dis-
proportionately larger number of rows and variables in the
output, and a greatly increased solve time, as shown below
in Table 1.

Our implementation of logistics is 145 Scimitar sloc, with
supporting Racket code of 77 sloc.

Pipes. Figure 8 shows an excerpt from the Scimitar code
for pipes, which calculates the maximum flow through a pipe
network, a classic optimization problem. For the flow to be
valid, the inflow and outflow of every junction must balance
(lines 4-9) given each pipe’s capacity (lines 10-15). Additional
constraints matching source and sink flows have been omit-
ted. Our implementation resembles the usual formal problem
statement, but is written such that the programmer need not
directly encode each constraint and couple it to the data. A
modest amount of extra support code is needed to preprocess
the data from a graphlike representation into the format that
the algorithm expects. After the Scimitar program is com-
piled to the optimization language, the constraints generated
are similar to a hand-written version of the problem.
This basic problem demonstrates Scimitar’s capabilities

on a convex problemwith no integer variables. The Scimitar
code for this traditional optimization problem is simple to
implement, easy to understand, and straightforward to verify.

104

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Nate F. F. Bragg, Jeffrey S. Foster, and Philip Zucker

1 (:= y 0)
2 (:= x 0)
3 (while (<= y 5)
4 (:= x (+ x y))
5 (:= y (+ y 1)))

Figure 9. Example of an Imp program

Pipes also serves as a good benchmark to compare with
Rosette since the two implementations are virtually iden-
tical. The only significant difference is the declaration of
symbolic variables, which is explicit in Rosette and implicit
in Scimitar.
The pipes benchmark is 21 Scimitar sloc, with 113 sup-

porting Racket sloc.

Malloc. The malloc benchmark shows a more real-world
utility, something a developer might want to write as a part
of their program. This benchmark is a version of the mem-
ory allocation example presented in Section 2.2. The original
example serves as framework that an author of a memory
management system could implement using their own crite-
ria. The snippet shown in Figure 3 is incomplete, and serves
to explain the features of Scimitar. The benchmark imple-
mentationwemeasured uses a different heuristic that is more
complex and fleshed out than the one in Figure 3.Malloc also
demonstrates interaction across the host–solver boundary,
where variable optimums in one iteration become parameters
in the next iteration. The malloc benchmark is 29 Scimitar
sloc, with 71 supporting Racket sloc.

Contradict, Bounce, Sum-to-n. These benchmarks are
toy examples that we used to demonstrate the basics of Scim-
itar. The contradict benchmark attempts to minimize the ex-
pression (if x (assert (= x 0)) (assert (<= x 1))).
The true branch introduces a contradiction, and Scimitar
correctly determines x to be false. In bounce, we recurse on
the output of a toy heuristic, passing the previous result into
the next round until the values converge. We give the code
for sum-to-n in Figure 1.

Recitation. This benchmark minimizes rec-count, the
number of sections required to adequately serve the students
in a class (thereby reducing the number of TAs, rooms, etc.).
The problem guarantees that all registered students are as-
signed a section, and that recitations are only scheduled if
they meet a minimum registration count. Recitations are
modeled using symbolic variables for the possible section
slots that could be scheduled and their attendance. To solve
this, the program uses rec-count as the upper loop bound
(as discussed in more detail in Section 4.2). This construction
simplifies the representation, because the relationships be-
tween the students and sections can be enumerated without
worrying about the number of sections needed or precisely
which ones are selected. The recitation benchmark is 43 sloc
for both Scimitar and supporting code, respectively.

Imp. Winskell’s Imp language is aminimalistic imperative
language supporting conditionals, loops, and basic opera-
tions on numbers and booleans. For example, Figure 9 shows
a simple iterative summation program in Imp, akin to Fig-
ure 1. The code initializes two variables x and y, then loops
incrementing y and adds that to x until y is greater than 5.
We developed a compiler that translates an Imp source

program to Scimitar source. We chose this example to il-
lustrate the versatility of Scimitar to handle more complex
iterated domains. Note that this is unlike other benchmarks,
which are written directly as Scimitar source programs. The
compiler works by splitting Imp source into basic blocks.
Each basic block is compiled to a continuation that contains
a minimize expression. As the compiled program executes,
control flow from one basic block to another corresponds to
one continuation calling another in the virtual machine.

Mutable state is represented as an environment that gets
passed from one continuation to the next. For example, for
Figure 9, the environment is a pair containing x and y.

Note that the compiler deliberately does not unroll loops
in Imp. In theory, loops like the one shown in Figure 9 could
be unrolled. However, we wanted the compiler to support
full Imp semantics, including non-termination of loops such
as (while true skip). Generally, functionality which can
not be shown to terminate or is unbounded in size can not
be finitized by Scimitar into an optimization problem; doing
so requires stepping back into the host language.
The Imp compiler is 475 sloc. Unlike other benchmarks,

the implementation of the compiler intermixes Scimitar and
Racket code together, with no simple breakdown between
the two.

5.2 Solver
For our evaluation, we used the popular off-the-shelf Gurobi
MILP solver [14]. We chose Gurobi because of its versatile
and rich API and excellent performance. The sparsely en-
coded matrix and vector representation our compiler uses is
easily translated to Gurobi’s expected format, and from there
it is loaded using the solver’s FFI. Scimitar performs this
translation immediately before the solving step in the virtual
machine. We attribute the time spent in this translation and
loading step to compile time.

5.3 Results
Table 1 gives the median run time performance in millisec-
onds of each benchmark program and the variable and row
count for the compiled code. All measurements were taken
on a 3.2 GHz AMD Ryzen 5 1600 system with 32GB of RAM
using Racket’s current-inexact-milliseconds function.

Note that the comparisons of Scimitar to Rosette are, to a
certain extent, comparing the efficiency of Gurobi and Z3. Z3
implements primal simplex and MaxRes [3], while Gurobi
uses branch-and-bound [14] (with relaxation to simplex),
which we expect to be faster. However, the benefit of using

105

Scimitar: Functional Programs as Optimization Problems Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

Table 1. Measurements in seconds for Scimitar, optimization language, and Rosette programs

Scimitar O Rosette
vars rows compile solve compile solve compile solve

pipes 161 179 34.9ms 0.60ms 0.60ms 18.8ms 0.45ms 0.0ms
logistics-s 268 293 53.5ms 2.0ms 1.4ms 21.3ms 2.2ms 30.8ms
logistics-h 10884 14026 478.7ms 1032.9ms 674.3ms 112.6ms 66.6ms >20m2

contradict 158 229 33.3ms 1.0ms 0.52ms 2.3ms 0.08ms 25.2ms
sum-to-n 11817 17990 1417.2ms 54.7ms —1 —1 >20m2 —
bounce 1858 2538 130.5ms 12.9ms —1 —1 1.1ms 51.1ms

recitation 34846 52514 2190.1ms 615.2ms —1 —1 49.7ms 125490.0ms
malloc 227 239 128.6ms 4.2ms —1 —1 8.7ms 189.4ms
imp-s 8171 10158 201.4ms 16.5ms —1 —1 —1 —1

imp-h 11068 13074 689.6ms 16.6ms —1 —1 —1 —1

1 These benchmarks do not have a corresponding non-Scimitar version.
2 This benchmark exceeds a 20 minute time out.

a dedicated optimization solver is also part of the benefit of
using Scimitar.
The comparison of Scimitar to Rosette also measures

the efficiency of our respective encodings. In both cases, this
time is split between compile and solve time, though in differ-
ent ways. Scimitar’s encoding and high-level optimization
are mostly performed at compile time, with lower-level opti-
mization left to Gurobi. In contrast, in Rosette, the encoding
happens at compile time, and the optimization happens at
solve time.

Table 1 compares our benchmarks written in Scimitar, in
the optimization language O, and in Rosette. Generally, the
performance bottleneck in Scimitar is the compiler, which
compares unfavorably with the others. Conversely, the solve
time of Scimitar is dramatically better than in Rosette. Sur-
prisingly, the solve time of the optimization language version
exceeds Scimitar in some cases, which implies that the com-
piled version is more efficient than one that would be written
directly. This is because solver performance is unpredictable,
and small changes sometimes greatly affect running time.
Examining the results in more detail, we make several

additional observations. The performance of logistics-h as
compared to logistics-s degrades non-linearly. The increase
in size by a factor of over 40× is because there is simply
much more data to account for. The benchmark’s complexity
scales with the scaled sum of products of these parameters.
As a result, the problem has 14026 constraints and 10884
variables, many of which are binary. Unfortunately, while
it is often possible to relax binary variables to continuous
ones, in this case it is not possible because all of them are
indicator variables. In this benchmark, performance is wildly
different across the three versions. Both Scimitar and the
optimization language version return correct results, but the
latter version is over nine times faster. The Rosette version
is virtually the same as the Scimitar version, but it exceeds

a 20 minute time out, so we are unable to evaluate it. We do
not know if this is an issue with Rosette or with Z3.
While Scimitar executes sum-to-n quickly, Rosette hits

a 20 minute timeout while compiling. As such, there is no
solve time measurement for this benchmark in Rosette.
The performance of recitation is over two orders of mag-

nitude faster in Scimitar than in Rosette. We believe this is
because the benchmark optimizes over a loop bound, which
we encode efficiently.

While executing, malloc makes multiple solver calls, and
the times presented reflect the sum total across all runs.
Because of the nature of this design, we think this particular
benchmark’s performance would benefit disproportionately
from compiler performance improvements.

The two imp benchmarks also make multiple solver calls,
but unlike malloc, which only has a single problem that is
solved repeatedly, imp changes between different problems
dynamically. The sizes given are the sum across all generated
problems. Imp’s compiler performance reflects the high num-
ber of individual problems that a given imp program uses.
Both imp-s and imp-h are similar. In fact, imp-s is basically
a subset of imp-h. The size difference is linked to overall
program size. Both benchmarks are large overall compared
to our other benchmarks due to the difficulty of encoding an
imperative programming language as a constraint problem.
It was not possible to replicate all Scimitar benchmarks

using the optimization language. The use of some key Scim-
itar features would require reproducing large chunks of
the output of the compiler. Additionally, Scimitar programs
may solve problems successively, which the optimization
language is incapable of. For the imp compiler, while it would
be possible to write a similar optimization language program
for a given Imp program that does not require these features,
it would represent an enormous engineering effort, on the
order of writing the original compiler. Likewise, we did not

106

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Nate F. F. Bragg, Jeffrey S. Foster, and Philip Zucker

attempt to replicate imp using Rosette as this would require
a significant engineering effort.

The performance of these benchmarks is clearly correlated
with the number of variables and constraints2. One nice
feature of our encoding is that, while these numbers seem
to suffer from a blowup with increased number of variables
𝑣 and rows 𝑟 , growing at the rate of 𝑂 (𝑣 · 𝑟), the encodings
that Scimitar produces are normally very sparse, leading to
an increase that is closer to 𝑂 (𝑣 + 𝑟).

In summary, while Scimitar’s compiler is not the fastest
overall, the improved solver speed gives evidence that a
dedicated MILP solver compares favorably with the more
general purpose SMT solver on optimization applications.

5.4 Analysis
Beyond raw solver performance, there are other differences
that may influence the choice of one language over another.

While Rosette can make use of Z3’s optimization capabili-
ties, it remains a satisfaction-oriented language. For problems
where that is sufficient, Rosette would be preferable, and will
almost certainly outperform Scimitar. However, as we see
here optimization is not its focus, and for such problems
Scimitar will be more performant.
Another reason to use Rosette is its support for queries

beyond what is discussed in this paper, including verification
and program synthesis. Furthermore, the implementation of
Rosette incorporates a rich subset of Racket’s features, while
the current implementation of Scimitar is less complete.

Scimitar and Rosette naturally model data differently in
accordance with the underlying solvers, with Scimitar being
built on top of primitive MILP concepts, while Rosette’s data
is restricted to types supported by SMT. Accordingly, data in
Scimitar is built on top of procedures and vectors over scalar
sets, while Rosette’s core data types are booleans, integers,
reals, bitvectors and uninterpreted functions. While both
languages track the types of variables, Scimitar infers the
types of variables and expressions, while Rosette requires
type ascription and does not support typing of expressions.
Finally, the applications are quite distinct, and despite

considerable overlap, they target different classes of prob-
lems. Those given by Rosette’s developers include formal
verification of systems such as JIT compilers, synthesis of
GPU kernels, program repair, and model checking. On the
other hand, Scimitar targets applications such as logistics
problems, resource allocation, and design optimization.

6 Related Work
MILP Encoding. Popular encoding techniques are diverse

[7; 9; 13; 16; 17; 24; 26; 30] and implemented on a case-by-
case basis in various MILP frontends. While Scimitar does
not implement every technique listed, it aims to provide the

2The exception being malloc, whose performance is skewed because it is
compiled multiple times within a single execution.

programmer with an environment where they do not have
to think about the details of encodings.

Embedded Optimization Problems. Systems such as
cvxpy [8], JuMP [10] and Matlab [27] embed mathemati-
cal programming within a general purpose language. These
systems are focused on dynamically constructing an opti-
mization problem piece by piece, not on modeling a general
purpose language. In contrast, Scimitar is not an embed-
ded language. Instead, it reasons directly about programs
themselves, rather than constructing a problem out of pieces.
The classic constraint language is AMPL [12]. Although

featureful, it does not attempt to model high-level language
features.

Unique Computing Paradigms. Rosette [28] explored
embedding SMT solvers in a functional programming lan-
guage, and was an inspiration for Scimitar. Both are frame-
works that use symbolic expressions translated to constraints
then submitted to a solver via an angelic execution query.
Both enable developers to write and reason symbolically
about programs using high-level abstractions in the tradi-
tional functional style, including constraints over symbolic
expressions. The modeling language matches the host lan-
guage, so there is less cognitive load when transitioning
across the host-solver boundary. While inspired by similar
principles, Rosette is focused on verification and synthesis,
while Scimitar is meant for optimization.

Differentiable programming [1; 5; 21] is an approach to
numeric programming that uses automatic differentiation [2;
15; 25] to generate the derivative of a program for use in
algorithms such as gradient descent. This is a parallel to
Scimitar’s approach—it directly applies an alternative inter-
pretation of a program, expanding that program’s semantics
to include the result. To do this, it must syntactically ana-
lyze the input program to generate the derivative. Similar
to Scimitar, this requires unique handling of conditionals,
which are normally discontinuous.

We designed Scimitar as a standalone language because of
the unique demands of the runtime system. The HANSEI [18]
language is an example of using a similar approach to embed
its special computing paradigm, probabilistic programming,
while making use of host language features. As opposed
to cvxpy and JuMP, the embedding is much more shallow,
and HANSEI programs hardly look different than programs
in a standalone probabilistic language. Scimitar cannot be
similarly embedded because it must reason about global
properties like control flow and variable use that require an
ability to reason about the implementation of every function.

Embedded Functional Program. Some recent efforts
have been made to encode high-level language features us-
ing constraints. These languages compile programs in an
imperative syntax to constraints, which allows for the pos-
sibility of deciding satisfaction or performing optimization,

107

Scimitar: Functional Programs as Optimization Problems Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

without requiring programmers to work directly in the con-
straint language.

BFDL [7] is a high level language derived from Fairplay [20].
It offers encodings of several language features into a con-
straint system including non-recursive function calls, fixed
iteration loops, conditionals, boolean algebra, integer arith-
metic, comparison, user-defined structs, and constant index
array access. This is vaguely similar to Scimitar’s optimiza-
tion language, except that BFDL is focused on constraint
satisfaction, whereas Scimitar is meant for optimization.

CirC [23] is a compiler framework for proof systems that
uses ILP as one of its backends, and can use that to discover
output-maximizing inputs for a constraint set. It supports
a wide array of language features, as demonstrated by sev-
eral frontends. The key distinctions are that Scimitar op-
timizes over any program variable including ones that are
used across nested functions, and that solver invocations
are nested within normal functional programs, which al-
lows the virtual machine to direct control flow according to
optimization results.

High Level Constructs within Solvers. MiniZinc [22] is
a high-level, typed, mostly first-order, functional constraint
optimization modeling language. It offers facilities for ab-
straction such as let-bindings and defining predicates and
functions, but unlike Scimitar it cannot manipulate these
as first class. MiniZinc also has a stronger compile-time/run-
time distinction compared to Scimitar. MiniZinc compiles
to the simpler FlatZinc format before being handed off to
solvers. Scimitar iteratively unfolds a problem to handle an
a priori unbounded number of variables, whereas MiniZinc is
more suited to problems with a well specified fixed domain.

7 Future Work
There are several potential directions for future work. One
useful direction would be adding variable-length lists, whose
encoding is more involved than the types we explored. Sup-
port for lists would allow us to provide higher-order list
functions such as map, foldl, zip, and every, which could be
used for elegant presentations for problems such as subset
sum. Although not conceptually difficult, adding variable-
length lists would require a large engineering effort.
Another valuable addition would be to progressively in-

line recursion to a greater depth, a feature that is available in
some other solver tools. Although our encoding allows for
efficiently solving for the minimum of value of some recur-
sive expression, if the user does not have some knowledge of
the upper bound, the initial problem might be infeasible. In
such cases, it might make sense to retry with a higher limit,
at the cost of longer compile and solve times.
Scimitar supports binary variable multiplication, but a

similar encoding could enable general integer–integer and
integer–float variable multiplication. This is limited by the
bounds of the integer, as the number of constraints is directly

proportional to the bounds. The encoding is practical and
useful for multiplying when one variable’s bounds are small.

For large bounds or float–float variable multiplication, it is
not practical to use a MILP solver. Supporting this and other
functions without a linear relaxation would require a non-
linear approach such as using a Quadratically Constrained
Quadratic Programming (QCQP) solver.

We believe there are several ways to improve Scimitar’s
compile times. These include streamlining generated con-
straints to eliminate redundancies and unnecessary com-
plexity, incorporating special ordered set (SOS) constraints
in place of certain binary variables, and amortizing multiple
successive compilations of similar problems.

8 Conclusion
We described Scimitar, a language combining functional
and symbolic reasoning compiled to optimization problems.
These optimization problems are solved using an off-the-
shelf MILP solver, and the solutions are used to determine
program values and to direct control flow. Scimitar allows
users to automatically take advantage of encoding tech-
niques that must normally be written by hand, including
solve-time conditionals, bounded inlining, and loop unrolling.
We also presented a semantics for this language, showing
how the host language interacts with the solver inside of a
minimize o e term. We gave several examples of Scimitar
in action, including benchmarks that demonstrate Scimi-
tar’s features. While currently Scimitar’s compile time is
slow, its quick solve performance supports the argument in
favor of a dedicated MILP solver for optimization applica-
tions. In summary, Scimitar takes an important first step
in demonstrating the potential benefits of an optimization-
aided language.

Data-Availability Statement
Scimitar’s implementation and benchmarks are available
online [6].

Acknowledgments
We would like to thank the anonymous reviewers for their
helpful comments and Brian Lachance for his extensive
Racket expertise. This research was supported in part by
a Draper Scholarship.

A Appendix: Formalization of Scimitar’s
Source Language

A.1 Types
Figure 10 shows the Scimitar type system. Types provide
guarantees about what the solver receives in the compiled
code, and enable several important features (see Section 4).

108

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Nate F. F. Bragg, Jeffrey S. Foster, and Philip Zucker

Types 𝜏 range over a scalar interval I with a size or “mea-
sure” 𝜇, the unit type, tuples 𝜏 × 𝜏 , records ⟨𝑥 : 𝜏, . . .⟩, and
functions 𝜏 → 𝜏 .
Tensors are given the type I𝜇 ; vectors are a special case

for 𝜇 = 𝑘 . While any closed interval I of the reals is a valid
scalar type, the intervals of most interest to us are the reals
R and the non-negatives R+, the natural numbers Z, and the
set {0, 1}, I.
Types are built on the idea that we can model any value

with a non-recursive algebraic type as a vector of type R𝑘 ;
other types are sugar on top of this basic type. The imple-
mentation flattens tensors, tuples, records, and primitives
according to the dimensionality and range of their type.

I ::= R | R+ | I | Z
𝜇 ::= k | k × 𝜇

𝜏 ::= I𝜇 | () | 𝜏 × 𝜏

| ⟨ x : 𝜏, . . .⟩ | 𝜏 → 𝜏

k ∈ Z

Figure 10. The Scimitar types

A.2 Additional Semantics
In Section 3.1 discussed the interface between host and solver
semantics for Scimitar. The intuition behind the functional
solver semantics can be laid out using a complete trace-based
semantics, as presented in Figures 11, 12, and 13. Because the
whole program is evaluated at once, we can’t analyze indi-
vidual asserts in isolation to determine whether they will be
violated. Even something as simple as (= a b) could for ex-
ample make the program infeasible, force a solution, or have
no effect. Solver semantics that evaluate to concrete values
prove difficult to specify, as this is tantamount to presenting
an entire solver algorithm, e.g. branch and cut. However, our
trace-based approach can give us some insight as to what
the solver sees before it begins its decision procedure.

The judgment form states that given some MILP problem
that minimizes some objective o subject to constraints C,
we can find an equivalent Scimitar program expression e
that leads to the variable or value x. By “leads to,” we mean
specifically that building the MILP problem equivalent to the
operation e requires the solver to be aware of x, which the
problem may use in other constraints. It represents knowl-
edge that the solver has about this expression.
Using these rules, we can explore informally how a user

should expect a program to behave within a solve expres-
sion. The basic solver semantic concepts are variables and
constraints, and our objective is to accumulate these to feed
to the solver. The judgment form is read as follows. For an
expression e on the right hand side of the turnstile, we intro-
duce constraints C and a solver objective min𝑜 on the left
side. Together, these lead to either a variable x or a value v,
where x represents how the solver interprets the constraint(s)
introduced by the expression.

𝛼, 𝛽 are global constants
min𝛼 · 𝑥 + 𝛽 ;⊤ ⊢ 𝑥 { 𝑥

Var
min 0;⊤ ⊢ 𝑣 { 𝑣

Val

min𝑜𝑔;C𝑔 ⊢ 𝑒𝑔 { 𝑥𝑔
min𝑜𝑡 ;C𝑡 ⊢ 𝑒𝑡 { 𝑥𝑡 min𝑜 𝑓 ;C𝑓 ⊢ 𝑒𝑓 { 𝑥 𝑓
𝑥 is fresh C𝑥 ≡ 𝑥 = 𝑥𝑔 ∗ 𝑥𝑡 + (1 − 𝑥𝑔) ∗ 𝑥 𝑓
C𝑡𝑔 ≡ 𝑥𝑔 =⇒ C𝑡 C𝑓 𝑔 ≡ (1 − 𝑥𝑔) =⇒ C𝑓

C ≡ C𝑔 ∧ C𝑡𝑔 ∧ C𝑓 𝑔 ∧ C𝑥
min𝑜𝑔 + 𝑜𝑡 + 𝑜 𝑓 ;C ⊢ if 𝑒𝑔 then 𝑒𝑡 else 𝑒𝑓 { 𝑥

ITE

min𝑜𝑖 ;C𝑖 ⊢ 𝑒𝑖 { 𝑦𝑖
C𝑦 ≡ 𝑦𝑖 = ⟨𝑦1, . . . , 𝑦𝑛⟩ 𝑛 < unroll limit

min𝑜1;C1 ⊢ 𝑒𝑏 [𝑥 ↦→ 𝑦1] { 𝑥1
...

min𝑜𝑛 ;C𝑛 ⊢ 𝑒𝑏 [𝑥 ↦→ 𝑦𝑛] { 𝑥𝑛
C ≡ C1 ∧ . . . ∧ C𝑛 ∧ C𝑖 ∧ C𝑦

min𝑜1 + . . . + 𝑜𝑛 + 𝑜𝑖 ;C ⊢ for 𝑥 ⇐ 𝑒𝑖 do 𝑒𝑏 { 𝑥𝑛
For

min𝑜𝑖 ;C𝑖 ⊢ 𝑒𝑖 { 𝑦𝑖
C𝑦 ≡ 𝑦𝑖 = ⟨𝑦1, . . . , 𝑦𝑛⟩ 𝑛 < unroll limit
𝑥𝑠 is fresh C𝑠 ≡ 𝑥𝑠 = 𝑥1 + . . . + 𝑥𝑛

min𝑜1;C1 ⊢ 𝑒𝑏 [𝑥 ↦→ 𝑦1] { 𝑥1
...

min𝑜𝑛 ;C𝑛 ⊢ 𝑒𝑏 [𝑥 ↦→ 𝑦𝑛] { 𝑥𝑛
C ≡ C1 ∧ . . . ∧ C𝑛 ∧ C𝑖 ∧ C𝑦 ∧ C𝑠

min𝑜1 + . . . + 𝑜𝑛 + 𝑜𝑖 ;C ⊢ sum 𝑥 ⇐ 𝑒𝑖 of 𝑒𝑏 { 𝑥𝑠
Sum

Figure 11. Scimitar’s functional solver semantics for
variables, values, and loops. The judgment form

used here is trace-based: min𝑜 ;C ⊢ 𝑒 { 𝑥

Figure 11 gives the rules for variables, values, condition-
als and loops. Var is the only case where an objective is
introduced, an affine formula over the variable used in the
statement of the problem. Values (Val) can only lead to them-
selves. Conditionals (ITE) use the objectives of all subexpres-
sions, and the conditional behavior is represented in the
constraints: first, we introduce a constraint C𝑥 that governs
what the overall expression leads to. This equation reads
that depending on the binary variable x𝑔 , either x𝑡 or x 𝑓 are
non-zero. In C𝑡𝑔 and C𝑓 𝑔 we use the variable x𝑔 to enable or
disable the constraint sets C𝑡 and C𝑓 respectively. This is just
an intuition—our actual implementation is more subtle. For
the exact encoding and its explanation, see Figure 6.We struc-
ture our constraints like this to allow backwards reasoning
about x𝑔. For and Sum are relatively straightforward. Some-
times we can statically decide what the loop upper bound
is and unroll the loop or sum completely. Otherwise the
exact behavior depends on reaching the unroll limit; when
this happens (discussed in Section 3.4), which we can decide

109

Scimitar: Functional Programs as Optimization Problems Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

𝑛 ≥ inline/unroll limit
𝜙 ;𝑛; PC =⇒ ⊥ ⊢ 𝑒 ⇓ 𝑒

InlineFail

min 0;⊤ ⊢ 𝜆𝑥 . 𝑒 { ⦇𝜆𝑥 . 𝑒⦈
Lambda

𝜙 = {𝑓 ↦→ 𝑒𝑓 }
𝜙 ;𝑛 + 1;C ⊢ 𝑒 [𝑓 ↦→ 𝑒𝑓] ⇓ 𝑒′

𝑛 < inline/unroll limit
𝜙 ;𝑛;C ⊢ 𝑒 ⇓ 𝑒′

Inline

min𝑜1;C1 ⊢ 𝑒1 { ⦇𝜆𝑥 𝑓 . 𝑒𝑓 ⦈
min𝑜2;C2 ⊢ 𝑒2 { 𝑥2

min𝑜 𝑓 ;C𝑓 ; ⊢ 𝑒𝑓 [𝑥 𝑓 ↦→ 𝑥2] { 𝑥

min𝑜1 + 𝑜2 + 𝑜 𝑓 ;C1 ∧ C2 ∧ C𝑓 ⊢ 𝑒1𝑒2 { 𝑥
Apply

min𝑜 𝑓 ;C𝑓 ⊢ 𝑒𝑓 { 𝑣 𝑓
𝜙 = {𝑓 ↦→ 𝑣 𝑓 } 𝜙 ; 0;C′

𝑓
⊢ 𝑣 𝑓 ⇓ 𝑣 ′

𝑓

min𝑜 ;C ⊢ 𝑒 [𝑓 ↦→ 𝑣 ′
𝑓
] { 𝑥 C′ ≡ C𝑓 ∧ C′

𝑓
∧ C

min𝑜 𝑓 + 𝑜 ;C′ ⊢ letrec 𝑓 ⇐ 𝑒𝑓 in 𝑒 { 𝑥
Letrec

Figure 12. Scimitar’s functional solver semantics: functions

min𝑜1;C1 ⊢ 𝑒1 { 𝑥1 . . . min𝑜𝑛 ;C𝑛 ⊢ 𝑒𝑛 { 𝑥𝑛

min𝑜1 + . . . + 𝑜𝑛 ;C1 ∧ . . . ∧ C𝑛 ⊢ 𝑒1; . . . ; 𝑒𝑛 { 𝑥𝑛
Seq

𝑥 is fresh
min𝑜1;C1 ⊢ 𝑒1 { 𝑥1 min𝑜2;C2 ⊢ 𝑒2 { 𝑥2

min𝑜1 + 𝑜2;C1 ∧ C2 ∧ 𝑥1 + 𝑥2 = 𝑥 ⊢ 𝑒1 + 𝑒2 { 𝑥
Plus

𝑥 is fresh
min𝑜1;C1 ⊢ 𝑒1 { 𝑣1 min𝑜2;C2 ⊢ 𝑒2 { 𝑥2

min𝑜1 + 𝑜2;C1 ∧ C2 ∧ 𝑣1 · 𝑥2 = 𝑥 ⊢ 𝑒1 · 𝑒2 { 𝑥
Times

𝑦 is fresh min𝑜 ;C ⊢ 𝑒 { 𝑥 min𝑜 𝑗 ;C𝑗 ⊢ 𝑖 { 𝑗

min𝑜 + 𝑜 𝑗 ;C ∧ C𝑗 ∧ 𝑥 𝑗 = 𝑦 ⊢ 𝑒𝑖 { 𝑦
VecIx

min𝑜1;C1 ⊢ 𝑒1 { 𝑥1 min𝑜2;C2 ⊢ 𝑒2 { 𝑥2

min𝑜1 + 𝑜2;C1 ∧ C2 ∧ 𝑥1 ⪯ 𝑥2 ⊢ assert 𝑒1 ⪯ 𝑒2 { 0
Ineq

𝑥 is fresh
min𝑜1;C1 ⊢ 𝑒1 { 𝑥1 . . . min𝑜𝑛 ;C𝑛 ⊢ 𝑒𝑛 { 𝑥𝑛

C ≡ C1 ∧ . . . ∧ C𝑛 ∧ 𝑥 = ⟨𝑥1, . . . , 𝑥𝑛⟩
min𝑜1 + . . . + 𝑜𝑛 ;C ⊢ ⟨𝑒1, . . . , 𝑒𝑛⟩ { 𝑥

Tuple

Figure 13. Scimitar’s functional solver semantics: other ops

during solve time, a conditional contradiction constraint is
introduced, which makes the overall problem infeasible.
Figure 12 shows the semantics for function definition,

anonymous functions, and function application. Like the
unroll limit for loops, we make use of a dynamic inlining

limit while inlining functions, which we depict using a spe-
cial judgment form. Given some function definition 𝜙 , an
iteration limit n, and a conditional contradiction constraint
C, Inline recursively replaces uses of 𝜙 in the expression e,
yielding the completely inlined expression e′. We stop inlin-
ing when the inline limit is reached (InlineFail), recognizing
that from the solver’s perspective this point is not reached
due to recursive execution but when a certain constraint over
the path condition PC is uniquely feasible. I.e., the solver
decides that the variables representing the path condition
can only take on the values corresponding to the situation
where the inlining limit is reached. For simplicity we take
the path condition for granted, and exclude its construction
from these judgments.
Note that during function definition (Letrec) we pre-

inline all functions up to this inlining limit, and then inline it
into the body of the letrec. The expression e𝑓 must be a func-
tion; this is verified during type inference. The Lambda rule
evaluates to function values; no environment is included, as
all variables and values have been pre-substituted. Note that
functions only constrain the overall problem if invoked in an
application. Otherwise, their constraints are dropped. The
Apply rule checks that the value of e1 is a function value3
before substituting the actual into the body and applying
it. The case where e1 is not a function cannot occur, as is
caught during type inference.
In Figure 13 we give the rest of the rules. Most of these

are self-explanatory, but we want to draw attention to two:
Times and Ineq. In multiplication, we allow only constant
values or binary variables in one position or the other. In a
constraint rule, after analyzing the subexpressions, we di-
rectly add this as a constraint without the expression leading
to anything.

B Appendix: Formalization of O
The optimization problem language is shown in Figure 14.
With the exception of primitive declarations d it is a strict
subset of the grammar presented in Figure 4. The exception
is the primitive declaration P (x1, . . . ,x𝑛) (r) (y1, . . . ,y𝑚) s,
which introduces some primitive P with inputs x, result r
and local variables y, each of some type 𝜏 . Note that all vari-
ables in a primitive must have type ascriptions, unlike in
Scimitar’s functional language. Although the F program
was already type checked, we retain these types to assist in
lowering to the solver format. A primitive’s body is funda-
mentally a conjunction of constraints C. This language is an
augmented version of a typical mathematical programming
problem min 𝑐𝑇𝑥 s. t. 𝐴𝑥 ⪯ 𝑏 augmented with the explicit
distinction between input, result, and local variables.

3We hand wave a little here—these semantics allow for the possibility that
this is actually a variable, i.e., they do not guarantee a function value.
Because of restructuring during solve expression processing, a function
value is actually guaranteed here.

110

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Nate F. F. Bragg, Jeffrey S. Foster, and Philip Zucker

e ::= x | v | e e | (e , . . . , e)
| e + e | e · e | e𝑒 | sum x ⇐ e of e

s ::= C | s ; . . . ; s
| for x ⇐ e do s

C ::= assert e ⪯ e
v ::= () | n | 𝛼 | ⟨ v , . . . , v ⟩ | P
d ::= P (x : 𝜏 . . .x : 𝜏)(r : 𝜏)(y : 𝜏 . . .y : 𝜏) s

𝑥, 𝑟,𝑦 ∈ variables
P ∈ primitives
𝑛 ∈ Z 𝛼 ∈ R

Figure 14. The optimization problem language O

The semantics of O differ from F in several important
ways. First, the looping constructs in O must have known
finite bounds, and recursion is disallowed. Loops can not
have undetermined ranges with system-wide upper bounds,
as this capability is taken care of when compiling F . Addi-
tionally, no expression can contain any constraints or loops.

Notably absent are lambdas, let bindings, and conditionals.
These have been completely stripped while compiling F .
Lambdas are omitted fromO because primitives inOmust be
named, which avoids the complexity of scope and closed over
variables. Let bindings are undesirable for similar reasons.
While conditionals might be useful at this level, we omit
them to keep the design of O closer to a constraint-focused
optimization problem representation.
Finally, we can’t include solver blocks, as the solver is

already O’s target. Anyhow, Scimitar does not currently
support nested solve expressions. If support were added, we
would handle this feature in F .

Of note, the dynamic vector indexing and McCormick
envelope encodings are performed in O, rather than directly
in L. This is a legacy aspect, and we intend to move these
into L.
Although we give O a concrete syntax, allowing users

to code in it directly, the intention is for users to program
exclusively in L.

References
[1] Martín Abadi and Gordon D. Plotkin. 2020. A simple differentiable

programming language. Proceedings of the ACM on Programming
Languages 4, POPL (Jan. 2020), 1–28. https://doi.org/10.1145/3371106

[2] AtilimGünes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul,
and Jeffrey Mark Siskind. 2018. Automatic differentiation in machine
learning: a survey. Journal of Marchine Learning Research 18 (2018),
1–43. http://jmlr.org/papers/v18/17-468.html

[3] Nikolaj Bjorner. 2022. Advanced topics. https://microsoft.github.io/

z3guide/docs/optimization/advancedtopics/ Accessed: 2023-04-12.
[4] Rastislav Bodík, Satish Chandra, Joel Galenson, Doug Kimelman,

Nicholas Tung, Shaon Barman, and Casey Rodarmor. 2010. Program-
ming with angelic nondeterminism. In Proceedings of the 37th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (Madrid, Spain) (POPL ’10). Association for Computing Machin-
ery, New York, NY, USA, 339–352. https://doi.org/10.1145/1706299.

1706339

[5] Matko Bošnjak, Tim Rocktäschel, Jason Naradowsky, and Sebastian
Riedel. 2017. Programming with a Differentiable Forth Interpreter.
In International Conference on Machine Learning. 547–556. http://

proceedings.mlr.press/v70/bosnjak17a.html ISSN: 2640-3498 Section:
Machine Learning.

[6] Nate F. F. Bragg, Jeffrey S. Foster, and Philip Zucker. 2024. Scimitar:
Onward! 2024 Artifact. https://doi.org/10.5281/ZENODO.13625532

[7] Benjamin Braun. 2012. Compiling computations to constraints for
verified computation. UT Austin Honors Thesis HR-12-10 (2012).

[8] Steven Diamond and Stephen Boyd. 2016. CVXPY: A Python-
embedded modeling language for convex optimization. The Jour-
nal of Machine Learning Research 17, 1 (2016), 2909–2913. http:

//jmlr.org/papers/v17/15-408.html

[9] John Dombrowski. 2018. McCormick envelopes. https://doi.org/10.

21985/N29T8M

[10] Iain Dunning, Joey Huchette, andMiles Lubin. 2017. JuMP: Amodeling
language for mathematical optimization. SIAM review 59, 2 (2017),
295–320. https://doi.org/10.1137/15M1020575

[11] Jean-Christophe Filliâtre. 2003. Why: a multi-language multi-
prover verification tool. Technical Report. Research Report
1366, LRI, Université Paris Sud. https://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.12.3200&q=A%20Certified%20Multi-

prover%20Verification%20Condition%20Generator.

[12] Robert Fourer, David M Gay, and Brian W Kernighan. 1987. AMPL:
A mathematical programming language. AT & T Bell Laboratories
Murray Hill, NJ.

[13] GAMS Development Corporation. 2022. Generalized disjunctive
programs (gdps). https://www.gams.com/latest/docs/UG_EMP_

DisjunctiveProgramming.html

[14] Gurobi Optimization, LLC. 2023. Gurobi Optimizer Reference Manual.
https://www.gurobi.com

[15] Laurent Hascoët and Valérie Pascual. 2013. The Tapenade Automatic
Differentiation Tool: Principles, Model, and Specification. ACM Trans.
Math. Softw. 39, 3, Article 20 (may 2013), 43 pages. https://doi.org/10.

1145/2450153.2450158

[16] Joey Huchette and Juan Pablo Vielma. 2019. A combinatorial ap-
proach for small and strong formulations of disjunctive constraints.
Mathematics of Operations Research 44, 3 (2019), 793–820. https:

//doi.org/10.1287/moor.2018.0946

[17] Joey Huchette and Juan Pablo Vielma. 2022. Nonconvex piecewise
linear functions: Advanced formulations and simple modeling tools.
Operations Research (2022). https://doi.org/10.1287/opre.2019.1973

[18] Oleg Kiselyov and Chung-chieh Shan. 2009. Embedded probabilistic
programming. In IFIP Working Conference on Domain-Specific Lan-
guages. Springer, 360–384. https://doi.org/10.1007/978-3-642-03034-

5_17

[19] K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier
for Functional Correctness. In Logic for Programming, Artificial In-
telligence, and Reasoning, Edmund M. Clarke and Andrei Voronkov
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 348–370. https:

//doi.org/10.1007/978-3-642-17511-4_20

[20] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. 2004.
Fairplay - Secure Two-Party Computation System. In USENIX Security
Symposium.

[21] Oleksandr Manzyuk. 2012. A simply typed 𝜆-calculus of forward
automatic differentiation. Electronic Notes in Theoretical Computer
Science 286 (2012), 257–272. https://doi.org/10.1016/j.entcs.2012.08.017

[22] Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand,
Gregory J Duck, and Guido Tack. 2007. MiniZinc: Towards a stan-
dard CP modelling language. In Principles and Practice of Constraint
Programming–CP 2007: 13th International Conference, CP 2007, Provi-
dence, RI, USA, September 23-27, 2007. Proceedings 13. Springer, 529–543.
https://doi.org/10.1007/978-3-540-74970-7_38

111

https://doi.org/10.1145/3371106
http://jmlr.org/papers/v18/17-468.html
https://microsoft.github.io/z3guide/docs/optimization/advancedtopics/
https://microsoft.github.io/z3guide/docs/optimization/advancedtopics/
https://doi.org/10.1145/1706299.1706339
https://doi.org/10.1145/1706299.1706339
http://proceedings.mlr.press/v70/bosnjak17a.html
http://proceedings.mlr.press/v70/bosnjak17a.html
https://doi.org/10.5281/ZENODO.13625532
http://jmlr.org/papers/v17/15-408.html
http://jmlr.org/papers/v17/15-408.html
https://doi.org/10.21985/N29T8M
https://doi.org/10.21985/N29T8M
https://doi.org/10.1137/15M1020575
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.3200&q=A%20Certified%20Multi-prover%20Verification%20Condition%20Generator.
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.3200&q=A%20Certified%20Multi-prover%20Verification%20Condition%20Generator.
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.3200&q=A%20Certified%20Multi-prover%20Verification%20Condition%20Generator.
https://www.gams.com/latest/docs/UG_EMP_DisjunctiveProgramming.html
https://www.gams.com/latest/docs/UG_EMP_DisjunctiveProgramming.html
https://www.gurobi.com
https://doi.org/10.1145/2450153.2450158
https://doi.org/10.1145/2450153.2450158
https://doi.org/10.1287/moor.2018.0946
https://doi.org/10.1287/moor.2018.0946
https://doi.org/10.1287/opre.2019.1973
https://doi.org/10.1007/978-3-642-03034-5_17
https://doi.org/10.1007/978-3-642-03034-5_17
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1016/j.entcs.2012.08.017
https://doi.org/10.1007/978-3-540-74970-7_38

Scimitar: Functional Programs as Optimization Problems Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

[23] Alex Ozdemir, Fraser Brown, and Riad S. Wahby. 2020. CirC: Com-
piler infrastructure for proof systems, software verification, and more.
Cryptology ePrint Archive, Paper 2020/1586. https://eprint.iacr.org/

2020/1586

[24] P.M. Pardalos. 1988. Linear complementarity problems solvable by
integer programming. Optimization 19, 4 (1988), 467–474. https:

//doi.org/10.1080/02331938808843365

[25] Barak A. Pearlmutter and Jeffrey Mark Siskind. 2008. Reverse-mode
AD in a functional framework: Lambda the ultimate backpropagator.
ACM Transactions on Programming Languages and Systems (TOPLAS)
30, 2 (2008), 1–36. https://doi.org/10.1145/1330017.1330018

[26] Juan P Ruiz, Jan-H Jagla, Ignacio E Grossmann, Alex Meeraus, and
Aldo Vecchietti. 2012. Generalized disjunctive programming: Solution
strategies. In Algebraic Modeling Systems. Springer, 57–75. https:

//doi.org/10.1007/978-3-642-23592-4_4

[27] The MathWorks, Inc. Copyright 2013-2020. intlinprog.
[28] Emina Torlak and Rastislav Bodík. 2013. Growing solver-aided lan-

guages with rosette. In Proceedings of the 2013 ACM international
symposium on New ideas, new paradigms, and reflections on program-
ming & software - Onward! ’13. ACM Press, Indianapolis, Indiana, USA,
135–152. https://doi.org/10.1145/2509578.2509586

[29] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager.
2012. SWI-Prolog. Theory and Practice of Logic Programming 12, 1-2
(2012), 67–96. https://doi.org/10.1017/S1471068411000494

[30] Wikipedia contributors. 2024. Big M method — Wikipedia, The Free
Encyclopedia. https://en.wikipedia.org/w/index.php?title=Big_M_

method&oldid=1227030411 [Online; accessed 28-August-2024].

Received 2024-04-25; accepted 2024-08-08

112

https://eprint.iacr.org/2020/1586
https://eprint.iacr.org/2020/1586
https://doi.org/10.1080/02331938808843365
https://doi.org/10.1080/02331938808843365
https://doi.org/10.1145/1330017.1330018
https://doi.org/10.1007/978-3-642-23592-4_4
https://doi.org/10.1007/978-3-642-23592-4_4
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1017/S1471068411000494
https://en.wikipedia.org/w/index.php?title=Big_M_method&oldid=1227030411
https://en.wikipedia.org/w/index.php?title=Big_M_method&oldid=1227030411

	Abstract
	1 Introduction
	2 Examples
	2.1 Sum from Zero to N
	2.2 Arena Allocator

	3 Functional Language
	3.1 Semantics
	3.2 Types
	3.3 Virtual Machine
	3.4 Solver Awareness

	4 Encoding Scimitar to Constraints
	4.1 Exact Encodings
	4.2 Approximate Encodings
	4.3 Other Considerations
	4.4 Pitfalls

	5 Evaluation
	5.1 Benchmarks
	5.2 Solver
	5.3 Results
	5.4 Analysis

	6 Related Work
	7 Future Work
	8 Conclusion
	Acknowledgments
	A Appendix: Formalization of Scimitar's Source Language
	A.1 Types
	A.2 Additional Semantics

	B Appendix: Formalization of O
	References

