
Cloud

Server replicas across different
fault domains

Towards Redundancy Aware Network Stack
(RANS)

Ali Musa Iftikhar(Tufts), Fahad R. Dogar(Tufts), Owais Ahmad(LUMS), Ihsan Qazi (LUMS)

High Performance needs of today s Datacenters:

 Predictable latency

 Fluid response times

 High availability

Straggler problem:

StragglerClient

Reasons?

vBackground tasks

vHigh load

vFailures

vetc

Replication techniques to improve performance:

vCluster file systems

vAmazon S3, Windows Azure Storage

vFacebook s Haystackk

Current approaches

 Choose the best replica (Difficult to predict stragglers in advance)

 Adaptive replica selection (Reactive, slow)

 Initiate redundant requests – use first one that completes (beneficial

only under low loads, overloads the system at higher loads)

Redundancy aware scheduling framework

 Multiple Queues: To isolate and classify requests as

original and duplicate.

 Strict Priority: To prioritize the original requests over

the duplicate ones

 Purging stale requests: To remove all the remaining

requests as soon as any corresponding one

completes.

vDuplicate requests never hurt the

original requests

vReduced latency under unpredictable

scenarios

vInformation about stragglers not

required

vPurging ensures maximum gains

vCurrent network stack does not have the ability to purge stale

requests,

purging will ensure maximum redundancy gains.

vThis framework needs to be implemented to all resources,

e.g Network, Storage, Applications.

vEach resource has its own set of challenges.

Client

Keeping tail latency low is challenging

but lacks the ability to flush out stale

ware.

Client

Replica 1

Replica 2

Replica 3

Flow completion times improves for low loads, and higher loads.

vOur results motivate that

redundant requests should be

made the rule rather than the

exception

vDevelop network functions

that support purging - with

minimal changes to the

switching hardware

vMake applications RANS

aware

vEvaluation on realistic

workloads and testbeds

Experiments conducted on NS2

 Number of servers = 10

 File chunks size = 64MB

 Requests arrive with a Poisson distribution

 Simulation duration = 1000s

 Duplicate servers are chosen uniformly at random

vGains from the imbalance of server loads imbalance.
vMore the sources of stragglers more the gains.

We expect to see higher gains with purging

- e.g. purging is difficult for the network

GOAL: Making duplicate requests first class citizens of the network

stack, so their overhead is made zero (or negligible)

	RANS_v2.vsdx
	Page-1

