
Towards	Redundancy	Aware	
Network	Stack	for	Datacenters

Ali	Musa	Iftikhar

About	me
• Education
• Undergraduate:	LUMS	(Pakistan)
• PhD	Student	at	Tufts	(just	finished	first	year)

• Research
• Advisor:	Fahad	Dogar
• Interests:	Networks	Systems;	recent	focus:	data	center	networking
• Current	Status:	Identified	a	problem	with	some	potential	promising	solutions

2

What	am	I	hoping	for?
• Feedback	on	the	problem
• How	important	is	it?	Can	it	potentially	become	a	thesis?

• Feedback	on	the	initial	direction
• Design
• Suggestions	for	evaluation

• Pointers	on	related	work

3

Importance	of	Datacenter	
Application	Performance

• Datacenters	run	a	wide	range	of	applications
• Data	analytics;	user	facing	services,	etc

• Performance	matters
• Low	performance	leads	to	fewer	users	leading	to	loss	in	revenue

• Google	demonstrated	that	slowing	down	the	search	results	page	by	100	to	400	
milliseconds	reduces	the	number	of	searches	per	user	by	0.2%	to	0.6%.	

4

Why	is	this	hard?
• Datacenter	network	is	composed	of	commodity	hardware	- prone	to	
failures	(Study	Gill	et	al.	Sigcomm 11)

• Significant	impact	of	failures
• A	benchmark	study	by	L.	Ponemon Institute	in	2013	shows	that	the	per	incident	cost	of	
an	unplanned	outage	is	likely	to	exceed	$8,000	per	minute	

• Applications	are	highly	distributed
• Fan	out	is	large
• many	sequential	stages
• parallelization	across	10s-1000s

• (Speeding	up	Distributed	Request-Response	Workflows,	Sigcomm 13)

5

policy and perform periodic re-balancing to avoid such imbalance.
We show that a network-balanced placement policy does not trig-
ger additional storage balancing cycles. While network hotspots
are stable in the short term to allow network-balanced placement
decisions, they are uniformly distributed across all bottleneck links
in the long term ensuring storage load balancing.

Optimizing distributed writes is NP-hard even in the offline case,
because finding the optimal solution is akin to optimally schedul-
ing tasks in heterogeneous parallel machines without preemption
[9, 26]. We show that if hotspots are stable while a block is be-
ing written and all blocks have the same size, greedy placement
through the least-loaded bottleneck link is optimal for optimizing
the average block write time (§5). Under the same assumptions, we
also show that to optimize the average file write time, files with the
least remaining blocks should be prioritized.

Sinbad employs the proposed algorithms and enforces necessary
constraints to make network-aware replica placement decisions
(§6). It periodically measures the network and reacts to the im-
balance in the non-CFS traffic. An application layer measurement-
based predictor performs reasonably well in practice due to short-
term (few tens of seconds) stability and long-term (hours) uniform-
ness of network hotspots. We find this approach attractive because
it is not tied to any networking technology, which makes it readily
deployable in public clouds.

We have implemented Sinbad as a pluggable replica placement
policy for the Facebook-optimized HDFS distribution [4]. HDFS is
a popular open-source CFS, and it is the common substrate behind
many data-parallel infrastructures [3, 32, 45]. We avoid the many
known performance problems in Hadoop [3] by running jobs using
an in-memory compute engine (e.g., Spark [45]). We have eval-
uated Sinbad (§7) by replaying the scaled-down workload from a
Facebook trace on a 100-machine Sinbad deployment on Amazon
EC2 [1]. We show that Sinbad improves the average block write
time by 1.3× and the average end-to-end completion time of jobs
by up to 1.26× with limited penalties due to its online decisions.
In the process, it decreases the imbalance across the network with
little impact on storage load balancing. For in-memory storage sys-
tems, the improvements can be even higher. Through trace-driven
simulations, we also show that Sinbad’s improvement (1.58×) is
close to that of an optimistic estimation (1.89×) of the optimal.

We discuss known issues and possible solutions in Section 8, and
we consider Sinbad in light of relevant pieces of work in Section 9.

2 CFS Background
This section provides a brief architectural overview of cluster
file systems (CFSes) focusing primarily on the end-to-end write
pipeline. Examples of CFSes include distributed file systems (DFS)
like GFS at Google [27], HDFS at Facebook and Yahoo! [4, 15],
and Cosmos [19] at Bing. We also include public cloud-based
storage systems like Amazon S3 [2] and Windows Azure Storage
(WAS) [17] that have similar architecture and characteristics, and
are extensively used by popular services like dropbox.com.

2.1 System Model
A typical CFS deployment consists of a set of storage slaves and a
master that coordinates the writes to (reads from) CFS slaves. Files
(aka objects/blobs) stored in a CFS are collections of large blocks.
Block size in production clusters varies from 64 MB to 1 GB.2 The
block size demonstrates a trade-off between disk I/O throughput
vs. the benefit from parallelizing across many disks. Most CFS
designs provide failure recovery guarantees for stored files through
replication and ensure strong consistency among the replicas.
2Blocks are not padded, i.e., the last block in a file can be smaller.

Core!

Fault Domain 1/!
Rack 1!

Fault Domain 2/!
Rack 2!

Fault Domain 3/!
Rack 3!

Figure 1: Distributed write pipeline. Each block has three copies in two
racks and three different machines.

Write Workflow When writing a file to the CFS, the client pro-
vides a replication (r) factor and a fault-tolerance (f) factor to
ensure that each block of that file has r copies located in at least
f(< r) fault domains. The former is for load balancing (blocks
in popular files have more replicas [11]), while the latter ensures
availability in spite of failures. Machines in different racks are typ-
ically considered to be in independent fault domains. Typically,
r = 3 and f = 1; meaning, each block is stored in three machines
in two racks and can survive at most one rack failure (Figure 1).
Thus, writing a block copies it at least once across racks.

The replica placement policy in the CFS master independently
decides where to place each block irrespective of their parent files.
Blocks from the same file and their replicas need not be collocated.
The goal is to uniformly place blocks across all machines and fault
domains so as to
• minimize the imbalance in storage load across disks, and
• balance the number of outstanding writes per disk.

Both these constraints assume that writes are bottlenecked only
by disks. This assumption, however, is not always true since the ex-
tent of oversubscription in modern datacenter networks (typically
between the core and racks) can cause writes to bottleneck on the
oversubscribed links. Even on topologies with full bisection band-
width, writes can bottleneck on the servers’ network interfaces for
high in-degrees or when the cumulative write throughput of a server
is larger than its NIC speed. For example, a typical server with six
to eight commodity disks [33, 41] has sequential write throughput
that is several times the typical NIC speed (1 Gbps).

Once replica locations have been determined, the CFS slave
transfers the block to the selected destinations using chain repli-
cation [42]. Distributed writes are synchronous; to provide strong
consistency, the originator task will have to wait until the last
replica of the last block has been written. Hence, write response
times influence task completion times as well.

Read Workflow Reading from the CFS is simpler. Given a file,
the CFS master reports the locations of all the replicas of all the
blocks of that file. Given these locations, task schedulers try to
achieve data locality through a variety of techniques [10,34,43,44].

Although reads are separate from writes, read performance is
still influenced by the placement of blocks. By minimizing storage
imbalance, a CFS strives to minimize the performance impact of
reads in future tasks.

2.2 Network Model
CFS deployments in modern clusters run on topologies that often
have a full-bisection bandwidth core (e.g., fat-tree [38], VL2 [28])
with some oversubscription in core-to-rack links (Figure 1). We
consider a network model, where downlinks to storage racks can
be skewed. This is common in typical data-intensive clusters with

Replication	to	the	rescue
• Most	applications	use	some	form	of	replication
• Cluster	file	systems:

• GFS,	HDFS,	Cosmos
• Amazon	S3,	Windows	Azure	Storage
• Facebook’s	Haystack

• Improves	application	performance
• Can	prevent	loss	of	data	and	major	disruptions	in	service
• Helps	in	load	balancing	– reducing	load	on	a	single	replica

• aware.

6

policy and perform periodic re-balancing to avoid such imbalance.
We show that a network-balanced placement policy does not trig-
ger additional storage balancing cycles. While network hotspots
are stable in the short term to allow network-balanced placement
decisions, they are uniformly distributed across all bottleneck links
in the long term ensuring storage load balancing.

Optimizing distributed writes is NP-hard even in the offline case,
because finding the optimal solution is akin to optimally schedul-
ing tasks in heterogeneous parallel machines without preemption
[9, 26]. We show that if hotspots are stable while a block is be-
ing written and all blocks have the same size, greedy placement
through the least-loaded bottleneck link is optimal for optimizing
the average block write time (§5). Under the same assumptions, we
also show that to optimize the average file write time, files with the
least remaining blocks should be prioritized.

Sinbad employs the proposed algorithms and enforces necessary
constraints to make network-aware replica placement decisions
(§6). It periodically measures the network and reacts to the im-
balance in the non-CFS traffic. An application layer measurement-
based predictor performs reasonably well in practice due to short-
term (few tens of seconds) stability and long-term (hours) uniform-
ness of network hotspots. We find this approach attractive because
it is not tied to any networking technology, which makes it readily
deployable in public clouds.

We have implemented Sinbad as a pluggable replica placement
policy for the Facebook-optimized HDFS distribution [4]. HDFS is
a popular open-source CFS, and it is the common substrate behind
many data-parallel infrastructures [3, 32, 45]. We avoid the many
known performance problems in Hadoop [3] by running jobs using
an in-memory compute engine (e.g., Spark [45]). We have eval-
uated Sinbad (§7) by replaying the scaled-down workload from a
Facebook trace on a 100-machine Sinbad deployment on Amazon
EC2 [1]. We show that Sinbad improves the average block write
time by 1.3× and the average end-to-end completion time of jobs
by up to 1.26× with limited penalties due to its online decisions.
In the process, it decreases the imbalance across the network with
little impact on storage load balancing. For in-memory storage sys-
tems, the improvements can be even higher. Through trace-driven
simulations, we also show that Sinbad’s improvement (1.58×) is
close to that of an optimistic estimation (1.89×) of the optimal.

We discuss known issues and possible solutions in Section 8, and
we consider Sinbad in light of relevant pieces of work in Section 9.

2 CFS Background
This section provides a brief architectural overview of cluster
file systems (CFSes) focusing primarily on the end-to-end write
pipeline. Examples of CFSes include distributed file systems (DFS)
like GFS at Google [27], HDFS at Facebook and Yahoo! [4, 15],
and Cosmos [19] at Bing. We also include public cloud-based
storage systems like Amazon S3 [2] and Windows Azure Storage
(WAS) [17] that have similar architecture and characteristics, and
are extensively used by popular services like dropbox.com.

2.1 System Model
A typical CFS deployment consists of a set of storage slaves and a
master that coordinates the writes to (reads from) CFS slaves. Files
(aka objects/blobs) stored in a CFS are collections of large blocks.
Block size in production clusters varies from 64 MB to 1 GB.2 The
block size demonstrates a trade-off between disk I/O throughput
vs. the benefit from parallelizing across many disks. Most CFS
designs provide failure recovery guarantees for stored files through
replication and ensure strong consistency among the replicas.
2Blocks are not padded, i.e., the last block in a file can be smaller.

Core!

Fault Domain 1/!
Rack 1!

Fault Domain 2/!
Rack 2!

Fault Domain 3/!
Rack 3!

Figure 1: Distributed write pipeline. Each block has three copies in two
racks and three different machines.

Write Workflow When writing a file to the CFS, the client pro-
vides a replication (r) factor and a fault-tolerance (f) factor to
ensure that each block of that file has r copies located in at least
f(< r) fault domains. The former is for load balancing (blocks
in popular files have more replicas [11]), while the latter ensures
availability in spite of failures. Machines in different racks are typ-
ically considered to be in independent fault domains. Typically,
r = 3 and f = 1; meaning, each block is stored in three machines
in two racks and can survive at most one rack failure (Figure 1).
Thus, writing a block copies it at least once across racks.

The replica placement policy in the CFS master independently
decides where to place each block irrespective of their parent files.
Blocks from the same file and their replicas need not be collocated.
The goal is to uniformly place blocks across all machines and fault
domains so as to
• minimize the imbalance in storage load across disks, and
• balance the number of outstanding writes per disk.

Both these constraints assume that writes are bottlenecked only
by disks. This assumption, however, is not always true since the ex-
tent of oversubscription in modern datacenter networks (typically
between the core and racks) can cause writes to bottleneck on the
oversubscribed links. Even on topologies with full bisection band-
width, writes can bottleneck on the servers’ network interfaces for
high in-degrees or when the cumulative write throughput of a server
is larger than its NIC speed. For example, a typical server with six
to eight commodity disks [33, 41] has sequential write throughput
that is several times the typical NIC speed (1 Gbps).

Once replica locations have been determined, the CFS slave
transfers the block to the selected destinations using chain repli-
cation [42]. Distributed writes are synchronous; to provide strong
consistency, the originator task will have to wait until the last
replica of the last block has been written. Hence, write response
times influence task completion times as well.

Read Workflow Reading from the CFS is simpler. Given a file,
the CFS master reports the locations of all the replicas of all the
blocks of that file. Given these locations, task schedulers try to
achieve data locality through a variety of techniques [10,34,43,44].

Although reads are separate from writes, read performance is
still influenced by the placement of blocks. By minimizing storage
imbalance, a CFS strives to minimize the performance impact of
reads in future tasks.

2.2 Network Model
CFS deployments in modern clusters run on topologies that often
have a full-bisection bandwidth core (e.g., fat-tree [38], VL2 [28])
with some oversubscription in core-to-rack links (Figure 1). We
consider a network model, where downlinks to storage racks can
be skewed. This is common in typical data-intensive clusters with

Replication	to	the	rescue
• Most	applications	use	some	form	of	replication
• Cluster	file	systems:

• GFS,	HDFS,	Cosmos
• Amazon	S3,	Windows	Azure	Storage
• Facebook’s	Haystack

• Improves	application	performance
• Can	prevent	loss	of	data	and	major	disruptions	in	service
• Helps	in	load	balancing	– reducing	load	on	a	single	replica

• However	this	scheme	is	limited,	as	the	network	is	unaware	of	these	
replicas

7

policy and perform periodic re-balancing to avoid such imbalance.
We show that a network-balanced placement policy does not trig-
ger additional storage balancing cycles. While network hotspots
are stable in the short term to allow network-balanced placement
decisions, they are uniformly distributed across all bottleneck links
in the long term ensuring storage load balancing.

Optimizing distributed writes is NP-hard even in the offline case,
because finding the optimal solution is akin to optimally schedul-
ing tasks in heterogeneous parallel machines without preemption
[9, 26]. We show that if hotspots are stable while a block is be-
ing written and all blocks have the same size, greedy placement
through the least-loaded bottleneck link is optimal for optimizing
the average block write time (§5). Under the same assumptions, we
also show that to optimize the average file write time, files with the
least remaining blocks should be prioritized.

Sinbad employs the proposed algorithms and enforces necessary
constraints to make network-aware replica placement decisions
(§6). It periodically measures the network and reacts to the im-
balance in the non-CFS traffic. An application layer measurement-
based predictor performs reasonably well in practice due to short-
term (few tens of seconds) stability and long-term (hours) uniform-
ness of network hotspots. We find this approach attractive because
it is not tied to any networking technology, which makes it readily
deployable in public clouds.

We have implemented Sinbad as a pluggable replica placement
policy for the Facebook-optimized HDFS distribution [4]. HDFS is
a popular open-source CFS, and it is the common substrate behind
many data-parallel infrastructures [3, 32, 45]. We avoid the many
known performance problems in Hadoop [3] by running jobs using
an in-memory compute engine (e.g., Spark [45]). We have eval-
uated Sinbad (§7) by replaying the scaled-down workload from a
Facebook trace on a 100-machine Sinbad deployment on Amazon
EC2 [1]. We show that Sinbad improves the average block write
time by 1.3× and the average end-to-end completion time of jobs
by up to 1.26× with limited penalties due to its online decisions.
In the process, it decreases the imbalance across the network with
little impact on storage load balancing. For in-memory storage sys-
tems, the improvements can be even higher. Through trace-driven
simulations, we also show that Sinbad’s improvement (1.58×) is
close to that of an optimistic estimation (1.89×) of the optimal.

We discuss known issues and possible solutions in Section 8, and
we consider Sinbad in light of relevant pieces of work in Section 9.

2 CFS Background
This section provides a brief architectural overview of cluster
file systems (CFSes) focusing primarily on the end-to-end write
pipeline. Examples of CFSes include distributed file systems (DFS)
like GFS at Google [27], HDFS at Facebook and Yahoo! [4, 15],
and Cosmos [19] at Bing. We also include public cloud-based
storage systems like Amazon S3 [2] and Windows Azure Storage
(WAS) [17] that have similar architecture and characteristics, and
are extensively used by popular services like dropbox.com.

2.1 System Model
A typical CFS deployment consists of a set of storage slaves and a
master that coordinates the writes to (reads from) CFS slaves. Files
(aka objects/blobs) stored in a CFS are collections of large blocks.
Block size in production clusters varies from 64 MB to 1 GB.2 The
block size demonstrates a trade-off between disk I/O throughput
vs. the benefit from parallelizing across many disks. Most CFS
designs provide failure recovery guarantees for stored files through
replication and ensure strong consistency among the replicas.
2Blocks are not padded, i.e., the last block in a file can be smaller.

Core!

Fault Domain 1/!
Rack 1!

Fault Domain 2/!
Rack 2!

Fault Domain 3/!
Rack 3!

Figure 1: Distributed write pipeline. Each block has three copies in two
racks and three different machines.

Write Workflow When writing a file to the CFS, the client pro-
vides a replication (r) factor and a fault-tolerance (f) factor to
ensure that each block of that file has r copies located in at least
f(< r) fault domains. The former is for load balancing (blocks
in popular files have more replicas [11]), while the latter ensures
availability in spite of failures. Machines in different racks are typ-
ically considered to be in independent fault domains. Typically,
r = 3 and f = 1; meaning, each block is stored in three machines
in two racks and can survive at most one rack failure (Figure 1).
Thus, writing a block copies it at least once across racks.

The replica placement policy in the CFS master independently
decides where to place each block irrespective of their parent files.
Blocks from the same file and their replicas need not be collocated.
The goal is to uniformly place blocks across all machines and fault
domains so as to
• minimize the imbalance in storage load across disks, and
• balance the number of outstanding writes per disk.

Both these constraints assume that writes are bottlenecked only
by disks. This assumption, however, is not always true since the ex-
tent of oversubscription in modern datacenter networks (typically
between the core and racks) can cause writes to bottleneck on the
oversubscribed links. Even on topologies with full bisection band-
width, writes can bottleneck on the servers’ network interfaces for
high in-degrees or when the cumulative write throughput of a server
is larger than its NIC speed. For example, a typical server with six
to eight commodity disks [33, 41] has sequential write throughput
that is several times the typical NIC speed (1 Gbps).

Once replica locations have been determined, the CFS slave
transfers the block to the selected destinations using chain repli-
cation [42]. Distributed writes are synchronous; to provide strong
consistency, the originator task will have to wait until the last
replica of the last block has been written. Hence, write response
times influence task completion times as well.

Read Workflow Reading from the CFS is simpler. Given a file,
the CFS master reports the locations of all the replicas of all the
blocks of that file. Given these locations, task schedulers try to
achieve data locality through a variety of techniques [10,34,43,44].

Although reads are separate from writes, read performance is
still influenced by the placement of blocks. By minimizing storage
imbalance, a CFS strives to minimize the performance impact of
reads in future tasks.

2.2 Network Model
CFS deployments in modern clusters run on topologies that often
have a full-bisection bandwidth core (e.g., fat-tree [38], VL2 [28])
with some oversubscription in core-to-rack links (Figure 1). We
consider a network model, where downlinks to storage racks can
be skewed. This is common in typical data-intensive clusters with

Replication	to	the	rescue
• Most	applications	use	some	form	of	replication
• Cluster	file	systems:

• GFS,	HDFS,	Cosmos
• Amazon	S3,	Windows	Azure	Storage
• Facebook’s	Haystack

• Improves	application	performance
• Can	prevent	loss	of	data	and	major	disruptions	in	service
• Helps	in	load	balancing	– reducing	load	on	a	single	replica

• However	this	scheme	is	limited,	as	the	network	is	unaware	of	these	
replicas We	claim	that	there	are	potential	benefits	

of	making	the	network	replica	aware.
8

Redundancy	Aware	Network	Stack
• A	co-design	of	applications	and	the	network
• applications	share	replica	information	with	the	network	stack	
(transport	and	network	layer)
• network	stack	uses	redundancy	aware	mechanisms	(eg.	routing)
• applications	may	need	to	be	modified	to	make	full	use	of	the	
mechanisms

9

Redundancy	Aware	Network	
Stack:	Potential	Benefits

• 1.	Improved	replica	selection
• Accurately	choose	least	congested	replicas.
• Faster	adaptive	replica	selection.	

• 2.	In-network	services
• Intelligent	erasure	coding	service	to	avoid	bottlenecks.

• 3.	Improved	failure	recovery
• Prior	work	deals	with	fault-tolerance	but	not	in	the	13)	(Conga,	Sigcomm 14)

• 4.	Reduce	overhead	of	duplicate	requests
• Prior	work	on	duplicate	requests,	does	not	deal	with	reducing	overhead	of	
duplicates	in	DCNs.	(Low	latency	via	Redundancy,	CoNext 13)

10

Redundancy	Aware	Network	
Stack:	Potential	Benefits

• 1.	Improved	replica	selection
• Accurately	choose	least	congested	replicas.	
• Faster	adaptive	replica	selection.	

• 2.	In-network	services
• Intelligent	erasure	coding	service	to	avoid	bottlenecks.

• 3.	Improved	failure	recovery
• Route	around	failures	by	using	replicas	which	do	not	lie	along	faulty	paths.

• 4.	Reduce	overhead	of	duplicate	requests
• Prior	work	on	duplicate	requests,	does	not	deal	with	reducing	overhead	of	
duplicates	in	DCNs.	(Low	latency	via	Redundancy,	Context	13)

11

Failure	Recovery	– Without	
Replicas

Server	3 Server	4

T2

A2

Server	5 Server	6 Server	7 Server	8

T3 T4

A3 A4

Server	10 Server	11 Server	12

T6

Server	13 Server	14 Server	15 Server	16

T7 T8

A7 A8

Server	9Server	1

C1 C2 C3 C4C4

Server	2

T1

A1 A5

T5

A6

1 2
12

Failure	Recovery	– Without	
Replicas

Increased	hop-length

Server	3 Server	4

T2

A2

Server	5 Server	6 Server	7 Server	8

T3 T4

A3 A4

Server	10 Server	11 Server	12

T6

Server	13 Server	14 Server	15 Server	16

T7 T8

A7 A8

Server	9Server	1

C1 C2 C3 C4C4

Server	2

T1

A1 A5

T5

A6

1 2
13

Failure	Recovery	– Without	
Replicas

Increased	hop-length
Can’t	tolerate	all	failures

Server	3 Server	4

T2

A2

Server	5 Server	6 Server	7 Server	8

T3 T4

A3 A4

Server	10 Server	11 Server	12

T6

Server	13 Server	14 Server	15 Server	16

T7 T8

A7 A8

Server	9Server	1

C1 C2 C3 C4C4

Server	2

T1

A1 A5

T5

A6

1 2
14

Failure	Recovery	– With	Replicas

Server	3 Server	4

T2

A2

Server	5 Server	6 Server	7 Server	8

T3 T4

A3 A4

Server	10 Server	12

T6

Server	14 Server	15 Server	16

T7 T8

A7 A8

Server	9Server	1

C1 C2 C3 C4C4

Server	2

T1

A1 A5

T5

A6

Server	13Server	11

1 2 Replica	A Replica	B
15

Server	3 Server	4

T2

A2

Server	5 Server	6 Server	7 Server	8

T3 T4

A3 A4

Server	10 Server	12

T6

Server	14 Server	15 Server	16

T7 T8

A7 A8

Server	9Server	1

C1 C2 C3 C4C4

Server	2

T1

A1 A5

T5

A6

Server	13Server	11

Failure	Recovery	– With	Replicas

Same	hop-length

1 2 Replica	A Replica	B
16

Server	3 Server	4

T2

A2

Server	5 Server	6 Server	7 Server	8

T3 T4

A3 A4

Server	10 Server	12

T6

Server	14 Server	15 Server	16

T7 T8

A7 A8

Server	9Server	1

C1 C2 C3 C4C4

Server	2

T1

A1 A5

T5

A6

Server	13Server	11

Failure	Recovery	– With	Replicas

Same	hop-length
Resilient	to	most	failures

1 2 Replica	A Replica	B
17

Server	3 Server	4

T2

A2

Server	5 Server	6 Server	7 Server	8

T3 T4

A3 A4

Server	10 Server	12

T6

Server	14 Server	15 Server	16

T7 T8

A7 A8

Server	9Server	1

C1 C2 C3 C4C4

Server	2

T1

A1 A5

T5

A6

Server	13Server	11

Failure	Recovery	– With	Replicas

Same	hop-length
Resilient	to	most	failures

1 2 Replica	A Replica	B
18

Server	3 Server	4

T2

A2

Server	5 Server	6 Server	7 Server	8

T3 T4

A3 A4

Server	10 Server	12

T6

Server	14 Server	15 Server	16

T7 T8

A7 A8

Server	9Server	1

C1 C2 C3 C4C4

Server	2

T1

A1 A5

T5

A6

Server	13Server	11

Failure	Recovery	– With	Replicas

Same	hop-length
Resilient	to	most	failures

1 2 Replica	A Replica	B

25%	reduction	in	hop-lengths	and	85.7%	
improvement	in	resilience	for	a	single	

failure. 19

Redundancy	Aware	Network	
Stack:	Potential	Benefits

• 1.	Improved	replica	selection
• Accurately	choose	least	congested	replicas.	
• Faster	adaptive	replica	selection.	

• 2.	In-network	services
• Intelligent	erasure	coding	service	to	avoid	bottlenecks.

• 3.	Improved	failure	recovery
• Route	around	failures	by	using	replicas	which	do	not	lie	along	faulty	paths.

• 4.	Reduced	overhead	of	duplicate	requests
• Initiate	duplicate	requests	to	all	of	the	available	replicas

20

Duplicate	Requests:	Double	the	
load!

• Caters	to	the	most	unpredictable	scenarios

Congestion

21

Requirements	for	Duplicate	
Requests

• Multiple	Queues
• Strict	Priority
• Preemption	(or	small	units)
• Flushing	out	stale	data

Queue	1

Queue	2

High	Priority

Low	Priority

22

Flushing	out	Stale	Data

H G F E D C B A H G F E D C B AQueue	1
High	priority

Queue	2
Low	priority

23

Flushing	out	Stale	Data

H G F E D C B AQueue	2
Low	priority

24

H G F E DQueue	1
High	priority

Packet	drops

C B A

Stale	Data
Link	failure

Food	for	thought:	Multiple	
Priorities

Priority	1

Priority	2

Priority	3

Priority	k

Priority	k-1

• Typical	queues:	FIFO	(Pias,	Hotnets	14)
• Can	filling	queues	bottom	up
to	emulate	LIFO	help?

25

Initial	Simulations:	Setup
• NS-2	simulator
• Varying	loads
• Metric:	aggregate	FCTs
• Failures	on	Replica	A

A)	Single	request
B)	Duplicate	request	
with	same	priority

B)	Duplicate	request	
with	low	priority

26

Initial	Simulations:	Results

0
1
2
3
4
5
6
7
8
9
10
11
12

5.00% 10.00% 30.00% 50.00% 70.00% 90.00% 100.00%

Av
er
ag
e	
flo

w
	c
om

pl
et
io
n	
tim

es
	(s
)

%	load

200	flows,	64MB	chunk	size,	1Gb	link

Single	request Duplicate	request	with	same	priority Duplicate	request	with	low	priority

27

Initial	Simulations:	Results

0
1
2
3
4
5
6
7
8
9
10
11
12

5.00% 10.00% 30.00% 50.00% 70.00% 90.00% 100.00%

Av
er
ag
e	
flo

w
	c
om

pl
et
io
n	
tim

es
	(s
)

%	load

200	flows,	64MB	chunk	size,	1Gb	link,	with	failures

Single	request Duplicate	request	with	same	priority Duplicate	request	with	low	priority

28

Redundancy	Aware	Network	
Stack:	Potential	Benefits

• 1.	Improved	replica	selection
• Accurately	choose	least	congested	replicas.	
• Faster	adaptive	replica	selection.	

• 2.	In-network	services
• Intelligent	erasure	coding	service	to	avoid	bottlenecks.

• 3.	Improved	failure	recovery
• Route	around	failures	by	using	replicas	which	do	not	lie	along	faulty	paths.

• 4.	Reduced	overhead	of	duplicate	requests
• Initiate	duplicate	requests	to	all	of	the	available	replicas

29

Related	work
• Replica	selection:
• (Sinbad,	Sigcomm	13)
• (C3,	Nsdi	15)

• Fault	tolerance	in	DCNs:
• (F10,	NSDI	13)	(Aspen	Trees,	CoNext	13)	(Conga,	Sigcomm	14)

• Redundant	requests:
• (Low	latency	via	Redundancy,	CoNext	13)

• None	of	these	talk	about	a	redundancy	aware	network	stack.

30

Plans	forward
• Failure	recovery:
• Open	flow	for	dynamic	routing
• Deal	with	multiple	failures
• Partial	data

• Duplicate	requests:
• Evaluation	on	HDFS,	Cassandra,	Memcached
• Develop	a	transport	protocol	to	provide	support

31

Broader	scope
• Expressive	interface	between	network	and	application	layer
• Graph	based	interface
• Applications	express	their	workflows	to	the	network

• Redundancy	aware	network	mechanisms:
• Failure	recovery,	routing	and	scheduling

• Modified	cloud	applications
• Providing	complementary	support	to	the	modified	network	mechanisms
• Duplicate	aware	scheduling	at	the	application	level

32

What	am	I	hoping	for?
• Feedback	on	the	problem
• How	important	is	it?	Can	it	potentially	become	a	thesis?

• Feedback	on	the	initial	direction
• Design
• Suggestions	for	evaluation

• Pointers	on	related	work

33

