Towards Redundancy Aware Network Stack for Datacenters

Ali Musa Iftikhar

About me

- Education
 - Undergraduate: LUMS (Pakistan)
 - PhD Student at Tufts (just finished first year)
- Research
 - Advisor: Fahad Dogar
 - Interests: Networks Systems; recent focus: data center networking
 - Current Status: Identified a problem with some potential promising solutions

What am I hoping for?

- Feedback on the problem
 - How important is it? Can it potentially become a thesis?
- Feedback on the initial direction
 - Design
 - Suggestions for evaluation
- Pointers on related work

Importance of Datacenter Application Performance

- Datacenters run a wide range of applications
 - Data analytics; user facing services, etc
- Performance matters
 - Low performance leads to fewer users leading to loss in revenue
 - Google demonstrated that slowing down the search results page by 100 to 400 milliseconds reduces the number of searches per user by 0.2% to 0.6%.

Why is this hard?

- Datacenter network is composed of commodity hardware prone to failures (*Study Gill et al. Sigcomm 11*)
 - Significant impact of failures
 - A benchmark study by L. Ponemon Institute in 2013 shows that the per incident cost of an unplanned outage is likely to exceed \$8,000 per minute
- Applications are highly distributed
 - Fan out is large
 - many sequential stages
 - parallelization across 10s-1000s
 - (Speeding up Distributed Request-Response Workflows, Sigcomm 13)

Replication to the rescue

- Most applications use some form of replication
 - Cluster file systems:
 - GFS, HDFS, Cosmos
 - Amazon S3, Windows Azure Storage
 - Facebook's Haystack
- Improves application performance
 - Can prevent loss of data and major disruptions in service
 - Helps in load balancing reducing load on a single replica

Core

Fault Domain 1/ Fault Domain 2/

Fault Domain 3/

Replication to the rescue

- Most applications use some form of replication
 - Cluster file systems:
 - GFS, HDFS, Cosmos
 - Amazon S3, Windows Azure Storage
 - Facebook's Haystack
- Improves application performance
 - Can prevent loss of data and major disruptions in service
 - Helps in load balancing reducing load on a single replica
- However this scheme is limited, as the network is unaware of these replicas

Core

Fault Domain 3/

Replication to the rescue

- Most applications use some form of replication
 - Cluster file systems:
 - GFS, HDFS, Cosmos
 - Amazon S3, Windows Azure Storage
 - Facebook's Haystack
- Improves application performance
 - Can prevent loss of data and major disruptions in service
 - Helps in load balancing reducing load on a single replica
- However replicas
 We claim that there are potential benefits of making the network replica aware.

Fault Domain 1/

Fault Domain 3/

Core

Fault Domain 2/

Redundancy Aware Network Stack

- A co-design of applications and the network
- applications share replica information with the network stack (transport and network layer)
- network stack uses redundancy aware mechanisms (eg. routing)
- applications may need to be modified to make full use of the mechanisms

Redundancy Aware Network Stack: Potential Benefits

• 1. Improved replica selection

- Accurately choose least congested replicas.
- Faster adaptive replica selection.

• 2. In-network services

• Intelligent erasure coding service to avoid bottlenecks.

Redundancy Aware Network Stack: Potential Benefits

• 1. Improved replica selection

- Accurately choose least congested replicas.
- Faster adaptive replica selection.

• 2. In-network services

• Intelligent erasure coding service to avoid bottlenecks.

3. Improved failure recovery

• Route around failures by using replicas which do not lie along faulty paths.

Same hop-length

Same hop-length

Resilient to most failures

25% reduction in hop-lengths and 85.7% improvement in resilience for a single failure.

19

Server 15 Server 16

Server 13 Server 14

Replica B

A6

Redundancy Aware Network Stack: Potential Benefits

• 1. Improved replica selection

- Accurately choose least congested replicas.
- Faster adaptive replica selection.

• 2. In-network services

• Intelligent erasure coding service to avoid bottlenecks.

• 3. Improved failure recovery

• Route around failures by using replicas which do not lie along faulty paths.

• 4. Reduced overhead of duplicate requests

• Initiate duplicate requests to all of the available replicas

Duplicate Requests: Double the load!

• Caters to the most unpredictable scenarios Congestion Switch **Replica** A **Replica B**

Flushing out Stale Data

Food for thought: Multiple Priorities

- Typical queues: FIFO (Pias, Hotnets 14)
- Can filling queues bottom up to emulate LIFO help?

Initial Simulations: Setup

• NS-2 simulator

- Varying loads
- Metric: aggregate FCTs
- Failures on Replica A

26

Initial Simulations: Results

200 flows, 64MB chunk size, 1Gb link

Single request Duplicate request with same priority Duplicate request with low priority

Initial Simulations: Results

200 flows, 64MB chunk size, 1Gb link, with failures

Single request Duplicate request with same priority Duplicate request with low priority

Redundancy Aware Network Stack: Potential Benefits

• 1. Improved replica selection

- Accurately choose least congested replicas.
- Faster adaptive replica selection.

• 2. In-network services

• Intelligent erasure coding service to avoid bottlenecks.

3. Improved failure recovery

• Route around failures by using replicas which do not lie along faulty paths.

• 4. Reduced overhead of duplicate requests

• Initiate duplicate requests to all of the available replicas

Related work

- Replica selection:
 - (Sinbad, Sigcomm 13)
 - (C3, Nsdi 15)
- Fault tolerance in DCNs:
 - (F10, NSDI 13) (Aspen Trees, CoNext 13) (Conga, Sigcomm 14)
- Redundant requests:
 - (Low latency via Redundancy, CoNext 13)
- None of these talk about a redundancy aware network stack.

Plans forward

- Failure recovery:
 - Open flow for dynamic routing
 - Deal with multiple failures
 - Partial data
- Duplicate requests:
 - Evaluation on HDFS, Cassandra, Memcached
 - Develop a transport protocol to provide support

Broader scope

- Expressive interface between network and application layer
 - Graph based interface
 - Applications express their workflows to the network
- Redundancy aware network mechanisms:
 - Failure recovery, routing and scheduling
- Modified cloud applications
 - Providing complementary support to the modified network mechanisms
 - Duplicate aware scheduling at the application level

What am I hoping for?

- Feedback on the problem
 - How important is it? Can it potentially become a thesis?
- Feedback on the initial direction
 - Design
 - Suggestions for evaluation
- Pointers on related work